diff --git a/articles/spatial-modeling-use-case.html b/articles/spatial-modeling-use-case.html index 007b1926..3bb45f2d 100644 --- a/articles/spatial-modeling-use-case.html +++ b/articles/spatial-modeling-use-case.html @@ -276,7 +276,7 @@
Let’s take a look at the MER achieved on the training sample:
pred <- predict(fit, data = maipo, type = "response")
@@ -361,15 +361,15 @@ Linear Discriminant Analysis (LDA)So what have we got:
summary(res_lda_nsp$error_rep)
-## mean sd median IQR
-## train_error 3.34e-02 0.00112 3.39e-02 0.001037
-## train_accuracy 9.67e-01 0.00112 9.66e-01 0.001037
-## train_events 4.69e+03 0.00000 4.69e+03 0.000000
-## train_count 3.09e+04 0.00000 3.09e+04 0.000000
-## test_error 3.74e-02 0.00054 3.76e-02 0.000519
-## test_accuracy 9.63e-01 0.00054 9.62e-01 0.000519
-## test_events 1.17e+03 0.00000 1.17e+03 0.000000
-## test_count 7.71e+03 0.00000 7.71e+03 0.000000
+## mean sd median IQR
+## train_error 3.45e-02 0.000252 3.45e-02 0.000243
+## train_accuracy 9.65e-01 0.000252 9.66e-01 0.000243
+## train_events 4.69e+03 0.000000 4.69e+03 0.000000
+## train_count 3.09e+04 0.000000 3.09e+04 0.000000
+## test_error 3.93e-02 0.002142 3.92e-02 0.002139
+## test_accuracy 9.61e-01 0.002142 9.61e-01 0.002139
+## test_events 1.17e+03 0.000000 1.17e+03 0.000000
+## test_count 7.71e+03 0.000000 7.71e+03 0.000000
To run a spatial cross-validation at the field level, we can use
partition_factor_cv()
as the sampling function. Since we
are using 5 folds, we get a coarse 80/20 split of our data. 80% will be
@@ -400,16 +400,16 @@
Linear Discriminant Analysis (LDA) benchmark = TRUE, progress = FALSE
)
res_lda_sp$benchmark$runtime_performance
## Time difference of 21.3 secs
+## Time difference of 18.3 secs
summary(res_lda_sp$error_rep)
## mean sd median IQR
-## train_error 2.91e-02 0.00220 2.95e-02 0.00217
-## train_accuracy 9.71e-01 0.00220 9.71e-01 0.00217
+## train_error 3.03e-02 0.00375 3.07e-02 0.00373
+## train_accuracy 9.70e-01 0.00375 9.69e-01 0.00373
## train_events 4.69e+03 0.00000 4.69e+03 0.00000
## train_count 3.09e+04 0.00000 3.09e+04 0.00000
-## test_error 6.41e-02 0.00389 6.39e-02 0.00389
-## test_accuracy 9.36e-01 0.00389 9.36e-01 0.00389
+## test_error 6.49e-02 0.00967 6.75e-02 0.00940
+## test_accuracy 9.35e-01 0.00967 9.32e-01 0.00940
## test_events 1.17e+03 0.00000 1.17e+03 0.00000
## test_count 7.71e+03 0.00000 7.71e+03 0.00000
@@ -460,14 +460,14 @@
summary(res_rf_sp$error_rep)["test_accuracy",]
## mean sd median IQR
-## test_accuracy 0.915 0.00234 0.915 0.00227
+## test_accuracy 0.913 0.00306 0.912 0.00298
What a surprise! {ranger}‘s classification is not that good after all, if we acknowledge that in ’real life’ we wouldn’t be making predictions in situations where the class membership of other grid cells diff --git a/articles/spatial-modeling-use-case_files/figure-html/unnamed-chunk-19-1.png b/articles/spatial-modeling-use-case_files/figure-html/unnamed-chunk-19-1.png index 83e1b1e0..394b5d7c 100644 Binary files a/articles/spatial-modeling-use-case_files/figure-html/unnamed-chunk-19-1.png and b/articles/spatial-modeling-use-case_files/figure-html/unnamed-chunk-19-1.png differ diff --git a/pkgdown.yml b/pkgdown.yml index f1430408..61684427 100644 --- a/pkgdown.yml +++ b/pkgdown.yml @@ -4,7 +4,7 @@ pkgdown_sha: ~ articles: custom-pred-and-model-functions: custom-pred-and-model-functions.html spatial-modeling-use-case: spatial-modeling-use-case.html -last_built: 2023-08-22T04:24Z +last_built: 2023-08-23T04:30Z urls: reference: https://giscience-fsu.github.io/sperrorest/reference article: https://giscience-fsu.github.io/sperrorest/articles diff --git a/reference/add.distance.html b/reference/add.distance.html index 54a6a674..2de73a22 100644 --- a/reference/add.distance.html +++ b/reference/add.distance.html @@ -132,11 +132,11 @@