Skip to content

Latest commit

 

History

History
24 lines (17 loc) · 786 Bytes

README.md

File metadata and controls

24 lines (17 loc) · 786 Bytes

OML-PPO

PyTorch implementation for OML-PPO (https://iopscience.iop.org/article/10.1088/2632-2153/abc327)

Prerequisites

  • python=3.7.4
  • torch=1.3.1
  • torchvision=0.5.0
  • tmm=0.1.7
  • spinningup=0.2.0

Run experiments

Max length = 6:
python ppo_absorber_visnir.py --cpu 16 --maxlen 6 --exp_name absorber6 --use_rnn --discrete_thick --num_runs 1 --env PerfectAbsorberVisNIR-v0

Max length = 15:
python ppo_absorber_visnir.py --cpu 16 --maxlen 15 --exp_name perfect_absorber15 --use_rnn --discrete_thick --num_runs 1 --env PerfectAbsorberVisNIR-v1

Plotting results

Use final_results.ipynb to plot the results.

Cite: Wang, Haozhu, et al. "Automated multi-layer optical design via deep reinforcement learning." Machine Learning: Science and Technology 2.2 (2021): 025013.