-
Notifications
You must be signed in to change notification settings - Fork 655
/
script.js
265 lines (216 loc) · 8.34 KB
/
script.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/********************************************************************
* Real-Time-Person-Removal Created by Jason Mayes 2020.
*
* Get latest code on my Github:
* https://github.com/jasonmayes/Real-Time-Person-Removal
*
* Got questions? Reach out to me on social:
* Twitter: @jason_mayes
* LinkedIn: https://www.linkedin.com/in/creativetech
********************************************************************/
const video = document.getElementById('webcam');
const liveView = document.getElementById('liveView');
const demosSection = document.getElementById('demos');
const DEBUG = false;
// An object to configure parameters to set for the bodypix model.
// See github docs for explanations.
const bodyPixProperties = {
architecture: 'MobileNetV1',
outputStride: 16,
multiplier: 0.75,
quantBytes: 4
};
// An object to configure parameters for detection. I have raised
// the segmentation threshold to 90% confidence to reduce the
// number of false positives.
const segmentationProperties = {
flipHorizontal: false,
internalResolution: 'high',
segmentationThreshold: 0.9,
scoreThreshold: 0.2
};
// Render returned segmentation data to a given canvas context.
function processSegmentation(canvas, segmentation) {
var ctx = canvas.getContext('2d');
console.log(segmentation)
// Get data from our overlay canvas which is attempting to estimate background.
var imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
var data = imageData.data;
// Get data from the live webcam view which has all data.
var liveData = videoRenderCanvasCtx.getImageData(0, 0, canvas.width, canvas.height);
var dataL = liveData.data;
var minX = 100000;
var minY = 100000;
var maxX = 0;
var maxY = 0;
var foundBody = false;
// Go through pixels and figure out bounding box of body pixels.
for (let x = 0; x < canvas.width; x++) {
for (let y = 0; y < canvas.height; y++) {
let n = y * canvas.width + x;
// Human pixel found. Update bounds.
if (segmentation.data[n] !== 0) {
if(x < minX) {
minX = x;
}
if(y < minY) {
minY = y;
}
if(x > maxX) {
maxX = x;
}
if(y > maxY) {
maxY = y;
}
foundBody = true;
}
}
}
// Calculate dimensions of bounding box.
var width = maxX - minX;
var height = maxY - minY;
// Define scale factor to use to allow for false negatives around this region.
var scale = 1.3;
// Define scaled dimensions.
var newWidth = width * scale;
var newHeight = height * scale;
// Caculate the offset to place new bounding box so scaled from center of current bounding box.
var offsetX = (newWidth - width) / 2;
var offsetY = (newHeight - height) / 2;
var newXMin = minX - offsetX;
var newYMin = minY - offsetY;
// Now loop through update backgound understanding with new data
// if not inside a bounding box.
for (let x = 0; x < canvas.width; x++) {
for (let y = 0; y < canvas.height; y++) {
// If outside bounding box and we found a body, update background.
if (foundBody && (x < newXMin || x > newXMin + newWidth) || ( y < newYMin || y > newYMin + newHeight)) {
// Convert xy co-ords to array offset.
let n = y * canvas.width + x;
data[n * 4] = dataL[n * 4];
data[n * 4 + 1] = dataL[n * 4 + 1];
data[n * 4 + 2] = dataL[n * 4 + 2];
data[n * 4 + 3] = 255;
} else if (!foundBody) {
// No body found at all, update all pixels.
let n = y * canvas.width + x;
data[n * 4] = dataL[n * 4];
data[n * 4 + 1] = dataL[n * 4 + 1];
data[n * 4 + 2] = dataL[n * 4 + 2];
data[n * 4 + 3] = 255;
}
}
}
ctx.putImageData(imageData, 0, 0);
if (DEBUG) {
ctx.strokeStyle = "#00FF00"
ctx.beginPath();
ctx.rect(newXMin, newYMin, newWidth, newHeight);
ctx.stroke();
}
}
// Let's load the model with our parameters defined above.
// Before we can use bodypix class we must wait for it to finish
// loading. Machine Learning models can be large and take a moment to
// get everything needed to run.
var modelHasLoaded = false;
var model = undefined;
model = bodyPix.load(bodyPixProperties).then(function (loadedModel) {
model = loadedModel;
modelHasLoaded = true;
// Show demo section now model is ready to use.
demosSection.classList.remove('invisible');
});
/********************************************************************
// Continuously grab image from webcam stream and classify it.
********************************************************************/
var previousSegmentationComplete = true;
// Check if webcam access is supported.
function hasGetUserMedia() {
return !!(navigator.mediaDevices &&
navigator.mediaDevices.getUserMedia);
}
// This function will repeatidly call itself when the browser is ready to process
// the next frame from webcam.
function predictWebcam() {
if (previousSegmentationComplete) {
// Copy the video frame from webcam to a tempory canvas in memory only (not in the DOM).
videoRenderCanvasCtx.drawImage(video, 0, 0);
previousSegmentationComplete = false;
// Now classify the canvas image we have available.
model.segmentPerson(videoRenderCanvas, segmentationProperties).then(function(segmentation) {
processSegmentation(webcamCanvas, segmentation);
previousSegmentationComplete = true;
});
}
// Call this function again to keep predicting when the browser is ready.
window.requestAnimationFrame(predictWebcam);
}
// Enable the live webcam view and start classification.
function enableCam(event) {
if (!modelHasLoaded) {
return;
}
// Hide the button.
event.target.classList.add('removed');
// getUsermedia parameters.
const constraints = {
video: true
};
// Activate the webcam stream.
navigator.mediaDevices.getUserMedia(constraints).then(function(stream) {
video.addEventListener('loadedmetadata', function() {
// Update widths and heights once video is successfully played otherwise
// it will have width and height of zero initially causing classification
// to fail.
webcamCanvas.width = video.videoWidth;
webcamCanvas.height = video.videoHeight;
videoRenderCanvas.width = video.videoWidth;
videoRenderCanvas.height = video.videoHeight;
bodyPixCanvas.width = video.videoWidth;
bodyPixCanvas.height = video.videoHeight;
let webcamCanvasCtx = webcamCanvas.getContext('2d');
webcamCanvasCtx.drawImage(video, 0, 0);
});
video.srcObject = stream;
video.addEventListener('loadeddata', predictWebcam);
});
}
// We will create a tempory canvas to render to store frames from
// the web cam stream for classification.
var videoRenderCanvas = document.createElement('canvas');
var videoRenderCanvasCtx = videoRenderCanvas.getContext('2d');
// Lets create a canvas to render our findings to the DOM.
var webcamCanvas = document.createElement('canvas');
webcamCanvas.setAttribute('class', 'overlay');
liveView.appendChild(webcamCanvas);
// Create a canvas to render ML findings from to manipulate.
var bodyPixCanvas = document.createElement('canvas');
bodyPixCanvas.setAttribute('class', 'overlay');
var bodyPixCanvasCtx = bodyPixCanvas.getContext('2d');
bodyPixCanvasCtx.fillStyle = '#FF0000';
liveView.appendChild(bodyPixCanvas);
// If webcam supported, add event listener to button for when user
// wants to activate it.
if (hasGetUserMedia()) {
const enableWebcamButton = document.getElementById('webcamButton');
enableWebcamButton.addEventListener('click', enableCam);
} else {
console.warn('getUserMedia() is not supported by your browser');
}