-
Notifications
You must be signed in to change notification settings - Fork 0
/
bipartite_basic.py
193 lines (180 loc) · 4.96 KB
/
bipartite_basic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#-------------------------------------------------------------------------------
# Copyright (c) 2013 Jose Antonio Martin H. (jamartinh@fdi.ucm.es).
# All rights reserved. This program and the accompanying materials
# are made available under the terms of the GNU Public License v3.0
# which accompanies this distribution, and is available at
# http://www.gnu.org/licenses/gpl.html
#
# Contributors:
# Jose Antonio Martin H. (jamartinh@fdi.ucm.es) - initial API and implementation
#-------------------------------------------------------------------------------
def color(G):
N = G.neighbors
deg = G.degree
color = {}
for n in G.vertices: # handle disconnected graphs
if n in color or len(G[n]) == 0: # skip isolates
continue
queue = [n]
color[n] = 1 # nodes seen with color (1 or 0)
while queue:
v = queue.pop()
c = 1 - color[v] # opposite color of node v
for w in N(v):
if w in color:
if color[w] == color[v]:
return None
else:
color[w] = c
queue.append(w)
# color isolates with 0
color.update(dict.fromkeys([v for v in G.vertices if deg(v) == 0], 0))
return color
def is_bipartite(G):
if color(G): return True
return False
# def is_bipartite_node_set(G, nodes):
# """Returns True if nodes and G/nodes are a bipartition of G.
#
# Parameters
# ----------
# G : NetworkX graph
#
# nodes: list or container
# Check if nodes are a one of a bipartite set.
#
# Examples
# --------
# >>> from networkx.algorithms import bipartite
# >>> G = nx.path_graph(4)
# >>> X = set([1,3])
# >>> bipartite.is_bipartite_node_set(G,X)
# True
#
# Notes
# -----
# For connected graphs the bipartite sets are unique. This function handles
# disconnected graphs.
# """
# S = set(nodes)
# for CC in nx.connected_component_subgraphs(G):
# X, Y = sets(CC)
# if not ((X.issubset(S) and Y.isdisjoint(S)) or
# (Y.issubset(S) and X.isdisjoint(S))):
# return False
# return True
def sets(G):
"""Returns bipartite node sets of graph G.
Raises an exception if the graph is not bipartite.
Parameters
----------
G : NetworkX graph
Returns
-------
(X,Y) : two-tuple of sets
One set of nodes for each part of the bipartite graph.
Examples
--------
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> X, Y = bipartite.sets(G)
>>> list(X)
[0, 2]
>>> list(Y)
[1, 3]
See Also
--------
color
"""
c = color(G)
X = set(n for n in c if c[n]) # c[n] == 1
Y = set(n for n in c if not c[n]) # c[n] == 0
return (X, Y)
# def density(B, nodes):
# """Return density of bipartite graph B.
#
# Parameters
# ----------
# G : NetworkX graph
#
# nodes: list or container
# Nodes in one set of the bipartite graph.
#
# Returns
# -------
# d : float
# The bipartite density
#
# Examples
# --------
# >>> from networkx.algorithms import bipartite
# >>> G = nx.complete_bipartite_graph(3,2)
# >>> X=set([0,1,2])
# >>> bipartite.density(G,X)
# 1.0
# >>> Y=set([3,4])
# >>> bipartite.density(G,Y)
# 1.0
#
# See Also
# --------
# color
# """
# n = len(B)
# m = nx.number_of_edges(B)
# nb = len(nodes)
# nt = n - nb
# if m == 0: # includes cases n==0 and n==1
# d = 0.0
# else:
# if B.is_directed():
# d = m / (2.0 * float(nb * nt))
# else:
# d = m / float(nb * nt)
# return d
#
# def degrees(B, nodes, weight = None):
# """Return the degrees of the two node sets in the bipartite graph B.
#
# Parameters
# ----------
# G : NetworkX graph
#
# nodes: list or container
# Nodes in one set of the bipartite graph.
#
# weight : string or None, optional (default=None)
# The edge attribute that holds the numerical value used as a weight.
# If None, then each edge has weight 1.
# The degree is the sum of the edge weights adjacent to the node.
#
# Returns
# -------
# (degX,degY) : tuple of dictionaries
# The degrees of the two bipartite sets as dictionaries keyed by node.
#
# Examples
# --------
# >>> from networkx.algorithms import bipartite
# >>> G = nx.complete_bipartite_graph(3,2)
# >>> Y=set([3,4])
# >>> degX,degY=bipartite.degrees(G,Y)
# >>> degX
# {0: 2, 1: 2, 2: 2}
#
# See Also
# --------
# color, density
# """
# bottom = set(nodes)
# top = set(B) - bottom
# return (B.degree(top, weight), B.degree(bottom, weight))
#
#
# # fixture for nose tests
# def setup_module(module):
# from nose import SkipTest
# try:
# import numpy
# except:
# raise SkipTest("NumPy not available")