-
Notifications
You must be signed in to change notification settings - Fork 3
/
notations.tex
231 lines (229 loc) · 8.18 KB
/
notations.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
\renewcommand{\thesection}{\Roman{section}}
\renewcommand{\thesubsection}{\roman{subsection}}
%
\chapter{Notations and Conventions}%
%\addcontentsline{toc}{chapter}{Notations and Conventions}
\section{Logic}%
\subsection{Propositional logic}
Given propositional variables $\mathit{p}$, $\mathit{q}$, the boolean %
operators $\lnot$, $\lor$, $\land$, $\Leftrightarrow$, $\Rightarrow$, %
$\Leftarrow$, assign boolean \textit{truth values} as follows,
\begin{enumerate}
\item[$\lnot$]{%
$\lnot p$ has not the truth value of $p$.
}
\item[$\lor$]{
The \textit{conjonction} $p \lor q$ is true, unless: %
$p$ false, $q$ false.
}
\item[$\land$]{
The \textit{disjunction} is false, unless: $p$ true, $q$ true.
}
\item[$\Leftrightarrow$]{%
The \textit{logical equivalence} expresses \textit{tautologies}: %
$p \Leftrightarrow q$ is true, unless: %
$p$ has not the truth value of $q$. %
It is easily checked that %
%
$(p \Leftrightarrow q) \Leftrightarrow %
\left(
(p \Rightarrow q) \land
(p \Leftarrow q)
\right)$; see the below definitions.
}
\item[$\Rightarrow$]{%
The logical implication is denoted by $\Rightarrow$: %
$p \Rightarrow q$ means %
\textit{if (criterion/premise) $p$ then (conclusion) $q$}, or, %
alternatively, \textit{$p$ implies $q$}. %%
%
$p \Rightarrow q $ is formally defined as $\lnot p \lor q$. %
%
Remark that the ``reasoning'' $p \Rightarrow q $ is always valid, unless: %
$p$ true, $q$ false. Moreover, %
%
$p \land (p \Rightarrow q) \Rightarrow q$ %
%
is always true.
}
\item[$\Leftarrow$]{ $q \Leftarrow p$ is $ p\Rightarrow q $ read backward.
A common pronunciation is \textit{$q$ since $p$}.
}
\end{enumerate}
%
For a subtle introduction to proposition logic, %
see Section 1.3 and Subsection 16.1.3 of \cite{SpecifyingSystems}.
%
\subsection{Iverson notation}%
Given a boolean expression $\varphi$, %
$\boolean{\varphi}$ returns the truth value of $\varphi$, encoded as follows, %
%
\begin{align} \nonumber
\boolean{\varphi}\triangleq
\begin{cases}
0 & \quad\quad \text{if } \varphi \text{ is false;} \\
1 & \quad\quad \text{if } \varphi \text{ is true.}
\end{cases}
\end{align}
%
For example, $\boolean{1 > 0} = 1$ but $\boolean{ \sqrt{2} \in \Q} = 0$.
\section{Special terms}
\subsection{Halmos' iff and definitions}%
\iif is a short for ``if and only if". %
Splitting \iif into \textit{if-then} clauses shows that it is just %
a rewording of the logical equivalence $\Leftrightarrow$. %
All definitions will use the \iif format; %
which is consistent with the fact that every definition expresses a tautology.
%
\subsection{Assigning values}%
Given variables $\varit{a}$ and $\varit{b}$, $\triangleq$ is a specialization %
of $=$. We say that $x\triangleq y$ \iif $x$ and $y$ are assumed to be equal.
Usually, $x\triangleq y$ means that $x$ is assigned the previously known
value $y$ (some authors write $x:=y$) but this is not a limitation.
Definitions can be redundant and may overlap. The only restriction is that %
$x\triangleq y$ is inconsistent whether $x\neq y$.
\subsection{Equinumerosity}%
$a\equiv b$ means that there exists a bijection $\to$ that maps $a$ to $b$; %
which let us identify $a$ with $b$. %
In a metric space context, $a\equiv b$ means that $\to$ is isometric.
\section{Topological vector spaces}
%\subsection{Vector spaces}
\subsection{Product space}
\subsection{Scalar field}%
The usual (complete) scalar field is $\C$. %
A property, \eg linearity, that is true on $\C$ is also true on $\R$. %
The complex case is then a {\it special case} of the real one. %
Sometimes, this specialization is not purely formal. %
For example, theorem 12.7 of \cite{FA} asserts that, in a Hilbert space $H$ %
equipped with the inner product $\bra{\,\cdot\,}\ket{\,\cdot\,}$, %
every nonzero linear continuous operator $T$ ``breaks orthogonality'', %
in the sense that there always exists $x=x(T)$ in $H$ that satisfies %
%
$\bra{Tx}\ket{x} \neq 0$. %
%
The proof of this theorem strongly depends on the complex field. %
Actually, a real counterpart does not exists. %
To see that, consider the $90^\circ$ rotations of the euclidian plane. %
%
Nevertheless, {\it unless the contrary is explicitely mentioned}, %
the exension to the real case will always be obvious. %
So, taking $\C$ as the scalar field shall mean %
%
\begin{quote}{\it %
Instead of letting the scalar field undefined, we choose $\C$ for the sake of %
expessivity. But considering $\R$ instead of %
$\C$ would actually make no difference here
}. %
\end{quote}
%
\subsection{Finite dimensional spaces}\label{finite dimensional spaces}%
It may be customary to identify any $n$-dimensional vector space $Y$ with %
the normed space $(\C^n, \| \,\|_{\C^n})$, %
as $\| \, \|_{\C^n}$ is an arbitray norm on $\C^n$. %
%
Indeed, those vector spaces $Y$ are actually normable spaces that are %
homeomorphic each others. %
%
This statement can be expressed as an \textit{equivalence relation} over all %
normed vector spaces $(Y, \|\,\|_Y)$. %
More precisely, given copies $Y_i$ ($i=1, 2$) of space(s) $Y$, there exists %
an isomorphism $h: Y_1 \to Y_2$ and a positive constant $C$ such that %
%
\begin{align}\label{norm equivalence 1}
\| y_2 \|_{Y_2} \leq C \| y_1 \|_{Y_1} \quad
(y_i \in Y_i: y_2 = h(y_1)).
\end{align}
%
\begin{proof}
Pick a basis $F_Y$ of $Y$, as $\mathit{Y}$ run through all $n$-dimensional %
vector spaces (the trivial case $n=0$ shall be implicitely skipped). %
There so exists a one-to-one mapping of $F_{\C^n}$ onto $ F_Y$, %
and such mapping extends to an isomorphism $f: \C^n \to Y$. %
%
On the other hand, there exists an ambient topological vector space %
$(X, \tau_X)$ that induces, on $Y$, a topology %%
%
\begin{align}\label{inherited norm}
\tau_Y \triangleq \{ Y\cap U: Y \subseteq X, U \in \tau_X\}.
\end{align}
%
For instance, take $X=Y$ then equipp $Y$ with the norm %
%
\begin{align}\label{normability}
\| \, \|_{Y, 2}: Y & \to \R \\
y & \mapsto \| f^{\,\minus 1} (y)\|_2 \nonumber,
\end{align}
%
where $\| \, \|_2$ is the Euclidian norm of $\C^n$. %
%
Now assign each $Y$ a space $(X, \tau_X)$ then use Theorem 1.21 of \cite{FA} %
to conclude that $f$ is more specifically a linear homeomorphism of $\C^n$ %
(equipped with $\|\, \|_2$) onto $Y$. %
%
Given two copies $(\mathit{X}_i, \mathit{Y}_i, \mathit{f}_i)$ %
of the variables $\mathit{X}, \mathit{Y}, \mathit{f}$, %
we so obtain the following commutative diagram: %
%
\begin{equation}
\begin{tikzpicture}[-stealth,
label/.style = { font=\footnotesize }]
\matrix (m)
[
matrix of math nodes,
row sep = 4em,
column sep = 4em
]
{
& \C^n & \\
Y_1& & Y_2 \\
};
\path (m-2-1) edge node [above,label] {$f_1^{\, \minus 1}$} (m-1-2);
\path (m-1-2) edge node [above,label] {$f_2$} (m-2-3);
\path (m-2-1) edge node [above,label] {$h$} (m-2-3);
\end{tikzpicture}
\end{equation}
%
It is now clear that all $Y$ are homeomorphic each other. %
%
The special case $Y_1 = Y_2$ means that $\tau_{Y_1} = \tau_{Y_2}$.
In other words, each vector space $Y$ has a unique topology $\tau_Y$; %
the embedding $Y \subseteq X$ does not matter. %
%
$\tau_{Y}$ is induced by at least one norm $\|\,\|_Y$, \eg %
$\|\,\|_{Y, 2}$; see (\ref{normability}). %
%
We now establish the norm equivalence over all vector spaces $Y$. To do so, %
we easily check that the continous function $h$ maps the open unit sphere %
%
$B_1 = \{ \| \, \|_{Y_1} < 1 \}$ onto %
%
a $\|\,\|_{Y_2}$-bounded set. %
%
This allows us to pick %
%
\begin{align}
C_h \triangleq \sup_{B_1} \| h \|_{Y_2} > 0 \quad(y_1 \in Y_1),
\end{align}
%
so that %
%
\begin{align}\label{norm equivalence 2}
\|h(y_1)\|_{Y_{2}} \leq C_h \|y_1\|_{Y_{1}};
\end{align}
%
which is (\ref{norm equivalence 1}). %
%
Finally, we show that we are actually dealing with an equivalence relation. %
First, reflexivity and transitivity are obvious. Moreover,
permuting the $\mathit{Y}_i$'s, with %
%
$\mathit{%
h^{\, \minus 1},
B_2 = \{\| \, \|_{Y_2} < 1 \},
C_{h^{\, \minus 1}} = \sup_{B_2} \| h^{\, \minus 1}\|_{Y_2}
}$
%
playing the role of $\mathit{h}, \mathit{B_1}, \mathit{C_h}$ %
leads to a \textit{symmetrical} result; which achieves the proof.
\end{proof}
% END