Skip to content

Latest commit

 

History

History
193 lines (164 loc) · 9.07 KB

README.rst

File metadata and controls

193 lines (164 loc) · 9.07 KB

graphicle

PyPI version Tests Documentation License pre-commit Code style: black

Utilities for representing high energy physics data as graphs / networks.

Installation

pip install graphicle

Features

Object oriented interface to track-level particle data for collider physics, with routines for constructing and performing calculations over graph-structured data.

Provides data structures for:

  • 4-momenta
  • PDG codes
  • Particle status codes
  • Color codes
  • Helicity / spin polarisation data
  • COO adjacency lists (for graph-structured data)
>>> import graphicle as gcl

# query pdg records
>>> pdgs = gcl.PdgArray([1, 3, 6, -6, 25, 2212])
>>> pdgs.name
['d', 's', 't', 't~', 'H0', 'p'], dtype=object)
>>> pdgs.charge
array([-0.33333333, -0.33333333,  0.66666667, -0.66666667,  0.        ,
        1.        ])

# extract information from momentum data
>>> pmu_data
array([( 1.95057378e-02,  3.12923088e-02,  3.53556064e-01, 3.55473730e-01),
       ( 2.60116947e+01, -3.63466398e+00, -3.33718718e+00, 2.64755711e+01),
       ( 5.91884324e-05, -7.62144267e-06, -6.76385314e-06, 6.00591927e-05),
       ( 2.82881807e+01,  4.32224823e+00,  2.14691072e+02, 2.16589841e+02),
       (-8.73280642e-02, -6.48540201e-02,  3.73744945e-01, 6.28679140e-01),
       ( 1.06204871e-01,  5.78888984e-01, -1.44899819e+02, 1.44901081e+02)],
      dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8'), ('e', '<f8')])
>>> pmu = gcl.MomentumArray(pmu_data)
... pmu
MomentumArray([[ 1.95057378e-02  3.12923088e-02  3.53556064e-01  3.55473730e-01]
               [ 2.60116947e+01 -3.63466398e+00 -3.33718718e+00  2.64755711e+01]
               [ 5.91884324e-05 -7.62144267e-06 -6.76385314e-06  6.00591927e-05]
               [ 2.82881807e+01  4.32224823e+00  2.14691072e+02  2.16589841e+02]
               [-8.73280642e-02 -6.48540201e-02  3.73744945e-01  6.28679140e-01]
               [ 1.06204871e-01  5.78888984e-01 -1.44899819e+02  1.44901081e+02]],
              dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8'), ('e', '<f8')])
>>> pmu.pt
array([3.68738715e-02, 2.62644064e+01, 5.96771055e-05, 2.86164812e+01,
       1.08776076e-01, 5.88550704e-01])
>>> pmu.mass
array([-7.45058060e-09,  5.11000489e-04,  9.09494702e-13,  5.10991478e-04,
        4.93680000e-01,  1.39570000e-01])
>>> pmu.eta
array([ 2.95639434, -0.12672178, -0.11309956,  2.71277683,  1.94796328,
       -6.1992861 ])
>>> pmu.phi
array([ 1.01339184, -0.138833  , -0.12806107,  0.15162078, -2.5028134 ,
        1.38935084])

# calculate the inter-particle distances
>>> pmu.delta_R(pmu)
array([[0.        , 3.2913868 , 3.27485993, 0.89554388, 2.94501476,
        9.16339617],
       [3.2913868 , 0.        , 0.01736661, 2.85431528, 3.14526968,
        6.26189934],
       [3.27485993, 0.01736661, 0.        , 2.83968296, 3.14442819,
        6.27249595],
       [0.89554388, 2.85431528, 2.83968296, 0.        , 2.76241933,
        8.99760198],
       [2.94501476, 3.14526968, 3.14442819, 2.76241933, 0.        ,
        8.4908571 ],
       [9.16339617, 6.26189934, 6.27249595, 8.99760198, 8.4908571 ,
        0.        ]])

Graphicle really shines with its composite data structures. These can be used to filter and query heterogeneous particle data records simultaneously, either using user provided boolean masks, or MaskArray instances produced with routines in the select module. Additionally, routines in the calculate and transform modules take composite data structures to standardise useful calculations which blends multiple particle data records.

To see an example, let’s generate a collision event using Pythia, wrapped with showerpipe.

>>> from showerpipe.generator import PythiaGenerator
...
... lhe_path = "https://zenodo.org/record/6034610/files/unweighted_events.lhe.gz"
... gen = PythiaGenerator("pythia-settings.cmnd", lhe_path, 1)
>>> for event in gen:
...     graph = gcl.Graphicle.from_event(event)
...     break

>>> print(graph)
name            px          py          pz      energy    color    anticolor    helicity    status  final      src    dst
p         0.00E+00    0.00E+00    6.50E+03    6.50E+03        0            0           9       -12  False        0     -1
p         0.00E+00    0.00E+00   -6.50E+03    6.50E+03        0            0           9       -12  False        0     -2
g         0.00E+00    0.00E+00    2.99E+02    2.99E+02      503          502           1       -21  False       -6     -3
g        -0.00E+00   -0.00E+00   -5.99E+02    5.99E+02      501          503           1       -21  False       -7     -3
t         2.34E+02   -2.20E+01   -4.76E+02    5.58E+02      501            0           0       -22  False       -3     -4
...     ...         ...         ...         ...             ...          ...         ...       ...  ...        ...    ...
gamma     1.30E-02   -1.30E+00   -3.24E+00    3.49E+00        0            0           9        91  True      -969    979
gamma     1.70E-01   -8.21E-01   -2.32E+00    2.47E+00        0            0           9        91  True      -970    980
gamma     3.12E-01   -2.26E+00   -6.82E+00    7.19E+00        0            0           9        91  True      -970    981
gamma     9.38E-03   -3.58E-01   -7.98E-01    8.75E-01        0            0           9        91  True      -971    982
gamma     3.08E-02   -4.36E-02   -4.56E-02    7.02E-02        0            0           9        91  True      -971    983

[1065 particles × 12 attributes]
>>> graph.pdg
PdgArray([2212 2212   21 ...   22   22   22], dtype=int32)
>>> graph.adj
AdjacencyList([[   0   -1]
               [   0   -2]
               [  -6   -3]
               ...
               [-970  981]
               [-971  982]
               [-971  983]],
              dtype=[('src', '<i4'), ('dst', '<i4')])

# select all descendants of the W bosons from the hard process
>>> W_mask = gcl.select.hard_descendants(graph, {24})
>>> W_mask
MaskGroup(mask_arrays=["W+", "W-"], agg_op=OR)
# filter data record to get final state W+ boson descendants
>>> Wp_desc = graph[W_mask["W+"] & graph.final]
>>> print(Wp_desc)
name            px         py         pz    energy    color    anticolor    helicity    status  final      src    dst
gamma     2.46E-05  -5.65E-06  -1.54E-05  2.95E-05        0            0           9        51  True      -350    353
nu(tau)   1.72E+02   3.52E+01  -3.18E+02  3.63E+02        0            0           9        52  True      -351    354
nu(tau)~  1.73E+01  -4.48E+00  -1.08E+01  2.09E+01        0            0           9        91  True      -352    687
pi+       1.19E+01  -3.15E+00  -7.51E+00  1.44E+01        0            0           9        91  True      -352    690
gamma     4.12E+00  -1.09E+00  -2.19E+00  4.79E+00        0            0           9        91  True      -688    879
gamma     1.54E+00  -4.72E-01  -8.87E-01  1.84E+00        0            0           9        91  True      -688    880
gamma     2.11E+00  -4.94E-01  -9.96E-01  2.38E+00        0            0           9        91  True      -689    881
gamma     3.22E+00  -7.42E-01  -1.71E+00  3.72E+00        0            0           9        91  True      -689    882

[8 particles × 12 attributes]

# numpy can interface with graphicle - let's sum the momenta
>>> Wp_sum = np.sum(Wp_desc.pmu, axis=0)
>>> Wp_sum.mass
80.419002446

More information on the API is available in the documentation

Note on FastJet compatibility

graphicle offers a function wrapper around fastjet to cluster MomentumArray objects using their optimised generalised-kT algorithm. However, this library cannot build wheels for all systems, including Windows and the latest macOS systems using ARM architectures. Therefore, in order to use graphicle.select.fastjet_clusters(), you must install graphicle with fastjet as an optional dependency. This enables users who don't want the fastjet wrapper to ignore it, and still make the most of the many other features of graphicle. Use the following to get started:

pip install "graphicle[fastjet]"