-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
MaximumNumberOfBallsInABox.cpp
70 lines (68 loc) · 2.13 KB
/
MaximumNumberOfBallsInABox.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// Source : https://leetcode.com/problems/maximum-number-of-balls-in-a-box/
// Author : Hao Chen
// Date : 2021-03-27
/*****************************************************************************************************
*
* You are working in a ball factory where you have n balls numbered from lowLimit up to highLimit
* inclusive (i.e., n == highLimit - lowLimit + 1), and an infinite number of boxes numbered from 1 to
* infinity.
*
* Your job at this factory is to put each ball in the box with a number equal to the sum of digits of
* the ball's number. For example, the ball number 321 will be put in the box number 3 + 2 + 1 = 6 and
* the ball number 10 will be put in the box number 1 + 0 = 1.
*
* Given two integers lowLimit and highLimit, return the number of balls in the box with the most
* balls.
*
* Example 1:
*
* Input: lowLimit = 1, highLimit = 10
* Output: 2
* Explanation:
* Box Number: 1 2 3 4 5 6 7 8 9 10 11 ...
* Ball Count: 2 1 1 1 1 1 1 1 1 0 0 ...
* Box 1 has the most number of balls with 2 balls.
*
* Example 2:
*
* Input: lowLimit = 5, highLimit = 15
* Output: 2
* Explanation:
* Box Number: 1 2 3 4 5 6 7 8 9 10 11 ...
* Ball Count: 1 1 1 1 2 2 1 1 1 0 0 ...
* Boxes 5 and 6 have the most number of balls with 2 balls in each.
*
* Example 3:
*
* Input: lowLimit = 19, highLimit = 28
* Output: 2
* Explanation:
* Box Number: 1 2 3 4 5 6 7 8 9 10 11 12 ...
* Ball Count: 0 1 1 1 1 1 1 1 1 2 0 0 ...
* Box 10 has the most number of balls with 2 balls.
*
* Constraints:
*
* 1 <= lowLimit <= highLimit <= 10^5
******************************************************************************************************/
class Solution {
private:
int sum(int n) {
int s = 0;
for(; n > 0; n /= 10){
s += n % 10;
}
return s;
}
public:
int countBalls(int lowLimit, int highLimit) {
int cnt[46] ={0}; //10^5 means 9+9+9+9+9 = 45
int m = 0;
for (int n = lowLimit; n<=highLimit; n++) {
int box = sum(n);
cnt[box]++;
m = max(m, cnt[box]);
}
return m;
}
};