-
Notifications
You must be signed in to change notification settings - Fork 34
/
recurrent_llm.py
121 lines (98 loc) · 4.67 KB
/
recurrent_llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#!python
# -*- coding: utf-8 -*-
# @author: Kun
import torch
import random
from sentence_transformers import util
from utils import get_content_between_a_b
from prompts.llm_query import get_input_text
from global_config import lang_opt, llm_model_opt
if "openai" == llm_model_opt:
from utils.openai_util import get_api_response
elif "vicuna" == llm_model_opt:
from utils.vicuna_util import get_api_response
elif "chatglm" == llm_model_opt:
from utils.chatglm_util import get_api_response
elif "baichuan" == llm_model_opt:
from utils.baichuan_util import get_api_response
elif "aquila" == llm_model_opt:
from utils.aquila_util import get_api_response
elif "falcon" == llm_model_opt:
from utils.falcon_util import get_api_response
else:
raise Exception("not supported llm model name: {}".format(llm_model_opt))
class RecurrentLLM:
def __init__(self, input, short_memory, long_memory, memory_index, embedder, model, tokenizer):
print("AIWriter loaded by RecurrentLLM")
self.input = input
self.short_memory = short_memory
self.long_memory = long_memory
self.embedder = embedder
self.model = model
self.tokenizer = tokenizer
if self.long_memory and not memory_index:
self.memory_index = self.embedder.encode(
self.long_memory, convert_to_tensor=True)
self.output = {}
def prepare_input(self, new_character_prob=0.1, top_k=2):
input_paragraph = self.input["output_paragraph"]
input_instruction = self.input["output_instruction"]
instruction_embedding = self.embedder.encode(
input_instruction, convert_to_tensor=True)
# get the top 3 most similar paragraphs from memory
memory_scores = util.cos_sim(
instruction_embedding, self.memory_index)[0]
top_k_idx = torch.topk(memory_scores, k=top_k)[1]
top_k_memory = [self.long_memory[idx] for idx in top_k_idx]
# combine the top 3 paragraphs
input_long_term_memory = '\n'.join(
[f"Related Paragraphs {i+1} :" + selected_memory for i, selected_memory in enumerate(top_k_memory)])
# randomly decide if a new character should be introduced
if random.random() < new_character_prob:
new_character_prompt = f"If it is reasonable, you can introduce a new character in the output paragrah and add it into the memory."
else:
new_character_prompt = ""
input_text = get_input_text(lang_opt, self.short_memory, input_paragraph, input_instruction, input_long_term_memory, new_character_prompt)
return input_text
def parse_output(self, output):
try:
output_paragraph = get_content_between_a_b(
'Output Paragraph:', 'Output Memory', output)
output_memory_updated = get_content_between_a_b(
'Updated Memory:', 'Output Instruction:', output)
self.short_memory = output_memory_updated
ins_1 = get_content_between_a_b(
'Instruction 1:', 'Instruction 2', output)
ins_2 = get_content_between_a_b(
'Instruction 2:', 'Instruction 3', output)
lines = output.splitlines()
# content of Instruction 3 may be in the same line with I3 or in the next line
if lines[-1] != '\n' and lines[-1].startswith('Instruction 3'):
ins_3 = lines[-1][len("Instruction 3:"):]
elif lines[-1] != '\n':
ins_3 = lines[-1]
output_instructions = [ins_1, ins_2, ins_3]
assert len(output_instructions) == 3
output = {
"input_paragraph": self.input["output_paragraph"],
"output_memory": output_memory_updated, # feed to human
"output_paragraph": output_paragraph,
"output_instruction": [instruction.strip() for instruction in output_instructions]
}
return output
except:
return None
def step(self, response_file=None):
prompt = self.prepare_input()
print(prompt+'\n'+'\n')
response = get_api_response(self.model, self.tokenizer, prompt)
self.output = self.parse_output(response)
while self.output == None:
response = get_api_response(self.model, self.tokenizer, prompt)
self.output = self.parse_output(response)
if response_file:
with open(response_file, 'a', encoding='utf-8') as f:
f.write(f"Writer's output here:\n{response}\n\n")
self.long_memory.append(self.input["output_paragraph"])
self.memory_index = self.embedder.encode(
self.long_memory, convert_to_tensor=True)