-
Notifications
You must be signed in to change notification settings - Fork 0
/
gpt.py
204 lines (172 loc) · 6.73 KB
/
gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import torch
import torch.nn as nn
from torch.nn import functional as F
# hyperparameters
batch_size = 64 # how many independent sequences will we process in parallel?
block_size = 256 # what is the maximum context length for predictions?
max_iters = 5000
eval_interval = 500
learning_rate = 3e-4
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 200
n_embed = 384
n_head = 6
n_layer = 6
dropout = 0.2
# ------------
torch.manual_seed(1337)
#read file
with open("./data/input.txt") as f:
text = f.read()
#create vocab
chars = sorted(list(set(text)))
vocab_size = len(chars)
#create vocab-->id, id-->vocab mappings
ctoi = {c: id for id, c in enumerate(chars)}
itoc = {id: c for id, c in enumerate(chars)}
#create encoder decoder
encode = lambda x: [ctoi[ch] for ch in x] #input string, output list of ints
decode = lambda ids: "".join([itoc[id] for id in ids])
#train-test split
data = torch.tensor(encode(text), dtype=torch.long)
train_thresh = int(0.9*len(data))
train_data = data[:train_thresh]
val_data = data[train_thresh:]
#data batching
def get_batch(split):
data = train_data if split == 'train' else val_data
ix = torch.randint(len(data) - block_size, (batch_size, 1))
x = torch.stack([data[i: i+block_size] for i in ix])
y = torch.stack([data[i+1:i+block_size+1] for i in ix])
x, y = x.to(device), y.to(device)
return x, y
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
losses = torch.zeros(eval_iters)
for k in range(eval_iters):
x, y = get_batch(split)
logits, loss = model(x, y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
class Head(nn.Module):
"""single headed attention"""
def __init__(self, head_size):
super().__init__()
self.query = nn.Linear(n_embed, head_size, bias=False)
self.key = nn.Linear(n_embed, head_size, bias=False)
self.value = nn.Linear(n_embed, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
q = self.query(x)
k = self.key(x)
v = self.value(x)
#attention scores
wei = q @ k.transpose(-2, -1) * C**-0.5 #(B, T, C) @ (B, C, T) ----> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] ==0, float("-inf"))
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
out = wei @ v #(B, T, T) @ (B, T, C) -----> (B, T, C)
return out
class MultiHeadAttention(nn.Module):
"""multiple heads of self-attention in parallel"""
def __init__(self, num_heads, head_size) -> None:
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embed, n_embed)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.proj(out)
out = self.dropout(out)
return out
class FeedForward(nn.Module):
"""simple linear layer followed by a non-linear activation"""
def __init__(self, n_embed) -> None:
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embed,4*n_embed),
nn.ReLU(),
nn.Linear(4*n_embed, n_embed),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self, n_embed,n_heads) -> None:
super().__init__()
head_size = n_embed//n_heads
self.sa = MultiHeadAttention(n_heads, head_size)
self.ffwd = FeedForward(n_embed)
self.ln1 = nn.LayerNorm(n_embed)
self.ln2 = nn.LayerNorm(n_embed)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
#simple bigram language model
class BigramLanguageModel(nn.Module):
def __init__(self) -> None:
super().__init__()
self.embedding_table = nn.Embedding(vocab_size, n_embed)
self.position_embedding_table = nn.Embedding(block_size, n_embed)
self.blocks = nn.Sequential(*[Block(n_embed, n_heads=n_head) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embed)
self.lmhead = nn.Linear(n_embed, vocab_size)
def forward(self, idx, targets=None):
#idx, targets shape (B, T)
B, T = idx.shape
token_emb = self.embedding_table(idx) # (B,T,C)
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) #(T, C)
x = token_emb + pos_emb #(B, T, C)
x = self.blocks(x) #(B, T, C)
x = self.ln_f(x) #(B, T, C)
logits = self.lmhead(x) # (B, T, vocab_size)
if targets is None:
loss = None
else:
#shape change necessary to canculate loss, Channels should be the 2nd dimnesion
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
"""method to generate new sample T+1, T+2.... given initial sequence idx"""
for _ in range(max_new_tokens):
idx_cond = idx[:, -block_size:]
#get predictions and losses
logits, loss = model(idx_cond) # (B, T, C)
#isolate the last time stamp as it contains the predicted token
logits = logits[:,-1,:] # (B, C)
#get the probaility distribution
probs = F.softmax(logits, dim=-1)
#sample from the probability distribution
next_idx = torch.multinomial(probs, num_samples=1) #(B, 1)
idx = torch.cat((idx, next_idx), dim=1) #(D, T+1)
return idx
if __name__ == "__main__":
model = BigramLanguageModel()
m = model.to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
print(f"Training starts now on device :{device}")
for iter in range(max_iters):
if iter% eval_iters ==0:
losses = estimate_loss()
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:0.4f}")
Xb, yb = get_batch("train")
logits, loss = model(Xb, yb)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
#generate after training is complete
print("######################################################################")
print(f"Generating context characters:")
context = torch.zeros((1, 1), dtype=torch.long, device=device)
print(decode(m.generate(context, max_new_tokens=800)[0].tolist()))