Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

OffscreenRenderer Segmentation fault on wsl2 #7066

Open
3 tasks done
Six-Bit-TX opened this issue Nov 20, 2024 · 3 comments
Open
3 tasks done

OffscreenRenderer Segmentation fault on wsl2 #7066

Six-Bit-TX opened this issue Nov 20, 2024 · 3 comments
Labels
bug Not a build issue, this is likely a bug.

Comments

@Six-Bit-TX
Copy link

Checklist

Describe the issue

I've been trying to render Gaussian Marbles using open3d. Run into a segfault pretty quickly.
What I've tried so far:
1.

export DISPLAY=$(cat /etc/resolv.conf | grep nameserver | awk '{print $2}'):0
export LIBGL_ALWAYS_INDIRECT=0

result in eglInitialize failure.
2.
Starting from pytorch/pytorch:latest docker with wsl2 as backend and run into the same problem so I'm pretty sure it is a wsl specific issue.

Steps to reproduce the bug

import open3d.visualization.rendering as rendering
import faulthandler 
faulthandler.enable()
height = 1080
width = 1920
rendering.OffscreenRenderer(width=width, height=height)

Error message

[Open3D INFO] EGL headless mode enabled.
FEngine (64 bits) created at 0x7fed1ab43010 (threading is enabled)
eglInitialize failed
Fatal Python error: Segmentation fault

Current thread 0x00007fee064ca740 (most recent call first):
File "", line 1 in

Extension modules: numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._bounded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, markupsafe._speedups, zmq.backend.cython._zmq, tornado.speedups, psutil._psutil_linux, psutil._psutil_posix, zstandard.backend_c, simplejson._speedups, charset_normalizer.md, sklearn.__check_build._check_build, lz4._version, lz4.frame._frame, scipy._lib._ccallback_c, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg.cython_lapack, scipy.linalg._cythonized_array_utils, scipy.linalg._solve_toeplitz, scipy.linalg._decomp_lu_cython, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_update, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.linalg._propack._spropack, scipy.sparse.linalg._propack._dpropack, scipy.sparse.linalg._propack._cpropack, scipy.sparse.linalg._propack._zpropack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flow, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, scipy.spatial._ckdtree, scipy._lib.messagestream, scipy.spatial._qhull, scipy.spatial._voronoi, scipy.spatial._distance_wrap, scipy.spatial._hausdorff, scipy.spatial.transform._rotation, scipy.optimize._group_columns, scipy.optimize._trlib._trlib, scipy.optimize._lbfgsb, _moduleTNC, scipy.optimize._moduleTNC, scipy.optimize._cobyla, scipy.optimize._slsqp, scipy.optimize._minpack, scipy.optimize._lsq.givens_elimination, scipy.optimize._zeros, scipy.optimize._highs.cython.src._highs_wrapper, scipy.optimize._highs._highs_wrapper, scipy.optimize._highs.cython.src._highs_constants, scipy.optimize._highs._highs_constants, scipy.linalg._interpolative, scipy.optimize._bglu_dense, scipy.optimize._lsap, scipy.optimize._direct, scipy.integrate._odepack, scipy.integrate._quadpack, scipy.integrate._vode, scipy.integrate._dop, scipy.integrate._lsoda, scipy.interpolate._fitpack, scipy.interpolate._dfitpack, scipy.interpolate._bspl, scipy.interpolate._ppoly, scipy.interpolate.interpnd, scipy.interpolate._rbfinterp_pythran, scipy.interpolate._rgi_cython, scipy.special.cython_special, scipy.stats._stats, scipy.stats._biasedurn, scipy.stats._levy_stable.levyst, scipy.stats._stats_pythran, scipy._lib._uarray._uarray, scipy.stats._ansari_swilk_statistics, scipy.stats._sobol, scipy.stats._qmc_cy, scipy.stats._mvn, scipy.stats._rcont.rcont, scipy.stats._unuran.unuran_wrapper, scipy.ndimage._nd_image, _ni_label, scipy.ndimage._ni_label, pyarrow.lib, pandas._libs.tslibs.ccalendar, pandas._libs.tslibs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.tslibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._libs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pyarrow._compute, pandas._libs.ops, numexpr.interpreter, pandas._libs.hashing, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.internals, pandas._libs.indexing, pandas._libs.index, pandas._libs.writers, pandas._libs.join, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing, sklearn.utils._isfinite, sklearn.utils.sparsefuncs_fast, sklearn.utils.murmurhash, sklearn.utils._openmp_helpers, sklearn.metrics.cluster._expected_mutual_info_fast, sklearn.preprocessing._csr_polynomial_expansion, sklearn.preprocessing._target_encoder_fast, sklearn.metrics._dist_metrics, sklearn.metrics._pairwise_distances_reduction._datasets_pair, sklearn.utils._cython_blas, sklearn.metrics._pairwise_distances_reduction._base, sklearn.metrics._pairwise_distances_reduction._middle_term_computer, sklearn.utils._heap, sklearn.utils._sorting, sklearn.metrics._pairwise_distances_reduction._argkmin, sklearn.metrics._pairwise_distances_reduction._argkmin_classmode, sklearn.utils._vector_sentinel, sklearn.metrics._pairwise_distances_reduction._radius_neighbors, sklearn.metrics._pairwise_distances_reduction._radius_neighbors_classmode, sklearn.metrics._pairwise_fast, sklearn.neighbors._partition_nodes, sklearn.neighbors._ball_tree, sklearn.neighbors._kd_tree, sklearn.utils.arrayfuncs, sklearn.utils._random, sklearn.utils._seq_dataset, sklearn.linear_model._cd_fast, _loss, sklearn._loss._loss, sklearn.svm._liblinear, sklearn.svm._libsvm, sklearn.svm._libsvm_sparse, sklearn.utils._weight_vector, sklearn.linear_model._sgd_fast, sklearn.linear_model._sag_fast, sklearn.decomposition._online_lda_fast, sklearn.decomposition._cdnmf_fast, yaml._yaml, PIL._imaging (total: 190)
Segmentation fault (core dumped)

Expected behavior

No response

Open3D, Python and System information

- Operating system: Windows 11 64-bit running ubuntu22.04 using wsl2
- Python version: Python 3.10
- Open3D version: output from python: 0.18.0
- System architecture: x86
- Is this a remote workstation?: no
- How did you install Open3D?: pip
- Compiler version (if built from source): gcc 11.2.0

Additional information

No response

@Six-Bit-TX Six-Bit-TX added the bug Not a build issue, this is likely a bug. label Nov 20, 2024
@rxba
Copy link
Contributor

rxba commented Nov 21, 2024

In case your numpy version is >=2.0.0 consider downgrading it to e.g. 1.26.4, that's the cause for a lot of the seemingly random segfaults on Open3D builds <=0.18 (#6874). If the issue persists, maybe someone else with WSL experience will chime in.

@Six-Bit-TX
Copy link
Author

image
I'm actually using numpy 1.26.2

@rxba
Copy link
Contributor

rxba commented Nov 22, 2024

Does any of this WSL specific info help you? Otherwise I'm also out of ideas, hope someone else with more WSL experience can help.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Not a build issue, this is likely a bug.
Projects
None yet
Development

No branches or pull requests

2 participants