Create chatbots and AI agent work flows. Intellinode python module connect your data with multiple AI models like OpenAI, Gemini, Anthropic, Stable Diffusion, or Mistral through a unified access layer.
pip install intelli
- Add Anthropic claude 3 as a chatbot provider.
- Add KerasAgent to load open source models offline.
For detailed instructions, refer to intelli documentation.
Switch between multiple chatbot providers without changing your code.
from intelli.function.chatbot import Chatbot
from intelli.model.input.chatbot_input import ChatModelInput
def call_chatbot(provider, model=None):
# prepare common input
input = ChatModelInput("You are a helpful assistant.", model)
input.add_user_message("What is the capital of France?")
# creating chatbot instance
openai_bot = Chatbot(YOUR_API_KEY, provider)
response = openai_bot.chat(input)
return response
# call openai
call_chatbot("openai", "gpt-4")
# call mistralai
call_chatbot("mistral", "mistral-medium")
# call claude3
call_chatbot(ChatProvider.ANTHROPIC, "claude-3-sonnet-20240229")
# call google gemini
call_chatbot("gemini")
Chat with your docs using multiple LLMs. To connect your data, visit the IntelliNode App, start a project using the Document option, upload your documents or images, and copy the generated One Key. This key will be used to connect the chatbot to your uploaded data.
# creating chatbot with the intellinode one key
bot = Chatbot(YOUR_OPENAI_API_KEY, "openai", {"one_key": YOUR_ONE_KEY})
input = ChatModelInput("You are a helpful assistant.", "gpt-3.5-turbo")
input.add_user_message("What is the procedure for requesting a refund according to the user manual?")
response = bot.chat(input)
Use the image controller to generate arts from multiple models with minimum code change:
from intelli.controller.remote_image_model import RemoteImageModel
from intelli.model.input.image_input import ImageModelInput
# model details - change only two words to switch
provider = "openai"
model_name = "dall-e-3"
# prepare the input details
prompts = "cartoonishly-styled solitary snake logo, looping elegantly to form both the body of the python and an abstract play on data nodes."
image_input = ImageModelInput(prompt=prompt, width=1024, height=1024, model=model_name)
# call the model openai/stability
wrapper = RemoteImageModel(your_api_key, provider)
results = wrapper.generate_images(image_input)
You can create a flow of tasks executed by different AI models. Here's an example of creating a blog post flow:
- ChatGPT agent to write a post.
- Google gemini agent to write image description.
- Stable diffusion to generate images.
from intelli.flow.agents.agent import Agent
from intelli.flow.tasks.task import Task
from intelli.flow.sequence_flow import SequenceFlow
from intelli.flow.input.task_input import TextTaskInput
from intelli.flow.processors.basic_processor import TextProcessor
# define agents
blog_agent = Agent(agent_type='text', provider='openai', mission='write blog posts', model_params={'key': YOUR_OPENAI_API_KEY, 'model': 'gpt-4'})
copy_agent = Agent(agent_type='text', provider='gemini', mission='generate description', model_params={'key': YOUR_GEMINI_API_KEY, 'model': 'gemini'})
artist_agent = Agent(agent_type='image', provider='stability', mission='generate image', model_params={'key': YOUR_STABILITY_API_KEY})
# define tasks
task1 = Task(TextTaskInput('blog post about electric cars'), blog_agent, log=True)
task2 = Task(TextTaskInput('Generate short image description for image model'), copy_agent, pre_process=TextProcessor.text_head, log=True)
task3 = Task(TextTaskInput('Generate cartoon style image'), artist_agent, log=True)
# start sequence flow
flow = SequenceFlow([task1, task2, task3], log=True)
final_result = flow.start()
To build async AI flows with multiple paths, refer to the flow tutorial.
- The wrapper layer provides low-level access to the latest AI models.
- The controller layer offers a unified input to any AI model by handling the differences.
- The function layer provides abstract functionality that extends based on the app's use cases.
- Flows: create a flow of ai agents working toward user tasks.