-
Notifications
You must be signed in to change notification settings - Fork 154
/
longest-mountain-in-array.js
77 lines (72 loc) · 1.65 KB
/
longest-mountain-in-array.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/**
* Longest Mountain in Array
*
* Let's call any (contiguous) subarray B (of A) a mountain if the following properties hold:
*
* B.length >= 3
* There exists some 0 < i < B.length - 1 such that B[0] < B[1] < ... B[i-1] < B[i] > B[i+1] > ... > B[B.length - 1]
* (Note that B could be any subarray of A, including the entire array A.)
*
* Given an array A of integers, return the length of the longest mountain.
*
* Return 0 if there is no mountain.
*
* Example 1:
*
* Input: [2,1,4,7,3,2,5]
* Output: 5
*
* Explanation: The largest mountain is [1,4,7,3,2] which has length 5.
*
* Example 2:
*
* Input: [2,2,2]
* Output: 0
*
* Explanation: There is no mountain.
*
* Note:
*
* 0 <= A.length <= 10000
* 0 <= A[i] <= 10000
*
* Follow up:
*
* Can you solve it using only one pass?
* Can you solve it in O(1) space?
*/
/**
* Solution I
*
* @param {number[]} A
* @return {number}
*/
/**
* @param {number[]} A
* @return {number}
*/
const longestMountain = A => {
let ans = 0;
// i is left boundary of the mountain
// p is the index of the peak
// j is the right boundary of the mountain
for (let i = 0, j = 0, p = -1; j < A.length; j++) {
if ((j === 0 || A[j] > A[j - 1]) && (j === A.length - 1 || A[j] > A[j + 1])) {
// found a peak
p = j;
}
if ((j === 0 || A[j] <= A[j - 1]) && (j === A.length - 1 || A[j] <= A[j + 1])) {
// found a bottom
if (p > 0) {
// update the result
ans = Math.max(ans, j - i + 1);
}
// reset the left boundary
i = j;
// reset the peak (going to search for a new peak)
p = -1;
}
}
return ans;
};
export { longestMountain };