forked from chengstone/cchess-zero
-
Notifications
You must be signed in to change notification settings - Fork 0
/
policy_value_network_gpus_tf2.py
executable file
·280 lines (224 loc) · 13.1 KB
/
policy_value_network_gpus_tf2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#coding:utf-8
import tensorflow as tf
import numpy as np
from tensorflow.python.ops import summary_ops_v2
import os
PS_OPS = ['Variable', 'VariableV2', 'AutoReloadVariable']
# pip install tf-nightly-gpu-2.0-preview
# require compute capabilities >= 3.5
# cuda 10
class policy_value_network_gpus(object):
def __init__(self, learning_rate_fn, res_block_nums = 7):
# self.ckpt = os.path.join(os.getcwd(), 'models/best_model.ckpt-13999') # TODO
self.save_dir = "./models"
self.is_logging = True
if tf.io.gfile.exists(self.save_dir):
# print('Removing existing model dir: {}'.format(MODEL_DIR))
# tf.io.gfile.rmtree(MODEL_DIR)
pass
else:
tf.io.gfile.makedirs(self.save_dir)
train_dir = os.path.join(self.save_dir, 'summaries', 'train')
test_dir = os.path.join(self.save_dir, 'summaries', 'eval')
self.train_summary_writer = summary_ops_v2.create_file_writer(train_dir, flush_millis=10000)
self.test_summary_writer = summary_ops_v2.create_file_writer(test_dir, flush_millis=10000, name='test')
self.strategy = tf.distribute.MirroredStrategy()
print ('Number of devices: {}'.format(self.strategy.num_replicas_in_sync))
self.distributed_train = lambda it: self.strategy.experimental_run(self.train_step, it)
self.distributed_train = tf.function(self.distributed_train)
with tf.device('/cpu:0'):
self.global_step = tf.Variable(0, name="global_step", trainable=False)
with self.strategy.scope():
# Variables
self.filters_size = 128 # or 256
self.prob_size = 2086
self.digest = None
self.inputs_ = tf.keras.layers.Input([9, 10, 14], dtype='float32', name='inputs') # TODO C plain x 2
self.c_l2 = 0.0001
self.momentum = 0.9
self.global_norm = 100
self.layer = tf.keras.layers.Conv2D(kernel_size=3, filters=self.filters_size, padding='same')(self.inputs_)
self.layer = tf.keras.layers.BatchNormalization(epsilon=1e-5, fused=True)(self.layer)
self.layer = tf.keras.layers.ReLU()(self.layer)
# residual_block
with tf.name_scope("residual_block"):
for _ in range(res_block_nums):
self.layer = self.residual_block(self.layer)
# policy_head
with tf.name_scope("policy_head"):
self.policy_head = tf.keras.layers.Conv2D(filters=2, kernel_size=1, padding='same')(self.layer)
self.policy_head = tf.keras.layers.BatchNormalization(epsilon=1e-5, fused=True)(self.policy_head)
self.policy_head = tf.keras.layers.ReLU()(self.policy_head)
self.policy_head = tf.keras.layers.Reshape([9 * 10 * 2])(self.policy_head)
self.policy_head = tf.keras.layers.Dense(self.prob_size)(self.policy_head)
# value_head
with tf.name_scope("value_head"):
self.value_head = tf.keras.layers.Conv2D(filters=1, kernel_size=1, padding='same')(self.layer)
self.value_head = tf.keras.layers.BatchNormalization(epsilon=1e-5, fused=True)(
self.value_head)
self.value_head = tf.keras.layers.ReLU()(self.value_head)
self.value_head = tf.keras.layers.Reshape([9 * 10 * 1])(self.value_head)
self.value_head = tf.keras.layers.Dense(256, activation='relu')(self.value_head)
self.value_head = tf.keras.layers.Dense(1, activation='tanh')(self.value_head)
self.model = tf.keras.Model(
inputs=[self.inputs_],
outputs=[self.policy_head, self.value_head])
self.model.summary()
# 优化损失
self.optimizer = tf.compat.v1.train.MomentumOptimizer(
learning_rate=learning_rate_fn, momentum=self.momentum, use_nesterov=True)
self.CategoricalCrossentropyLoss = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
self.MSE = tf.keras.losses.MeanSquaredError()
self.ComputeMetrics = tf.keras.metrics.CategoricalAccuracy()
self.avg_loss = tf.keras.metrics.Mean('loss', dtype=tf.float32)
# self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
# with tf.control_dependencies(self.update_ops):
# self.train_op = optimizer.minimize(self.loss, global_step=self.global_step)
self.checkpoint_dir = os.path.join(self.save_dir, 'checkpoints')
self.checkpoint_prefix = os.path.join(self.checkpoint_dir, 'ckpt')
self.checkpoint = tf.train.Checkpoint(model=self.model, optimizer=self.optimizer)
# Restore variables on creation if a checkpoint exists.
self.checkpoint.restore(tf.train.latest_checkpoint(self.checkpoint_dir))
def residual_block(self, in_layer):
orig = tf.convert_to_tensor(in_layer) # tf.identity(in_layer)
layer = tf.keras.layers.Conv2D(kernel_size=3, filters=self.filters_size, padding='same')(in_layer)
layer = tf.keras.layers.BatchNormalization(epsilon=1e-5, fused=True)(layer)
layer = tf.keras.layers.ReLU()(layer)
layer = tf.keras.layers.Conv2D(kernel_size=3, filters=self.filters_size, padding='same')(layer)
layer = tf.keras.layers.BatchNormalization(epsilon=1e-5, fused=True)(layer)
add_layer = tf.keras.layers.add([orig, layer])
out = tf.keras.layers.ReLU()(add_layer)
return out
# def train_restore(self):
# if not os.path.isdir(self.save_dir):
# os.mkdir(self.save_dir)
# checkpoint = tf.train.get_checkpoint_state(self.save_dir)
# if checkpoint and checkpoint.model_checkpoint_path:
# # self.saver.restore(self.sess, checkpoint.model_checkpoint_path)
# self.saver.restore(self.sess, tf.train.latest_checkpoint(self.save_dir))
# print("Successfully loaded:", tf.train.latest_checkpoint(self.save_dir))
# # print("Successfully loaded:", checkpoint.model_checkpoint_path)
# else:
# print("Could not find old network weights")
# def restore(self, file):
# print("Restoring from {0}".format(file))
# self.saver.restore(self.sess, file) # self.ckpt
def save(self, in_global_step):
with self.strategy.scope():
self.checkpoint.save(self.checkpoint_prefix)
# print("Model saved in file: {}".format(save_path))
def compute_metrics(self, pi_, policy_head):
# Accuracy
correct_prediction = tf.equal(tf.argmax(input=policy_head, axis=1), tf.argmax(input=pi_, axis=1))
correct_prediction = tf.cast(correct_prediction, tf.float32)
accuracy = tf.reduce_mean(input_tensor=correct_prediction, name='accuracy')
# summary_ops_v2.scalar('move_accuracy', accuracy)
return accuracy
def apply_regularization(self, regularizer, weights_list=None):
"""Returns the summed penalty by applying `regularizer` to the `weights_list`.
Adding a regularization penalty over the layer weights and embedding weights
can help prevent overfitting the training data. Regularization over layer
biases is less common/useful, but assuming proper data preprocessing/mean
subtraction, it usually shouldn't hurt much either.
Args:
regularizer: A function that takes a single `Tensor` argument and returns
a scalar `Tensor` output.
weights_list: List of weights `Tensors` or `Variables` to apply
`regularizer` over. Defaults to the `GraphKeys.WEIGHTS` collection if
`None`.
Returns:
A scalar representing the overall regularization penalty.
Raises:
ValueError: If `regularizer` does not return a scalar output, or if we find
no weights.
"""
# if not weights_list:
# weights_list = ops.get_collection(ops.GraphKeys.WEIGHTS)
if not weights_list:
raise ValueError('No weights to regularize.')
with tf.name_scope('get_regularization_penalty',
values=weights_list) as scope:
penalties = [regularizer(w) for w in weights_list]
penalties = [
p if p is not None else tf.constant(0.0) for p in penalties
]
for p in penalties:
if p.get_shape().ndims != 0:
raise ValueError('regularizer must return a scalar Tensor instead of a '
'Tensor with rank %d.' % p.get_shape().ndims)
summed_penalty = tf.add_n(penalties, name=scope)
# ops.add_to_collection(ops.GraphKeys.REGULARIZATION_LOSSES, summed_penalty)
return summed_penalty
def compute_loss(self, pi_, z_, policy_head, value_head):
# loss
with tf.name_scope("loss"):
policy_loss = tf.keras.losses.categorical_crossentropy(y_true=pi_, y_pred=policy_head, from_logits=True)
policy_loss = tf.reduce_mean(policy_loss)
value_loss = tf.keras.losses.mean_squared_error(z_, value_head)
value_loss = tf.reduce_mean(value_loss)
# summary_ops_v2.scalar('mse_loss', value_loss)
regularizer = tf.keras.regularizers.l2(self.c_l2)
regular_variables = self.model.trainable_variables
l2_loss = self.apply_regularization(regularizer, regular_variables)
# self.loss = value_loss - policy_loss + l2_loss
self.loss = value_loss + policy_loss + l2_loss
# summary_ops_v2.scalar('loss', self.loss)
return self.loss
# TODO(yashkatariya): Add tf.function when b/123315763 is resolved
# @tf.function
def train_step(self, it, learning_rate=0):
positions = it[0]
pi = it[1]
z = it[2]
# print("tf.executing_eagerly() ", tf.executing_eagerly())
# print("positions.shape ", positions.shape)
# print("pi ", pi)
# print("z ", z)
# print("learning_rate ", learning_rate)
# Record the operations used to compute the loss, so that the gradient
# of the loss with respect to the variables can be computed.
# metrics = 0
# with self.strategy.scope():
if True:
with tf.GradientTape() as tape:
policy_head, value_head = self.model(positions, training=True)
loss = self.compute_loss(pi, z, policy_head, value_head)
# loss = self.compute_loss(labels, logits)
self.ComputeMetrics(pi, policy_head)
self.avg_loss(loss)
# metrics = self.compute_metrics(pi, policy_head)
grads = tape.gradient(loss, self.model.trainable_variables)
# print("grads ", grads)
# print("metrics ", self.ComputeMetrics.result())
# print("loss ", loss)
# grads = self.average_gradients(tower_grads)
# grads = self.optimizer.compute_gradients(self.loss)
# defensive step 2 to clip norm
# grads0_lst = tf.map_fn(lambda x: x[0], grads) # [g for g, _ in grads]
# clipped_grads, self.norm = tf.clip_by_global_norm(grads, self.global_norm)
self.optimizer.apply_gradients(zip(grads, self.model.trainable_variables))
# self.optimizer.apply_gradients(zip(clipped_grads, self.model.trainable_variables))
# defensive step 3 check NaN
# See: https://stackoverflow.com/questions/40701712/how-to-check-nan-in-gradients-in-tensorflow-when-updating
# grad_check = [tf.debugging.check_numerics(g, message='NaN Found!') for g in clipped_grads]
# with tf.control_dependencies(grad_check):
# self.optimizer.apply_gradients(
# zip(clipped_grads, self.model.trainable_variables), # [v for _, v in grads]
# global_step=self.global_step, name='train_step')
# if self.is_logging:
# for grad, var in zip(grads, self.model.trainable_variables):
# if grad is not None:
# summary_ops_v2.histogram(var.name + '/gradients', grad)
# for var in self.model.trainable_variables:
# summary_ops_v2.histogram(var.name, var)
# self.optimizer.apply_gradients(zip(grads, self.model.trainable_variables))
return self.ComputeMetrics.result(), self.avg_loss.result(), self.global_step
#@profile
def forward(self, positions):
with self.strategy.scope():
positions=np.array(positions)
if len(positions.shape) == 3:
sp = positions.shape
positions=np.reshape(positions, [1, sp[0], sp[1], sp[2]])
action_probs, value = self.model(positions, training=False)
return action_probs, value