)
-## mean sd median IQR
-## train_error 0.00e+00 0.00000 0.00e+00 0.00000
-## train_accuracy 1.00e+00 0.00000 1.00e+00 0.00000
-## train_events 4.69e+03 0.00000 4.69e+03 0.00000
-## train_count 3.09e+04 0.00000 3.09e+04 0.00000
-## test_error 8.89e-02 0.00301 8.74e-02 0.00272
-## test_accuracy 9.11e-01 0.00301 9.13e-01 0.00272
-## test_events 1.17e+03 0.00000 1.17e+03 0.00000
-## test_count 7.71e+03 0.00000 7.71e+03 0.00000
+## mean sd median IQR
+## train_error 0.00e+00 0.0000 0.00e+00 0.0000
+## train_accuracy 1.00e+00 0.0000 1.00e+00 0.0000
+## train_events 4.69e+03 0.0000 4.69e+03 0.0000
+## train_count 3.09e+04 0.0000 3.09e+04 0.0000
+## test_error 8.56e-02 0.0113 8.76e-02 0.0112
+## test_accuracy 9.14e-01 0.0113 9.12e-01 0.0112
+## test_events 1.17e+03 0.0000 1.17e+03 0.0000
+## test_count 7.71e+03 0.0000 7.71e+03 0.0000
summary(res_rf_sp$error_rep)["test_accuracy",]
-## mean sd median IQR
-## test_accuracy 0.911 0.00301 0.913 0.00272
+## mean sd median IQR
+## test_accuracy 0.914 0.0113 0.912 0.0112
What a surprise! {ranger}‘s classification is not that good after
all, if we acknowledge that in ’real life’ we wouldn’t be making
predictions in situations where the class membership of other grid cells
diff --git a/articles/spatial-modeling-use-case_files/figure-html/unnamed-chunk-19-1.png b/articles/spatial-modeling-use-case_files/figure-html/unnamed-chunk-19-1.png
index a34f9abc..d38bde3e 100644
Binary files a/articles/spatial-modeling-use-case_files/figure-html/unnamed-chunk-19-1.png and b/articles/spatial-modeling-use-case_files/figure-html/unnamed-chunk-19-1.png differ
diff --git a/pkgdown.yml b/pkgdown.yml
index 9a56e8d9..354c2faa 100644
--- a/pkgdown.yml
+++ b/pkgdown.yml
@@ -4,7 +4,7 @@ pkgdown_sha: ~
articles:
custom-pred-and-model-functions: custom-pred-and-model-functions.html
spatial-modeling-use-case: spatial-modeling-use-case.html
-last_built: 2023-09-03T04:26Z
+last_built: 2023-09-04T04:25Z
urls:
reference: https://giscience-fsu.github.io/sperrorest/reference
article: https://giscience-fsu.github.io/sperrorest/articles
diff --git a/reference/add.distance.html b/reference/add.distance.html
index df1f8e05..edfdf580 100644
--- a/reference/add.distance.html
+++ b/reference/add.distance.html
@@ -132,11 +132,11 @@
Examples
sp.parti <- add.distance(sp.parti, data = ecuador)
# non-spatial partioning: very small test-training distance:
nsp.parti[[1]][[1]]$distance
-#> [1] 50.31624
+#> [1] 49.70341
# spatial partitioning: more substantial distance, depending on number of
# folds etc.
sp.parti[[1]][[1]]$distance
-#> [1] 241.7747
+#> [1] 392.9521
diff --git a/reference/as.resampling.html b/reference/as.resampling.html
index 6ec838b6..17c76018 100644
--- a/reference/as.resampling.html
+++ b/reference/as.resampling.html
@@ -164,71 +164,71 @@ Examples
# data corresponding to the test sample of the first fold:
str(ecuador[parti[[1]]$test, ])
#> 'data.frame': 75 obs. of 13 variables:
-#> $ x : num 715382 715062 713542 713552 714712 ...
-#> $ y : num 9560142 9559392 9559972 9559962 9561042 ...
-#> $ dem : num 2021 2279 2184 2192 1839 ...
-#> $ slope : num 42 41.4 35.2 33.6 44.1 ...
-#> $ hcurv : num 0.00958 0.0031 -0.00841 -0.00068 -0.00223 ...
-#> $ vcurv : num 0.02642 0.0144 -0.0001 0.00588 0.01783 ...
-#> $ carea : num 671 1089 1527 1295 378 ...
-#> $ cslope : num 41.6 29.1 20.1 19.7 16.7 ...
-#> $ distroad : num 300 300 300 300 135 300 300 300 300 300 ...
+#> $ x : num 715042 712742 715552 715462 712812 ...
+#> $ y : num 9559312 9560482 9558812 9559372 9559942 ...
+#> $ dem : num 2320 1928 2518 2319 1861 ...
+#> $ slope : num 42.86 34.67 7.98 32.33 63.34 ...
+#> $ hcurv : num -0.01106 -0.00292 -0.01863 -0.00661 0.00514 ...
+#> $ vcurv : num -0.04634 0.00712 -0.00507 -0.01339 -0.00644 ...
+#> $ carea : num 501 3637 159065 1003 1179 ...
+#> $ cslope : num 33.9 29 27.1 32.7 36.5 ...
+#> $ distroad : num 300 60.5 300 300 300 ...
#> $ slides : Factor w/ 2 levels "FALSE","TRUE": 2 2 2 2 2 2 2 2 2 2 ...
-#> $ distdeforest : num 300 300 247 260 0 ...
-#> $ distslidespast: num 21 100 100 100 2 6 100 45 83 65 ...
-#> $ log.carea : num 2.83 3.04 3.18 3.11 2.58 ...
+#> $ distdeforest : num 300 152.09 300 300 2.45 ...
+#> $ distslidespast: num 100 35 100 11 0 46 100 21 100 100 ...
+#> $ log.carea : num 2.7 3.56 5.2 3 3.07 ...
# the corresponding training sample - larger:
str(ecuador[parti[[1]]$train, ])
#> 'data.frame': 676 obs. of 13 variables:
-#> $ x : num 712882 715232 715392 715042 712802 ...
-#> $ y : num 9560002 9559582 9560172 9559312 9559952 ...
-#> $ dem : num 1912 2199 1989 2320 1838 ...
-#> $ slope : num 25.6 23.2 40.5 42.9 52.1 ...
-#> $ hcurv : num -0.00681 -0.00501 -0.01919 -0.01106 0.00183 ...
-#> $ vcurv : num -0.00029 -0.00649 -0.04051 -0.04634 -0.09203 ...
-#> $ carea : num 5577 1399 351155 501 634 ...
-#> $ cslope : num 34.4 30.7 32.8 33.9 30.3 ...
+#> $ x : num 712882 715232 715392 715382 712802 ...
+#> $ y : num 9560002 9559582 9560172 9560142 9559952 ...
+#> $ dem : num 1912 2199 1989 2021 1838 ...
+#> $ slope : num 25.6 23.2 40.5 42 52.1 ...
+#> $ hcurv : num -0.00681 -0.00501 -0.01919 0.00958 0.00183 ...
+#> $ vcurv : num -0.00029 -0.00649 -0.04051 0.02642 -0.09203 ...
+#> $ carea : num 5577 1399 351155 671 634 ...
+#> $ cslope : num 34.4 30.7 32.8 41.6 30.3 ...
#> $ distroad : num 300 300 300 300 300 ...
#> $ slides : Factor w/ 2 levels "FALSE","TRUE": 2 2 2 2 2 2 2 2 2 2 ...
#> $ distdeforest : num 15 300 300 300 9.15 ...
-#> $ distslidespast: num 9 21 40 100 2 100 100 41 5 20 ...
-#> $ log.carea : num 3.75 3.15 5.55 2.7 2.8 ...
+#> $ distslidespast: num 9 21 40 21 2 100 100 41 5 20 ...
+#> $ log.carea : num 3.75 3.15 5.55 2.83 2.8 ...
# Bootstrap training sets, out-of-bag test sets:
parti <- represampling_bootstrap(ecuador, oob = TRUE)
parti <- parti[[1]] # the first (and only) resampling object in parti
# out-of-bag test sample: approx. one-third of nrow(ecuador):
str(ecuador[parti[[1]]$test, ])
-#> 'data.frame': 283 obs. of 13 variables:
-#> $ x : num 712882 714752 715302 714852 712742 ...
-#> $ y : num 9560002 9561022 9557472 9557902 9560482 ...
-#> $ dem : num 1912 1848 2857 2675 1928 ...
-#> $ slope : num 25.6 33.4 39.5 30.7 34.7 ...
-#> $ hcurv : num -0.00681 -0.00347 -0.01021 0.00221 -0.00292 ...
-#> $ vcurv : num -0.00029 0.02357 -0.01579 0.00969 0.00712 ...
-#> $ carea : num 5577 1752 1319 369 3637 ...
-#> $ cslope : num 34.4 23.8 36.3 20.5 29 ...
-#> $ distroad : num 300 158.9 300 300 60.5 ...
+#> 'data.frame': 297 obs. of 13 variables:
+#> $ x : num 715232 715392 713512 715302 714852 ...
+#> $ y : num 9559582 9560172 9559092 9557472 9557902 ...
+#> $ dem : num 2199 1989 2166 2857 2675 ...
+#> $ slope : num 23.2 40.5 56 39.5 30.7 ...
+#> $ hcurv : num -0.00501 -0.01919 0.02056 -0.01021 0.00221 ...
+#> $ vcurv : num -0.00649 -0.04051 -0.06976 -0.01579 0.00969 ...
+#> $ carea : num 1399 351155 301 1319 369 ...
+#> $ cslope : num 30.7 32.8 49.4 36.3 20.5 ...
+#> $ distroad : num 300 300 300 300 300 300 300 300 300 300 ...
#> $ slides : Factor w/ 2 levels "FALSE","TRUE": 2 2 2 2 2 2 2 2 2 2 ...
-#> $ distdeforest : num 15 0 300 300 152 ...
-#> $ distslidespast: num 9 5 100 10 35 100 26 41 6 100 ...
-#> $ log.carea : num 3.75 3.24 3.12 2.57 3.56 ...
+#> $ distdeforest : num 300 300 300 300 300 300 300 300 300 300 ...
+#> $ distslidespast: num 21 40 41 100 10 2 11 4 100 100 ...
+#> $ log.carea : num 3.15 5.55 2.48 3.12 2.57 ...
# bootstrap training sample: same size as nrow(ecuador):
str(ecuador[parti[[1]]$train, ])
#> 'data.frame': 751 obs. of 13 variables:
-#> $ x : num 712832 712862 714742 714732 715202 ...
-#> $ y : num 9560142 9558902 9560082 9559502 9558872 ...
-#> $ dem : num 1922 2110 2201 2284 2464 ...
-#> $ slope : num 39.7 31.4 28.7 53.4 34.7 ...
-#> $ hcurv : num 0.01469 0.00151 -0.00598 0.0039 -0.01267 ...
-#> $ vcurv : num 0.0294 0.00189 0.02208 -0.02831 -0.05063 ...
-#> $ carea : num 988 2317 842 455 18734 ...
-#> $ cslope : num 29.8 27.2 31.4 50.3 34.7 ...
-#> $ distroad : num 300 300 300 300 300 300 300 300 300 300 ...
-#> $ slides : Factor w/ 2 levels "FALSE","TRUE": 2 2 1 1 2 2 2 2 2 2 ...
-#> $ distdeforest : num 1.9 300 300 300 300 300 0 300 300 300 ...
-#> $ distslidespast: num 90 100 100 45 71 1 100 100 90 100 ...
-#> $ log.carea : num 2.99 3.36 2.93 2.66 4.27 ...
+#> $ x : num 714332 713642 714042 715472 715122 ...
+#> $ y : num 9560262 9558712 9558482 9558902 9559142 ...
+#> $ dem : num 2138 2299 2408 2483 2390 ...
+#> $ slope : num 25.7 33.8 24.1 30.7 33.2 ...
+#> $ hcurv : num -0.00491 -0.00503 0.00659 -0.01102 0.01008 ...
+#> $ vcurv : num 0.00581 0.02433 0.01041 -0.01778 0.00102 ...
+#> $ carea : num 1855 1475 773 4594 483 ...
+#> $ cslope : num 23.8 23.9 27.5 29 26.9 ...
+#> $ distroad : num 300 300 300 300 300 ...
+#> $ slides : Factor w/ 2 levels "FALSE","TRUE": 2 2 2 2 2 2 1 2 1 1 ...
+#> $ distdeforest : num 300 300 300 300 300 ...
+#> $ distslidespast: num 10 100 6 100 100 54 100 100 42 92 ...
+#> $ log.carea : num 3.27 3.17 2.89 3.66 2.68 ...
diff --git a/reference/err_default.html b/reference/err_default.html
index 34cfc887..5d002d8f 100644
--- a/reference/err_default.html
+++ b/reference/err_default.html
@@ -115,80 +115,80 @@ Examples
# Two mock (soft) classification examples:
err_default(obs > 0, rnorm(1000)) # just noise
#> $auroc
-#> [1] 0.4406818
+#> [1] 0.5138262
#>
#> $error
-#> [1] 0.531
+#> [1] 0.48
#>
#> $accuracy
-#> [1] 0.469
+#> [1] 0.52
#>
#> $sensitivity
-#> [1] 0.2643443
+#> [1] 0.3326446
#>
#> $specificity
-#> [1] 0.6640625
+#> [1] 0.6957364
#>
#> $fpr70
-#> [1] 0.7617188
+#> [1] 0.6705426
#>
#> $fpr80
-#> [1] 0.8632812
+#> [1] 0.7829457
#>
#> $fpr90
-#> [1] 0.9394531
+#> [1] 0.8895349
#>
#> $tpr80
-#> [1] 0.1413934
+#> [1] 0.2128099
#>
#> $tpr90
-#> [1] 0.09016393
+#> [1] 0.1136364
#>
#> $tpr95
-#> [1] 0.05532787
+#> [1] 0.05371901
#>
#> $events
-#> [1] 488
+#> [1] 484
#>
#> $count
#> [1] 1000
#>
err_default(obs > 0, obs + rnorm(1000)) # some discrimination
#> $auroc
-#> [1] 0.8389192
+#> [1] 0.8595882
#>
#> $error
-#> [1] 0.258
+#> [1] 0.244
#>
#> $accuracy
-#> [1] 0.742
+#> [1] 0.756
#>
#> $sensitivity
-#> [1] 0.6106557
+#> [1] 0.6157025
#>
#> $specificity
-#> [1] 0.8671875
+#> [1] 0.8875969
#>
#> $fpr70
-#> [1] 0.2109375
+#> [1] 0.1666667
#>
#> $fpr80
-#> [1] 0.296875
+#> [1] 0.2616279
#>
#> $fpr90
-#> [1] 0.4433594
+#> [1] 0.3992248
#>
#> $tpr80
-#> [1] 0.6946721
+#> [1] 0.7479339
#>
#> $tpr90
-#> [1] 0.5696721
+#> [1] 0.5702479
#>
#> $tpr95
-#> [1] 0.4036885
+#> [1] 0.3822314
#>
#> $events
-#> [1] 488
+#> [1] 484
#>
#> $count
#> [1] 1000
@@ -196,44 +196,44 @@ Examples
# Three mock regression examples:
err_default(obs, rnorm(1000)) # just noise, but no bias
#> $bias
-#> [1] 0.0484288
+#> [1] 0.06380087
#>
#> $stddev
-#> [1] 1.424808
+#> [1] 1.465409
#>
#> $rmse
-#> [1] 1.424919
+#> [1] 1.466065
#>
#> $mad
-#> [1] 1.36595
+#> [1] 1.474986
#>
#> $median
-#> [1] -0.01119599
+#> [1] 0.06683879
#>
#> $iqr
-#> [1] 1.878506
+#> [1] 1.997871
#>
#> $count
#> [1] 1000
#>
err_default(obs, obs + rnorm(1000)) # some association, no bias
#> $bias
-#> [1] -0.02326742
+#> [1] -0.02305671
#>
#> $stddev
-#> [1] 0.9718334
+#> [1] 0.9844829
#>
#> $rmse
-#> [1] 0.971626
+#> [1] 0.9842606
#>
#> $mad
-#> [1] 0.9728568
+#> [1] 0.9781223
#>
#> $median
-#> [1] -0.04646661
+#> [1] -0.03819017
#>
#> $iqr
-#> [1] 1.320561
+#> [1] 1.321501
#>
#> $count
#> [1] 1000
@@ -243,7 +243,7 @@ Examples
#> [1] -1
#>
#> $stddev
-#> [1] 6.429096e-17
+#> [1] 6.380937e-17
#>
#> $rmse
#> [1] 1
diff --git a/reference/partition_cv.html b/reference/partition_cv.html
index 81a91796..89488be3 100644
--- a/reference/partition_cv.html
+++ b/reference/partition_cv.html
@@ -155,310 +155,308 @@ Examples
idx <- resamp[["1"]][[2]]$test
# test sample used in this particular repetition and fold:
ecuador[idx, ]
-#> x y dem slope hcurv vcurv carea
-#> 31358 712882.5 9560002 1911.52 25.564231 -0.00681 -0.00029 5577.3916
-#> 4965 715042.5 9559312 2320.49 42.857816 -0.01106 -0.04634 500.5027
-#> 27864 712992.5 9560672 1926.38 27.224090 -0.00199 0.00659 3553.7166
-#> 25090 715362.5 9560102 2059.29 49.119672 0.02059 -0.00628 556.0121
-#> 29391 712842.5 9560152 1930.16 28.095558 0.00753 0.01487 1077.7585
-#> 37265 712812.5 9559942 1860.77 63.337047 0.00514 -0.00644 1179.0695
-#> 20799 714792.5 9561002 1857.29 23.129160 0.00090 0.00890 2301.0454
-#> 39885 715062.5 9561022 1840.94 38.435728 0.00250 -0.01340 604.1032
-#> 25169 712642.5 9560232 1883.10 46.845029 0.00884 0.01345 1120.6929
-#> 49372 714862.5 9560982 1863.12 20.969109 -0.00295 0.00035 2697.5974
-#> 20151 714602.5 9559922 2184.66 48.341595 -0.00979 -0.01542 674.0147
-#> 26447 715632.5 9559102 2410.77 39.656701 0.00730 0.01770 474.5059
-#> 23817 714842.5 9557832 2677.58 26.657434 0.00922 0.01088 266.4355
-#> 10899 713852.5 9559652 2282.82 28.814048 0.00952 0.01378 440.9104
-#> 44328 713222.5 9558932 2227.94 29.155530 -0.00769 -0.00281 1325.6138
-#> 3835 714142.5 9558552 2388.42 32.900383 0.00979 -0.00269 491.8017
-#> 43964 714802.5 9558452 2684.33 37.982518 -0.02123 0.01164 895.6606
-#> 48498 714972.5 9557972 2681.66 38.346919 0.00528 0.01392 1255.0884
-#> 20290 714812.5 9561092 1775.73 34.626704 -0.01537 -0.00203 10263.2734
-#> 36030 712852.5 9559572 1938.79 28.678829 -0.01440 0.00710 843.7961
-#> 15340 715452.5 9558852 2523.95 34.165473 0.00151 0.00899 1394.2274
-#> 2942 713232.5 9560652 1851.75 34.535031 0.00856 0.01114 4510.8833
-#> 47210 714952.5 9557612 2744.35 40.884549 -0.00493 0.00733 598.7983
-#> 32821 715022.5 9559952 2208.33 43.416450 -0.00643 0.00314 2360.1501
-#> 13585 714552.5 9560092 2123.69 57.528973 -0.03613 -0.01898 588.3761
-#> 34280 713652.5 9560702 1896.37 41.273588 0.00382 0.00088 2322.1746
-#> 15390 713132.5 9560622 1873.26 38.480418 0.00252 0.01118 2359.5059
-#> 6763 714692.5 9561052 1830.60 48.394880 -0.01996 0.00626 1014.7159
-#> 3466 713232.5 9560612 1812.72 51.566202 -0.01804 -0.01596 5296.9014
-#> 7879 714722.5 9559232 2356.19 36.803944 -0.01097 0.00156 816.6036
-#> 17004 713102.5 9559032 2186.79 36.533508 -0.01383 0.00193 1809.3838
-#> 23141 715632.5 9558942 2495.99 34.376895 0.01275 0.00605 798.6775
-#> 19730 715332.5 9558452 2640.35 47.642587 -0.00211 0.00642 613.6390
-#> 2950 715042.5 9557712 2740.72 26.525081 -0.00089 -0.00051 779.0555
-#> 35142 714792.5 9558862 2575.17 25.664499 0.06765 0.00114 150.1498
-#> 29667 713892.5 9559712 2239.25 41.592725 0.00804 0.00346 543.0749
-#> 5728 713502.5 9559662 2140.27 34.307567 -0.00154 0.00124 2114.2253
-#> 47351 714222.5 9558792 2420.94 28.668516 -0.09566 -0.03355 14919.6260
-#> 47429 714962.5 9557832 2705.12 32.057562 0.02224 0.00177 291.5937
-#> 40738 714972.5 9557642 2745.48 42.542689 -0.00294 -0.00096 520.5570
-#> 34359 712862.5 9558912 2111.37 32.812147 0.00463 0.00167 1938.5389
-#> 17594 714832.5 9561052 1818.04 46.167220 -0.01353 0.00063 5035.0000
-#> 5578 714962.5 9557612 2751.95 39.191459 0.00288 0.01452 437.3965
-#> 23029 713502.5 9559102 2174.07 56.457542 0.03395 0.01495 266.5888
-#> 20220 714052.5 9558522 2378.67 39.656128 -0.00855 -0.02175 1122.9120
-#> 48808 715032.5 9557792 2707.02 25.437607 -0.02329 -0.01181 11655.4316
-#> 2595 714912.5 9557662 2700.72 24.194862 -0.02681 -0.01319 3457.7519
-#> 10507 714892.5 9559282 2374.45 42.842346 -0.01057 0.02427 380.9472
-#> 33350 713132.5 9560672 1896.89 24.695054 0.00306 -0.00436 2602.7390
-#> 25700 715172.5 9559272 2324.49 35.534842 -0.00529 0.02009 1247.7061
-#> 47100 712752.5 9560462 1910.00 41.911863 -0.00032 0.00542 3614.7334
-#> 23213 715592.5 9558562 2654.69 33.219520 -0.00034 0.00294 739.5768
-#> 46783 713592.5 9560762 1832.60 36.010397 0.00448 -0.00328 592.3326
-#> 10364 714762.5 9561002 1856.21 25.274887 -0.00845 0.00454 3476.0818
-#> 31121 713462.5 9559132 2135.56 61.596974 -0.03800 -0.06020 1563.5549
-#> 13146 713792.5 9558552 2341.40 29.825318 -0.00104 0.01664 1898.5588
-#> 11618 713852.5 9558402 2432.14 54.059141 -0.00410 0.03620 379.0855
-#> 17728 713092.5 9560652 1900.14 30.279101 0.00645 -0.00395 2011.3270
-#> 5103 714612.5 9559892 2220.36 49.007945 -0.00078 0.00219 420.7032
-#> 24501 713302.5 9559142 2125.66 27.108925 0.01784 0.00596 842.0994
-#> 28046 714882.5 9558492 2711.77 28.305834 -0.00131 0.00201 788.0621
-#> 2552 714942.5 9557652 2719.32 34.873649 -0.01238 -0.00851 1012.5963
-#> 45592 714962.5 9559862 2282.08 22.160862 -0.00028 0.01318 289.0063
-#> 34192 712702.5 9560102 1867.01 35.474682 0.00629 -0.00469 1021.5407
-#> 40270 713312.5 9559012 2186.56 30.935710 -0.00771 -0.00599 1378.5760
-#> 5239 714832.5 9560992 1859.70 19.960131 -0.00320 0.00180 3904.5254
-#> 7385 713752.5 9560122 2064.61 31.771083 -0.02605 -0.03594 16587.9980
-#> 12772 715172.5 9557642 2759.42 34.805467 -0.00567 -0.03793 864.9472
-#> 6845 713412.5 9559172 2123.32 47.153854 -0.01556 -0.04394 587.8840
-#> 18958 714192.5 9558372 2495.72 34.677125 -0.00178 -0.00822 472.8748
-#> 10467 714642.5 9559652 2249.12 37.143135 -0.00759 -0.00400 608.6523
-#> 24135 712612.5 9559492 1903.67 46.756794 -0.06953 -0.01797 7557.7866
-#> 42201 714642.5 9557452 2592.29 13.225585 -0.02084 -0.02236 9755.3027
-#> 34887 714662.5 9557392 2609.02 51.020746 -0.01878 -0.04351 1442.9247
-#> 33875 712832.5 9559852 1892.81 37.554519 -0.01175 0.04195 1901.6743
-#> 34615 713242.5 9560732 1879.60 27.593647 0.00384 0.00175 1026.6818
-#> 43245 713722.5 9560012 2153.38 34.191256 -0.01263 0.01322 4605.1411
-#> 15981 713302.5 9559172 2106.91 35.997792 0.01354 0.00245 629.5983
-#> 28312 715712.5 9558032 2783.23 24.252731 -0.00007 -0.02132 1580.1621
-#> 5911 713952.5 9561282 1801.16 33.789613 0.00466 -0.01776 1021.8267
-#> 1036 713042.5 9558892 2205.38 31.509814 -0.00428 -0.00522 1355.7436
-#> 36292 712862.5 9559602 1915.77 37.975070 0.00511 -0.01801 1071.6141
-#> 28009 715002.5 9559922 2237.68 34.603786 -0.01109 0.00298 1533.7925
-#> 47244 714262.5 9559302 2350.47 17.059245 0.02213 -0.01363 565.5207
-#> 49378 713252.5 9560732 1875.41 27.835436 0.00181 -0.00001 1184.7952
-#> 14192 715162.5 9558122 2772.18 44.462671 -0.02970 0.00200 1305.6691
-#> 4667 712652.5 9560472 1957.89 36.324378 -0.00296 0.00426 1315.5334
-#> 1916 715202.5 9559512 2213.91 26.327984 -0.00292 -0.00109 2047.9031
-#> 39624 715222.5 9559552 2205.54 23.897497 0.00401 -0.00391 1794.7964
-#> 7409 714772.5 9559122 2404.90 30.215502 -0.01016 -0.00294 734.9908
-#> 44612 714932.5 9558822 2578.80 38.255246 0.01257 0.00044 288.5468
-#> 26058 713402.5 9560442 1880.12 31.377461 0.00730 -0.02610 1872.9276
-#> 17825 712732.5 9560462 1915.51 40.397535 0.00143 0.00477 2945.2100
-#> 46792 713862.5 9559672 2272.03 35.464942 0.00560 0.00610 454.8103
-#> 17674 713882.5 9558562 2339.20 41.036383 -0.03675 -0.01905 6487.0010
-#> 12074 714562.5 9560372 2045.17 26.287304 -0.00144 -0.00856 1789.1596
-#> 4479 713982.5 9557812 2399.24 41.231189 0.01895 0.04744 226.7911
-#> 14779 712502.5 9560202 2004.61 27.522601 0.00115 0.01015 790.2421
-#> 14140 714672.5 9559262 2326.36 45.792506 -0.01400 -0.01210 585.8992
-#> 9864 714952.5 9557592 2752.40 31.989380 -0.00983 0.01253 528.1924
-#> 49346 715322.5 9558782 2553.74 25.395208 0.00319 0.00291 487.3438
-#> 21490 714672.5 9560382 2021.86 32.804126 -0.00783 -0.00367 1966.2112
-#> 17851 715362.5 9557482 2869.26 29.125737 -0.03251 -0.00389 14516.2002
-#> 17374 715712.5 9557952 2832.22 37.874802 -0.01519 0.00609 4275.3457
-#> 23176 714012.5 9558892 2308.59 43.029130 -0.01084 -0.02996 1599.3491
-#> 16208 712882.5 9560332 1846.34 48.625209 0.00159 -0.01559 866.5775
-#> 27884 714072.5 9559202 2446.27 19.756731 -0.00009 0.00109 605.1908
-#> 15558 714732.5 9559502 2283.66 53.431752 0.00390 -0.02831 454.9113
-#> 11111 715142.5 9558482 2650.65 42.343300 -0.00533 0.01493 2212.0525
-#> 14717 715382.5 9558062 2799.05 50.590454 -0.00812 -0.02208 951.3401
-#> 18746 713292.5 9560952 1890.51 41.885507 -0.00402 -0.01328 1066.7134
-#> 20458 713612.5 9559562 2288.02 33.440109 0.00112 0.03538 265.4677
-#> 12716 713962.5 9557762 2402.60 18.932244 0.03480 0.01500 538.8209
-#> 43426 713782.5 9560822 1876.35 23.823012 -0.00345 -0.00075 8141.7549
-#> 28162 714062.5 9561152 1785.47 48.444727 0.02309 -0.03409 1575.9425
-#> 47005 714942.5 9559192 2333.66 29.220848 -0.04937 -0.02273 72123.6172
-#> 44396 715512.5 9558102 2845.31 26.598420 0.01263 0.03598 186.3527
-#> 41753 715722.5 9558192 2771.39 26.085050 -0.00196 -0.00175 725.1355
-#> 20319 715282.5 9560482 1901.16 27.676726 0.00706 -0.03035 1471.9783
-#> 33175 715822.5 9558832 2563.13 36.622889 -0.00674 -0.00376 629.8236
-#> 33370 714202.5 9558962 2472.93 32.641406 -0.00307 0.02997 230.8641
-#> 39440 714222.5 9557872 2508.52 39.047647 0.02785 0.00645 234.0114
-#> 12044 713612.5 9559292 2247.76 23.074729 -0.00112 -0.00038 2017.3547
-#> 45486 712762.5 9560172 1853.82 56.797306 0.01978 0.01282 2322.7944
-#> 36889 714302.5 9559802 2243.60 21.166207 0.01923 0.05547 128.2613
-#> 41612 713952.5 9560002 2198.00 28.756179 0.00119 0.00361 1011.0248
-#> 15008 714492.5 9559012 2449.93 29.515348 0.00972 0.00308 422.5022
-#> 1479 715622.5 9557952 2888.67 34.953863 0.01635 -0.00105 868.7802
-#> 29716 715272.5 9559992 2144.94 25.717784 0.00262 -0.00502 520.5218
-#> 17628 714032.5 9560252 2160.03 30.294570 0.00537 -0.00577 423.5598
-#> 48184 714202.5 9558222 2489.17 36.113530 0.02236 -0.00066 306.0146
-#> 9007 714952.5 9560902 1863.75 32.770321 0.00074 -0.02904 608.3561
-#> 974 713402.5 9561062 1854.56 23.634509 0.00082 0.02578 1258.8865
-#> 42638 714322.5 9561182 1754.22 4.172279 -0.03757 -0.00003 5426606.0000
-#> 26283 715932.5 9557592 3075.48 32.766883 -0.00375 0.00215 917.5296
-#> 18246 713902.5 9561342 1818.52 19.110434 -0.01502 0.00282 1659.6211
-#> 19767 714272.5 9558052 2431.67 55.724729 0.00361 -0.01841 756.0055
-#> 7132 713192.5 9559612 2060.27 20.773731 0.00452 0.00368 1071.8734
-#> 10981 713832.5 9560022 2125.33 34.848439 -0.06909 -0.01151 143213.1562
-#> 18504 713372.5 9560672 1786.89 6.473850 -0.00278 -0.01172 111973.8906
-#> 40653 714262.5 9561262 1791.94 12.222336 0.00161 0.00709 1181.2555
-#> 37254 713482.5 9560892 1823.73 39.882446 0.01014 -0.00884 672.2466
-#> 33881 712992.5 9558822 2173.26 33.197748 -0.00595 0.03064 1485.5201
-#> 46639 715232.5 9560042 2107.15 39.657274 -0.01305 0.00585 5714.3267
-#> 49812 713392.5 9559222 2133.99 35.662612 -0.00983 0.00803 1058.5630
-#> 11570 715572.5 9558482 2685.72 16.814019 0.00282 0.00458 485.7418
-#> 24962 715152.5 9560472 1967.37 28.845560 0.00298 0.00222 991.8300
-#> 47245 715372.5 9560792 1900.65 34.470860 -0.00011 -0.00419 323.0790
-#> 126 715042.5 9561262 1733.49 30.110651 -0.00288 0.00448 941.8503
-#> 13548 715812.5 9558122 2821.65 15.508249 0.02751 0.00388 180.4414
-#> 24516 713802.5 9560862 1873.21 23.349749 -0.00771 0.00661 5642.7544
-#> cslope distroad slides distdeforest distslidespast log.carea
-#> 31358 34.42788799 300.00 TRUE 15.00 9 3.746431
-#> 4965 33.90592344 300.00 TRUE 300.00 100 2.699406
-#> 27864 27.81538208 30.00 TRUE 183.39 20 3.550683
-#> 25090 43.53161440 300.00 TRUE 300.00 26 2.745084
-#> 29391 28.28348860 300.00 TRUE 0.56 100 3.032521
-#> 37265 36.51746507 300.00 TRUE 2.45 0 3.071539
-#> 20799 24.80792661 180.67 TRUE 0.00 16 3.361925
-#> 39885 6.08481178 210.57 TRUE 0.00 100 2.781111
-#> 25169 36.60627353 195.00 TRUE 47.05 0 3.049487
-#> 49372 23.54054397 213.54 TRUE 20.21 68 3.430977
-#> 20151 44.79555930 300.00 TRUE 300.00 100 2.828669
-#> 26447 33.03674647 300.00 TRUE 300.00 100 2.676242
-#> 23817 21.61139507 300.00 TRUE 300.00 4 2.425592
-#> 10899 24.77412210 300.00 TRUE 300.00 20 2.644350
-#> 44328 25.50407033 300.00 TRUE 300.00 100 3.122417
-#> 3835 35.13892862 300.00 TRUE 300.00 39 2.691790
-#> 43964 28.75732470 300.00 TRUE 300.00 46 2.952143
-#> 48498 33.61829863 300.00 TRUE 300.00 100 3.098674
-#> 20290 15.45668244 95.53 TRUE 0.00 49 4.011286
-#> 36030 29.19964811 300.00 TRUE 0.00 100 2.926238
-#> 15340 27.97523731 300.00 TRUE 300.00 100 3.144334
-#> 2942 29.82073436 68.13 TRUE 116.32 10 3.654262
-#> 47210 26.91526538 300.00 TRUE 300.00 100 2.777281
-#> 32821 29.48326222 300.00 TRUE 300.00 65 3.372940
-#> 13585 47.06733695 300.00 TRUE 300.00 100 2.769655
-#> 34280 33.62116342 300.00 TRUE 0.00 100 3.365895
-#> 15390 29.32226108 60.00 TRUE 118.92 2 3.372821
-#> 6763 16.21814335 125.47 TRUE 0.00 6 3.006344
-#> 3466 26.79494425 101.32 TRUE 95.02 19 3.724022
-#> 7879 28.58085369 300.00 TRUE 300.00 100 2.912011
-#> 17004 27.18913921 300.00 TRUE 300.00 100 3.257531
-#> 23141 30.29170567 300.00 TRUE 300.00 100 2.902371
-#> 19730 38.47869961 300.00 TRUE 300.00 100 2.787913
-#> 2950 28.20384747 300.00 TRUE 300.00 100 2.891568
-#> 35142 27.15304287 300.00 TRUE 300.00 100 2.176525
-#> 29667 34.25198995 300.00 TRUE 300.00 27 2.734860
-#> 5728 40.40842146 300.00 TRUE 300.00 2 3.325151
-#> 47351 34.87880578 300.00 TRUE 300.00 100 4.173758
-#> 47429 32.09766864 300.00 TRUE 300.00 100 2.464778
-#> 40738 28.96015175 300.00 TRUE 300.00 100 2.716468
-#> 34359 27.41603050 300.00 TRUE 294.31 100 3.287475
-#> 17594 19.23190135 138.35 TRUE 0.00 60 3.701999
-#> 5578 25.74184782 300.00 TRUE 300.00 100 2.640875
-#> 23029 46.60152227 300.00 TRUE 300.00 34 2.425842
-#> 20220 32.17559090 300.00 TRUE 300.00 8 3.050346
-#> 48808 33.77357019 300.00 TRUE 300.00 100 4.066528
-#> 2595 30.43952878 300.00 TRUE 300.00 100 3.538794
-#> 10507 27.16221019 300.00 TRUE 300.00 46 2.580865
-#> 33350 28.95270330 10.00 TRUE 166.26 2 3.415431
-#> 25700 32.54113797 300.00 TRUE 300.00 100 3.096112
-#> 47100 29.64598224 82.80 TRUE 129.73 36 3.558076
-#> 23213 25.46052554 300.00 TRUE 300.00 100 2.868983
-#> 46783 19.94236902 256.35 TRUE 0.00 100 2.772566
-#> 10364 26.09307095 179.84 TRUE 0.00 0 3.541090
-#> 31121 38.16013507 300.00 TRUE 300.00 45 3.194113
-#> 13146 33.57647271 300.00 TRUE 300.00 2 3.278424
-#> 11618 33.98556458 300.00 TRUE 300.00 1 2.578737
-#> 17728 28.55220580 30.14 TRUE 140.15 2 3.303483
-#> 5103 34.91318325 300.00 TRUE 300.00 91 2.623976
-#> 24501 27.15246991 300.00 TRUE 300.00 0 2.925363
-#> 28046 19.59114589 300.00 TRUE 300.00 15 2.896560
-#> 2552 32.21569795 300.00 TRUE 300.00 100 3.005436
-#> 45592 15.64862330 300.00 TRUE 300.00 2 2.460907
-#> 34192 33.87498372 273.94 TRUE 4.48 85 3.009256
-#> 40270 27.59765812 300.00 TRUE 300.00 5 3.139431
-#> 5239 24.66526012 197.29 TRUE 4.67 57 3.591568
-#> 7385 28.71034216 300.00 TRUE 300.00 100 4.219794
-#> 12772 37.92006576 300.00 TRUE 300.00 100 2.936990
-#> 6845 44.59616998 300.00 TRUE 300.00 29 2.769292
-#> 18958 29.98975691 300.00 TRUE 300.00 5 2.674746
-#> 10467 38.99608049 300.00 TRUE 300.00 90 2.784369
-#> 24135 38.66834864 300.00 TRUE 122.87 100 3.878395
-#> 42201 39.55872505 300.00 TRUE 300.00 100 3.989241
-#> 34887 42.93573829 300.00 TRUE 300.00 100 3.159244
-#> 33875 27.56958319 300.00 TRUE 4.67 0 3.279136
-#> 34615 34.18953755 17.57 TRUE 142.95 16 3.011436
-#> 43245 24.44581729 300.00 TRUE 300.00 100 3.663243
-#> 15981 30.00350790 300.00 TRUE 300.00 0 2.799064
-#> 28312 41.64257255 300.00 TRUE 300.00 100 3.198702
-#> 5911 4.13847415 42.88 TRUE 0.00 13 3.009377
-#> 1036 25.72695092 300.00 TRUE 300.00 100 3.132178
-#> 36292 31.51554352 300.00 TRUE 16.03 100 3.030038
-#> 28009 27.01782483 300.00 TRUE 300.00 29 3.185767
-#> 47244 28.03883562 300.00 TRUE 300.00 2 2.752448
-#> 49378 33.99415894 22.68 TRUE 134.63 25 3.073643
-#> 14192 40.58661133 300.00 TRUE 300.00 100 3.115833
-#> 4667 31.51726239 24.78 TRUE 172.24 38 3.119102
-#> 1916 29.27355967 300.00 TRUE 300.00 21 3.311309
-#> 39624 33.29457748 300.00 TRUE 300.00 2 3.254015
-#> 7409 25.37057117 300.00 TRUE 300.00 100 2.866282
-#> 44612 34.69144858 300.00 TRUE 300.00 100 2.460216
-#> 26058 34.49836180 300.00 TRUE 76.02 39 3.272521
-#> 17825 30.73345613 73.66 TRUE 137.63 18 3.469116
-#> 46792 27.60109586 300.00 TRUE 300.00 18 2.657830
-#> 17674 30.48250062 300.00 TRUE 300.00 1 3.812044
-#> 12074 23.28557775 300.00 TRUE 300.00 63 3.252649
-#> 4479 32.01172497 300.00 TRUE 300.00 55 2.355626
-#> 14779 16.52123802 55.08 TRUE 0.00 1 2.897760
-#> 14140 35.48728696 300.00 TRUE 300.00 65 2.767823
-#> 9864 20.82071332 300.00 TRUE 300.00 100 2.722792
-#> 49346 23.34573832 300.00 TRUE 300.00 29 2.687835
-#> 21490 34.06004909 300.00 TRUE 300.00 1 3.293630
-#> 17851 32.26325344 300.00 TRUE 300.00 100 4.161853
-#> 17374 43.14544085 300.00 TRUE 300.00 100 3.630971
-#> 23176 41.55834775 300.00 TRUE 300.00 100 3.203943
-#> 16208 38.37384833 256.60 FALSE 0.00 67 2.937807
-#> 27884 15.49736244 300.00 FALSE 300.00 100 2.781892
-#> 15558 50.34408258 300.00 FALSE 300.00 45 2.657927
-#> 11111 33.38395889 300.00 FALSE 300.00 100 3.344795
-#> 14717 50.85630685 300.00 FALSE 300.00 100 2.978336
-#> 18746 39.13645515 4.48 FALSE 205.00 27 3.028048
-#> 20458 21.42976745 300.00 FALSE 300.00 28 2.424012
-#> 12716 24.34497672 300.00 FALSE 300.00 25 2.731444
-#> 43426 35.46264977 300.00 FALSE 82.11 100 3.910718
-#> 28162 18.66982975 130.00 FALSE 75.00 100 3.197540
-#> 47005 36.13530222 300.00 FALSE 300.00 100 4.858077
-#> 44396 21.44237252 300.00 FALSE 300.00 100 2.270336
-#> 41753 25.00731593 300.00 FALSE 300.00 100 2.860419
-#> 20319 32.07245850 300.00 FALSE 300.00 100 3.167901
-#> 33175 34.78369478 300.00 FALSE 300.00 100 2.799219
-#> 33370 26.41908393 300.00 FALSE 300.00 100 2.363356
-#> 39440 32.70614982 300.00 FALSE 300.00 92 2.369237
-#> 12044 32.23689739 300.00 FALSE 300.00 100 3.304782
-#> 45486 33.42177411 300.00 FALSE 0.00 68 3.366011
-#> 36889 19.64500392 300.00 FALSE 300.00 48 2.108096
-#> 41612 25.58714921 300.00 FALSE 300.00 100 3.004762
-#> 15008 26.90781693 300.00 FALSE 300.00 48 2.625829
-#> 1479 43.67657272 300.00 FALSE 300.00 100 2.938910
-#> 29716 32.69354475 300.00 FALSE 300.00 100 2.716439
-#> 17628 26.99204173 300.00 FALSE 205.59 100 2.626915
-#> 48184 30.95633671 300.00 FALSE 300.00 75 2.485742
-#> 9007 30.96435812 300.00 FALSE 14.98 35 2.784158
-#> 974 22.75845658 80.00 FALSE 90.05 100 3.099987
-#> 42638 23.42136875 86.41 FALSE 172.46 100 6.734528
-#> 26283 41.51079226 300.00 FALSE 300.00 100 2.962620
-#> 18246 7.98760462 18.49 FALSE 0.00 29 3.220009
-#> 19767 42.01041145 300.00 FALSE 300.00 100 2.878525
-#> 7132 34.04916289 300.00 FALSE 225.26 12 3.030143
-#> 10981 29.16641656 300.00 FALSE 300.00 100 5.155983
-#> 18504 23.09592872 144.96 FALSE 4.48 89 5.049117
-#> 40653 0.14209353 18.02 FALSE 140.15 100 3.072344
-#> 37254 4.19118627 131.59 FALSE 80.55 100 2.827529
-#> 33881 29.18589713 300.00 FALSE 300.00 100 3.171879
-#> 46639 33.56329468 300.00 FALSE 300.00 100 3.756965
-#> 49812 33.35817579 300.00 FALSE 300.00 65 3.024717
-#> 11570 16.60718169 300.00 FALSE 300.00 100 2.686405
-#> 24962 29.05010613 300.00 FALSE 300.00 100 2.996437
-#> 47245 34.97620860 300.00 FALSE 150.03 100 2.509309
-#> 126 0.02521014 9.90 FALSE 40.52 100 2.973982
-#> 13548 16.97845834 300.00 FALSE 300.00 100 2.256336
-#> 24516 36.25447744 300.00 FALSE 122.13 100 3.751491
+#> x y dem slope hcurv vcurv carea
+#> 31358 712882.5 9560002 1911.52 25.564231 -0.00681 -0.00029 5577.3916
+#> 16435 713512.5 9559092 2166.13 55.973966 0.02056 -0.06976 301.2347
+#> 27864 712992.5 9560672 1926.38 27.224090 -0.00199 0.00659 3553.7166
+#> 25090 715362.5 9560102 2059.29 49.119672 0.02059 -0.00628 556.0121
+#> 40756 714022.5 9558862 2331.20 45.085476 -0.00075 0.00475 1001.0861
+#> 29391 712842.5 9560152 1930.16 28.095558 0.00753 0.01487 1077.7585
+#> 24072 715282.5 9557602 2837.46 34.394083 -0.02191 -0.00579 2246.7725
+#> 34512 713162.5 9559632 2041.52 46.815236 -0.00857 0.03677 1675.4679
+#> 21939 713642.5 9558712 2299.09 33.750652 -0.00503 0.02433 1475.3191
+#> 15843 714042.5 9558902 2332.30 50.097711 -0.00858 -0.00292 1233.9299
+#> 42917 714202.5 9557412 2544.08 39.877863 -0.02104 -0.02046 1024.1573
+#> 25169 712642.5 9560232 1883.10 46.845029 0.00884 0.01345 1120.6929
+#> 1768 713912.5 9558552 2357.19 38.692413 -0.00645 0.00835 2425.3115
+#> 32622 714972.5 9557762 2687.38 30.556412 -0.00730 -0.01491 1844.4353
+#> 43669 712392.5 9560162 2001.90 47.283915 -0.00284 0.01804 628.5153
+#> 49372 714862.5 9560982 1863.12 20.969109 -0.00295 0.00035 2697.5974
+#> 38827 713412.5 9560472 1869.10 16.871315 -0.00156 0.00406 2421.1145
+#> 26447 715632.5 9559102 2410.77 39.656701 0.00730 0.01770 474.5059
+#> 23817 714842.5 9557832 2677.58 26.657434 0.00922 0.01088 266.4355
+#> 31023 714712.5 9561042 1838.66 44.120042 -0.00223 0.01783 377.8918
+#> 22814 713862.5 9558582 2327.48 48.612031 -0.02894 -0.03416 947.4878
+#> 27375 714292.5 9558982 2458.96 43.600942 0.00214 0.00466 724.0713
+#> 10974 715312.5 9557502 2844.23 26.664883 -0.00831 -0.00149 12632.7793
+#> 23925 715202.5 9557652 2782.99 41.957126 -0.00542 0.01842 868.6137
+#> 10899 713852.5 9559652 2282.82 28.814048 0.00952 0.01378 440.9104
+#> 29420 713592.5 9560772 1826.82 34.926934 -0.00070 -0.00530 9000.4356
+#> 29472 714792.5 9561072 1786.08 36.173117 -0.01029 -0.02312 2657.6936
+#> 38279 714192.5 9558612 2325.14 28.252549 -0.04430 -0.06070 138869.3906
+#> 34482 715152.5 9557642 2753.52 4.995619 -0.01126 -0.02044 129412.3984
+#> 23375 713162.5 9559632 2041.52 46.815236 -0.00857 0.03677 1675.4679
+#> 20290 714812.5 9561092 1775.73 34.626704 -0.01537 -0.00203 10263.2734
+#> 2942 713232.5 9560652 1851.75 34.535031 0.00856 0.01114 4510.8833
+#> 25081 713392.5 9558452 2242.24 46.538497 -0.02716 0.03696 4143.4019
+#> 40828 714842.5 9557632 2698.65 17.536519 0.00490 -0.00450 873.0448
+#> 32821 715022.5 9559952 2208.33 43.416450 -0.00643 0.00314 2360.1501
+#> 13585 714552.5 9560092 2123.69 57.528973 -0.03613 -0.01898 588.3761
+#> 48364 715582.5 9558222 2746.23 25.072060 0.01257 0.00593 939.0466
+#> 27957 715012.5 9559332 2306.35 20.480376 0.00225 0.00325 616.8652
+#> 13847 715052.5 9559232 2337.87 26.114843 -0.01452 -0.01437 1155.1469
+#> 47429 714962.5 9557832 2705.12 32.057562 0.02224 0.00177 291.5937
+#> 6310 713802.5 9559752 2238.38 19.651306 -0.02379 0.01338 10787.6299
+#> 18751 714882.5 9559182 2381.81 39.299175 0.00066 -0.00036 516.4709
+#> 17036 712832.5 9560582 1951.38 27.645787 0.00060 0.00270 4057.5637
+#> 47884 715032.5 9557712 2738.31 28.289218 0.00006 0.00175 804.5679
+#> 37141 714382.5 9559822 2219.36 10.106403 0.01661 0.01199 196.4080
+#> 39278 714692.5 9561052 1830.60 48.394880 -0.01996 0.00626 1014.7159
+#> 22332 715482.5 9558922 2475.28 19.936639 -0.02617 0.00307 147470.5312
+#> 33240 714972.5 9557652 2741.04 39.434393 -0.00286 -0.00964 571.1364
+#> 40733 712862.5 9558892 2108.60 29.994914 0.00175 0.00236 2715.4138
+#> 462 713712.5 9561182 1785.08 47.717071 -0.03260 -0.03310 2833.9001
+#> 18892 712682.5 9560202 1839.08 40.923511 -0.01364 -0.03357 473.4709
+#> 7466 712962.5 9560392 1819.03 18.402831 -0.00140 -0.02330 1456.9246
+#> 30406 715312.5 9560152 2029.10 34.137398 0.00953 -0.02283 590.1536
+#> 18265 715522.5 9558782 2539.23 35.856272 -0.00458 -0.00401 1722.6481
+#> 13029 713542.5 9560242 2019.80 29.545142 0.00576 -0.00166 650.6246
+#> 47100 712752.5 9560462 1910.00 41.911863 -0.00032 0.00542 3614.7334
+#> 7668 713372.5 9559062 2164.82 37.934963 -0.01807 -0.01883 616.1993
+#> 19966 715362.5 9559572 2235.06 26.049526 0.00126 -0.00485 2240.4185
+#> 664 714452.5 9559852 2174.83 44.860876 0.00282 0.00109 767.4097
+#> 16355 712962.5 9560212 1992.88 39.526066 0.01927 -0.00316 454.9674
+#> 7064 715592.5 9558662 2597.69 34.222196 0.00099 0.00240 1201.4724
+#> 45500 712812.5 9560052 1852.16 56.770377 0.00904 -0.02013 4229.5708
+#> 41783 715572.5 9558652 2609.51 32.408212 0.00291 -0.00081 940.6002
+#> 40270 713312.5 9559012 2186.56 30.935710 -0.00771 -0.00599 1378.5760
+#> 12137 712842.5 9558902 2097.88 30.098619 0.00024 -0.00474 2343.2100
+#> 37714 713192.5 9560692 1885.05 18.034420 0.00188 0.00832 3022.3462
+#> 7041 713472.5 9559092 2137.03 18.348973 -0.10372 -0.00008 825875.6875
+#> 11612 715212.5 9557752 2820.51 39.162238 0.00017 0.01213 328.7922
+#> 46461 712682.5 9560032 1892.30 22.977899 0.01453 0.01337 486.7551
+#> 10467 714642.5 9559652 2249.12 37.143135 -0.00759 -0.00400 608.6523
+#> 20368 715252.5 9560622 1865.83 33.572462 0.00025 -0.01245 6353.3179
+#> 18440 714862.5 9558932 2448.29 41.052426 -0.04989 -0.02781 29995.1543
+#> 30287 713992.5 9557822 2403.92 18.215474 0.03890 -0.00911 173.2806
+#> 7086 712762.5 9560962 2022.00 44.913589 -0.01259 -0.00281 1178.4420
+#> 43245 713722.5 9560012 2153.38 34.191256 -0.01263 0.01322 4605.1411
+#> 15432 715632.5 9558922 2509.67 35.827624 -0.00444 -0.00017 759.9937
+#> 28312 715712.5 9558032 2783.23 24.252731 -0.00007 -0.02132 1580.1621
+#> 10689 713542.5 9559132 2211.95 31.981358 0.05379 0.00801 172.7491
+#> 1036 713042.5 9558892 2205.38 31.509814 -0.00428 -0.00522 1355.7436
+#> 37439 714602.5 9560672 1982.99 18.906461 -0.00070 0.00010 3467.2690
+#> 19756 715572.5 9558972 2485.95 38.812734 0.00546 0.01484 495.0292
+#> 1916 715202.5 9559512 2213.91 26.327984 -0.00292 -0.00109 2047.9031
+#> 39624 715222.5 9559552 2205.54 23.897497 0.00401 -0.00391 1794.7964
+#> 20426 714702.5 9559712 2208.61 43.046319 -0.08153 -0.02417 34908.6562
+#> 48650 715592.5 9558612 2626.74 31.876507 0.00010 0.00140 1066.3957
+#> 20171 715732.5 9557962 2815.53 48.657868 -0.01341 0.00171 4425.5410
+#> 14494 715332.5 9558792 2557.22 20.720446 0.01267 0.00483 343.1384
+#> 1223 713632.5 9559632 2226.22 50.808751 -0.01881 0.00121 1783.0658
+#> 9606 714392.5 9559172 2353.05 30.783303 -0.00185 -0.01185 953.8614
+#> 38103 715392.5 9560162 1998.16 46.285823 0.00708 -0.02538 807.8237
+#> 17825 712732.5 9560462 1915.51 40.397535 0.00143 0.00477 2945.2100
+#> 10456 712442.5 9560292 2010.91 26.891774 0.00445 0.00875 597.2893
+#> 11057 714962.5 9557642 2737.48 42.685929 -0.00488 -0.00632 620.0229
+#> 4479 713982.5 9557812 2399.24 41.231189 0.01895 0.04744 226.7911
+#> 10213 715542.5 9558782 2532.10 35.413375 -0.00893 -0.00867 2247.8748
+#> 9864 714952.5 9557592 2752.40 31.989380 -0.00983 0.01253 528.1924
+#> 41310 714452.5 9560402 2092.27 12.462978 -0.00195 -0.00205 1112.2626
+#> 11332 712742.5 9560072 1850.34 22.700015 0.00683 -0.00603 1562.0503
+#> 10785 714052.5 9557852 2377.76 20.984006 -0.00025 -0.05345 2417.1389
+#> 17851 715362.5 9557482 2869.26 29.125737 -0.03251 -0.00389 14516.2002
+#> 31253 712612.5 9559492 1903.67 46.756794 -0.06953 -0.01797 7557.7866
+#> 31983 714302.5 9559912 2204.77 23.464914 -0.01332 0.01842 246.5161
+#> 36561 715292.5 9560802 1844.64 31.937240 0.00002 -0.01232 977.7320
+#> 11288 712822.5 9560442 1873.42 39.609718 -0.00465 -0.00105 4432.8760
+#> 30809 712532.5 9560032 1928.24 40.899446 0.00570 0.02230 714.7432
+#> 25212 714272.5 9559012 2433.45 37.671402 -0.01909 -0.01181 1286.3949
+#> 27965 715042.5 9560342 2063.39 29.197356 0.04336 0.01403 241.2991
+#> 14694 715032.5 9559482 2307.44 44.173327 -0.00007 -0.00463 1050.7473
+#> 8635 713832.5 9557902 2397.71 47.119476 0.02295 0.02715 520.7355
+#> 18746 713292.5 9560952 1890.51 41.885507 -0.00402 -0.01328 1066.7134
+#> 26023 715832.5 9557632 3097.56 41.710182 0.00133 -0.00452 578.5847
+#> 20067 714242.5 9560442 2125.23 38.640274 0.00363 -0.00363 389.2691
+#> 46930 713642.5 9560602 1945.03 34.509821 0.00165 0.00875 1165.3953
+#> 8066 715842.5 9558732 2636.38 33.717420 -0.00494 0.01064 683.2795
+#> 9665 713362.5 9558812 2275.28 31.494917 0.01306 -0.00626 450.7346
+#> 39193 715332.5 9560852 1872.90 30.290560 -0.00161 0.00171 756.8818
+#> 43243 715682.5 9558462 2693.23 27.406290 -0.00031 -0.00199 836.4196
+#> 29125 714992.5 9558792 2584.41 24.665833 0.01253 -0.00333 422.8840
+#> 39685 715332.5 9558102 2797.04 47.788118 0.00167 0.01133 828.8604
+#> 34347 714742.5 9560142 2161.95 26.566907 -0.00978 0.00367 3002.8828
+#> 4007 714132.5 9558412 2464.44 43.720118 0.00174 -0.03065 704.4843
+#> 43403 712632.5 9559262 2072.53 34.486330 -0.00069 -0.00900 614.5898
+#> 41753 715722.5 9558192 2771.39 26.085050 -0.00196 -0.00175 725.1355
+#> 38689 714622.5 9559342 2264.90 42.648113 -0.00844 0.00514 897.9290
+#> 20319 715282.5 9560482 1901.16 27.676726 0.00706 -0.03035 1471.9783
+#> 14800 712952.5 9558682 2120.89 38.273581 -0.00022 0.00662 1269.2650
+#> 36245 713142.5 9560572 1827.82 43.676000 -0.00410 0.00400 4126.7812
+#> 34228 715932.5 9558592 2690.97 9.535164 197.75496 -197.75366 267.5057
+#> 13737 714272.5 9559622 2257.05 55.457158 -0.03224 -0.02036 476.9504
+#> 3733 713762.5 9559632 2297.63 34.214748 -0.01338 0.00518 1137.0179
+#> 34810 714112.5 9559572 2337.51 10.288030 -0.00393 0.00032 994.9224
+#> 39440 714222.5 9557872 2508.52 39.047647 0.02785 0.00645 234.0114
+#> 44267 712972.5 9559042 2191.01 22.269151 0.01462 0.00268 252.0072
+#> 33666 713632.5 9561012 1775.88 21.178812 -0.00950 -0.05130 107.5831
+#> 36721 714092.5 9559752 2301.81 28.933223 0.03418 0.00513 161.9878
+#> 49831 715262.5 9557332 2884.30 22.294934 -0.00097 0.01487 1769.3392
+#> 41612 713952.5 9560002 2198.00 28.756179 0.00119 0.00361 1011.0248
+#> 24819 714032.5 9560882 1981.86 33.284264 0.00804 -0.00165 805.1403
+#> 5861 713882.5 9559182 2350.43 27.393685 -0.02608 0.00148 10771.1963
+#> 484 713812.5 9560592 2016.41 44.301097 -0.00719 0.00079 1647.6451
+#> 18246 713902.5 9561342 1818.52 19.110434 -0.01502 0.00282 1659.6211
+#> 24446 714742.5 9560082 2200.60 28.721801 -0.00598 0.02208 842.4825
+#> 10127 713722.5 9558712 2311.10 19.481138 0.01129 0.00491 261.7371
+#> 37783 713832.5 9557892 2405.28 40.886841 0.01572 0.03148 481.8292
+#> 34334 714642.5 9557912 2582.25 30.991287 0.00253 -0.01233 968.7780
+#> 14881 715482.5 9559232 2376.03 29.905532 -0.01137 -0.01523 888.2811
+#> 9526 714432.5 9560582 2076.13 31.080096 -0.00172 -0.00119 792.3544
+#> 11570 715572.5 9558482 2685.72 16.814019 0.00282 0.00458 485.7418
+#> 14645 715072.5 9560262 2034.04 38.169302 -0.00716 -0.03234 1707.3130
+#> 28978 713982.5 9560462 2133.10 5.229386 0.00366 0.00525 162.0592
+#> cslope distroad slides distdeforest distslidespast log.carea
+#> 31358 34.4278880 300.00 TRUE 15.00 9 3.746431
+#> 16435 49.4439659 300.00 TRUE 300.00 41 2.478905
+#> 27864 27.8153821 30.00 TRUE 183.39 20 3.550683
+#> 25090 43.5316144 300.00 TRUE 300.00 26 2.745084
+#> 40756 39.3352715 300.00 TRUE 300.00 100 3.000471
+#> 29391 28.2834886 300.00 TRUE 0.56 100 3.032521
+#> 24072 37.6668184 300.00 TRUE 300.00 100 3.351559
+#> 34512 34.6398824 300.00 TRUE 195.00 2 3.224136
+#> 21939 23.9324471 300.00 TRUE 300.00 100 3.168886
+#> 15843 42.2218329 300.00 TRUE 300.00 100 3.091290
+#> 42917 38.8035667 300.00 TRUE 300.00 100 3.010367
+#> 25169 36.6062735 195.00 TRUE 47.05 0 3.049487
+#> 1768 28.1855128 300.00 TRUE 300.00 7 3.384768
+#> 32622 30.1713845 300.00 TRUE 300.00 100 3.265863
+#> 43669 28.4765754 24.22 TRUE 0.00 89 2.798316
+#> 49372 23.5405440 213.54 TRUE 20.21 68 3.430977
+#> 38827 31.0359778 300.00 TRUE 52.52 39 3.384015
+#> 26447 33.0367465 300.00 TRUE 300.00 100 2.676242
+#> 23817 21.6113951 300.00 TRUE 300.00 4 2.425592
+#> 31023 16.6776555 135.00 TRUE 0.00 2 2.577367
+#> 22814 34.9120373 300.00 TRUE 300.00 6 2.976574
+#> 27375 38.7703351 300.00 TRUE 300.00 100 2.859781
+#> 10974 32.4655075 300.00 TRUE 300.00 100 4.101499
+#> 23925 37.5333192 300.00 TRUE 300.00 100 2.938827
+#> 10899 24.7741221 300.00 TRUE 300.00 20 2.644350
+#> 29420 28.8524357 253.02 TRUE 0.00 100 3.954264
+#> 29472 18.6486303 111.09 TRUE 0.00 25 3.424505
+#> 38279 37.6284302 300.00 TRUE 300.00 24 5.142607
+#> 34482 32.9714293 300.00 TRUE 300.00 100 5.111976
+#> 23375 34.6398824 300.00 TRUE 195.00 2 3.224136
+#> 20290 15.4566824 95.53 TRUE 0.00 49 4.011286
+#> 2942 29.8207344 68.13 TRUE 116.32 10 3.654262
+#> 25081 34.8753680 300.00 TRUE 300.00 100 3.617357
+#> 40828 25.5997543 300.00 TRUE 300.00 100 2.941037
+#> 32821 29.4832622 300.00 TRUE 300.00 65 3.372940
+#> 13585 47.0673370 300.00 TRUE 300.00 100 2.769655
+#> 48364 32.0758962 300.00 TRUE 300.00 100 2.972687
+#> 27957 30.0602307 300.00 TRUE 300.00 75 2.790190
+#> 13847 20.5709037 300.00 TRUE 300.00 100 3.062637
+#> 47429 32.0976686 300.00 TRUE 300.00 100 2.464778
+#> 6310 23.8264499 300.00 TRUE 300.00 100 4.032926
+#> 18751 38.0759103 300.00 TRUE 300.00 100 2.713046
+#> 17036 24.9282478 25.33 TRUE 208.61 15 3.608265
+#> 47884 27.0544941 300.00 TRUE 300.00 100 2.905563
+#> 37141 12.3884934 300.00 TRUE 300.00 1 2.293159
+#> 39278 16.2181433 125.47 TRUE 0.00 6 3.006344
+#> 22332 27.0688181 300.00 TRUE 300.00 100 5.168705
+#> 33240 29.3549197 300.00 TRUE 300.00 100 2.756740
+#> 40733 27.0138141 300.00 TRUE 300.00 100 3.433836
+#> 462 9.8124752 61.17 TRUE 57.16 74 3.452385
+#> 18892 27.0630885 235.02 TRUE 27.24 0 2.675293
+#> 7466 28.7905562 255.23 TRUE 0.00 60 3.163437
+#> 30406 43.1007501 300.00 TRUE 300.00 85 2.770965
+#> 18265 31.4456427 300.00 TRUE 300.00 100 3.236197
+#> 13029 34.1878187 300.00 TRUE 96.65 4 2.813330
+#> 47100 29.6459822 82.80 TRUE 129.73 36 3.558076
+#> 7668 36.3203676 300.00 TRUE 300.00 5 2.789721
+#> 19966 29.2288690 300.00 TRUE 300.00 23 3.350329
+#> 664 30.8423181 300.00 TRUE 300.00 12 2.885027
+#> 16355 28.2468193 300.00 TRUE 58.52 100 2.657980
+#> 7064 29.1326121 300.00 TRUE 300.00 100 3.079714
+#> 45500 34.9561551 300.00 TRUE 0.00 2 3.626296
+#> 41783 28.1860858 300.00 TRUE 300.00 100 2.973405
+#> 40270 27.5976581 300.00 TRUE 300.00 5 3.139431
+#> 12137 27.5884908 300.00 TRUE 300.00 100 3.369811
+#> 37714 30.7317373 13.57 TRUE 170.00 4 3.480344
+#> 7041 33.2189470 300.00 TRUE 300.00 6 5.916915
+#> 11612 35.1670035 300.00 TRUE 300.00 100 2.516921
+#> 46461 24.9414258 288.47 TRUE 0.00 100 2.687311
+#> 10467 38.9960805 300.00 TRUE 300.00 90 2.784369
+#> 20368 30.3444178 300.00 TRUE 166.26 100 3.803001
+#> 18440 34.9446959 300.00 TRUE 300.00 100 4.477051
+#> 30287 19.8484039 300.00 TRUE 300.00 65 2.238750
+#> 7086 34.2044345 300.00 TRUE 128.61 63 3.071308
+#> 43245 24.4458173 300.00 TRUE 300.00 100 3.663243
+#> 15432 28.7676379 300.00 TRUE 300.00 100 2.880810
+#> 28312 41.6425726 300.00 TRUE 300.00 100 3.198702
+#> 10689 30.6480854 300.00 TRUE 300.00 61 2.237416
+#> 1036 25.7269509 300.00 TRUE 300.00 100 3.132178
+#> 37439 26.5926901 300.00 TRUE 300.00 100 3.539988
+#> 19756 30.1163806 300.00 TRUE 300.00 100 2.694631
+#> 1916 29.2735597 300.00 TRUE 300.00 21 3.311309
+#> 39624 33.2945775 300.00 TRUE 300.00 2 3.254015
+#> 20426 33.4085961 300.00 TRUE 300.00 76 4.542933
+#> 48650 27.0522023 300.00 TRUE 300.00 100 3.027918
+#> 20171 42.1301596 300.00 TRUE 300.00 100 3.645966
+#> 14494 21.1851145 300.00 TRUE 300.00 28 2.535469
+#> 1223 40.4582688 300.00 TRUE 300.00 4 3.251167
+#> 9606 33.8239905 300.00 TRUE 300.00 0 2.979485
+#> 38103 42.7615591 300.00 TRUE 300.00 31 2.907317
+#> 17825 30.7334561 73.66 TRUE 137.63 18 3.469116
+#> 10456 21.6686909 24.34 TRUE 0.00 18 2.776185
+#> 11057 31.2250539 300.00 TRUE 300.00 100 2.792408
+#> 4479 32.0117250 300.00 TRUE 300.00 55 2.355626
+#> 10213 31.5986224 300.00 TRUE 300.00 100 3.351772
+#> 9864 20.8207133 300.00 TRUE 300.00 100 2.722792
+#> 41310 17.2953040 300.00 TRUE 300.00 25 3.046207
+#> 11332 25.6816873 300.00 TRUE 27.04 68 3.193695
+#> 10785 33.2453031 300.00 TRUE 300.00 100 3.383302
+#> 17851 32.2632534 300.00 TRUE 300.00 100 4.161853
+#> 31253 38.6683486 300.00 TRUE 122.87 100 3.878395
+#> 31983 19.7756383 300.00 FALSE 300.00 65 2.391845
+#> 36561 25.8048732 300.00 FALSE 70.00 100 2.990220
+#> 11288 28.5373089 132.07 FALSE 85.50 1 3.646686
+#> 30809 36.3662042 181.84 FALSE 0.00 100 2.854150
+#> 25212 38.9829025 300.00 FALSE 300.00 100 3.109374
+#> 27965 32.2953391 300.00 FALSE 300.00 100 2.382556
+#> 14694 43.5115609 300.00 FALSE 300.00 100 3.021498
+#> 8635 27.6818829 300.00 FALSE 300.00 23 2.716617
+#> 18746 39.1364552 4.48 FALSE 205.00 27 3.028048
+#> 26023 45.0728709 300.00 FALSE 300.00 100 2.762367
+#> 20067 29.8235992 300.00 FALSE 268.03 100 2.590250
+#> 46930 31.9206247 300.00 FALSE 0.00 100 3.066473
+#> 8066 23.5273659 300.00 FALSE 300.00 100 2.834598
+#> 9665 34.0812485 300.00 FALSE 300.00 64 2.653921
+#> 39193 31.4800201 300.00 FALSE 117.12 100 2.879028
+#> 43243 27.9861235 300.00 FALSE 300.00 100 2.922424
+#> 29125 23.9450522 300.00 FALSE 300.00 100 2.626221
+#> 39685 47.8734886 300.00 FALSE 300.00 100 2.918481
+#> 34347 31.7200895 300.00 FALSE 300.00 100 3.477538
+#> 4007 32.0925120 300.00 FALSE 300.00 68 2.847871
+#> 43403 31.0617609 300.00 FALSE 111.88 86 2.788585
+#> 41753 25.0073159 300.00 FALSE 300.00 100 2.860419
+#> 38689 36.0843090 300.00 FALSE 300.00 18 2.953242
+#> 20319 32.0724585 300.00 FALSE 300.00 100 3.167901
+#> 14800 31.5229920 300.00 FALSE 300.00 100 3.103552
+#> 36245 25.8535746 110.19 FALSE 81.50 20 3.615611
+#> 34228 10.7486882 300.00 FALSE 300.00 100 2.427333
+#> 13737 40.9601798 300.00 FALSE 300.00 100 2.678473
+#> 3733 22.1001281 300.00 FALSE 300.00 100 3.055767
+#> 34810 15.5546582 300.00 FALSE 300.00 100 2.997789
+#> 39440 32.7061498 300.00 FALSE 300.00 92 2.369237
+#> 44267 19.7378231 300.00 FALSE 226.30 100 2.401413
+#> 33666 0.0217724 212.17 FALSE 103.16 100 2.031744
+#> 36721 26.6683206 300.00 FALSE 300.00 100 2.209482
+#> 49831 29.8379231 300.00 FALSE 300.00 100 3.247811
+#> 41612 25.5871492 300.00 FALSE 300.00 100 3.004762
+#> 24819 29.9370448 300.00 FALSE 150.00 100 2.905872
+#> 5861 27.6125550 300.00 FALSE 300.00 100 4.032264
+#> 484 32.1457971 300.00 FALSE 55.63 100 3.216864
+#> 18246 7.9876046 18.49 FALSE 0.00 29 3.220009
+#> 24446 31.3631367 300.00 FALSE 300.00 100 2.925561
+#> 10127 18.6194095 300.00 FALSE 300.00 49 2.417865
+#> 37783 24.2573142 300.00 FALSE 300.00 18 2.682893
+#> 34334 25.0898218 300.00 FALSE 300.00 100 2.986224
+#> 14881 26.8562507 300.00 FALSE 300.00 100 2.948550
+#> 9526 27.5695832 300.00 FALSE 300.00 100 2.898919
+#> 11570 16.6071817 300.00 FALSE 300.00 100 2.686405
+#> 14645 45.2132455 300.00 FALSE 300.00 100 3.232313
+#> 28978 4.4398500 300.00 FALSE 10.00 100 2.209674
diff --git a/reference/partition_cv_strat.html b/reference/partition_cv_strat.html
index f22ff483..9c6040fc 100644
--- a/reference/partition_cv_strat.html
+++ b/reference/partition_cv_strat.html
@@ -152,7 +152,7 @@ Examples
parti <- partition_cv(ecuador, nfold = 5, repetition = 1)
idx <- parti[["1"]][[1]]$train
mean(ecuador$slides[idx] == "TRUE") / mean(ecuador$slides == "TRUE")
-#> [1] 1.007165
+#> [1] 0.9846722
# close to 1 because of large sample size, but with some random variation
diff --git a/reference/partition_disc.html b/reference/partition_disc.html
index f38cd801..50210fdf 100644
--- a/reference/partition_disc.html
+++ b/reference/partition_disc.html
@@ -192,19 +192,19 @@ Examples
summary(parti)
#> $`1`
#> n.train n.test
-#> 456 716 11
-#> 699 692 34
-#> 687 742 3
-#> 311 711 9
-#> 48 704 21
+#> 170 721 10
+#> 45 718 5
+#> 575 726 9
+#> 637 706 11
+#> 587 709 7
#>
#> $`2`
#> n.train n.test
-#> 221 715 14
-#> 293 715 25
-#> 536 721 9
-#> 195 734 4
-#> 409 712 9
+#> 467 739 7
+#> 111 723 12
+#> 185 726 9
+#> 554 696 7
+#> 584 738 3
#>
# leave-one-out with buffer:
@@ -212,19 +212,19 @@ Examples
summary(parti)
#> $`1`
#> n.train n.test
-#> 456 716 11
-#> 699 692 34
-#> 687 742 3
-#> 311 711 9
-#> 48 704 21
+#> 170 721 10
+#> 45 718 5
+#> 575 726 9
+#> 637 706 11
+#> 587 709 7
#>
#> $`2`
#> n.train n.test
-#> 221 715 14
-#> 293 715 25
-#> 536 721 9
-#> 195 734 4
-#> 409 712 9
+#> 467 739 7
+#> 111 723 12
+#> 185 726 9
+#> 554 696 7
+#> 584 738 3
#>
diff --git a/reference/sperrorest.html b/reference/sperrorest.html
index 33b083d2..bddcd360 100644
--- a/reference/sperrorest.html
+++ b/reference/sperrorest.html
@@ -346,14 +346,14 @@ Examples
smp_fun = partition_cv,
smp_args = list(repetition = 1:2, nfold = 3)
)
-#> Sun Sep 3 04:26:53 2023 Repetition 1
-#> Sun Sep 3 04:26:53 2023 Repetition - Fold 1
-#> Sun Sep 3 04:26:54 2023 Repetition - Fold 2
-#> Sun Sep 3 04:26:54 2023 Repetition - Fold 3
-#> Sun Sep 3 04:26:54 2023 Repetition 2
-#> Sun Sep 3 04:26:54 2023 Repetition - Fold 1
-#> Sun Sep 3 04:26:54 2023 Repetition - Fold 2
-#> Sun Sep 3 04:26:54 2023 Repetition - Fold 3
+#> Mon Sep 4 04:25:32 2023 Repetition 1
+#> Mon Sep 4 04:25:32 2023 Repetition - Fold 1
+#> Mon Sep 4 04:25:32 2023 Repetition - Fold 2
+#> Mon Sep 4 04:25:32 2023 Repetition - Fold 3
+#> Mon Sep 4 04:25:32 2023 Repetition 2
+#> Mon Sep 4 04:25:32 2023 Repetition - Fold 1
+#> Mon Sep 4 04:25:32 2023 Repetition - Fold 2
+#> Mon Sep 4 04:25:32 2023 Repetition - Fold 3
summary(nsp_res$error_rep)
#> mean sd median IQR
#> train_auroc 0.8413531 0.0002190341 0.8413531 0.0001548805
@@ -436,14 +436,14 @@ Examples
smp_fun = partition_kmeans,
smp_args = list(repetition = 1:2, nfold = 3)
)
-#> Sun Sep 3 04:26:54 2023 Repetition 1
-#> Sun Sep 3 04:26:54 2023 Repetition - Fold 1
-#> Sun Sep 3 04:26:54 2023 Repetition - Fold 2
-#> Sun Sep 3 04:26:55 2023 Repetition - Fold 3
-#> Sun Sep 3 04:26:55 2023 Repetition 2
-#> Sun Sep 3 04:26:55 2023 Repetition - Fold 1
-#> Sun Sep 3 04:26:55 2023 Repetition - Fold 2
-#> Sun Sep 3 04:26:55 2023 Repetition - Fold 3
+#> Mon Sep 4 04:25:33 2023 Repetition 1
+#> Mon Sep 4 04:25:33 2023 Repetition - Fold 1
+#> Mon Sep 4 04:25:33 2023 Repetition - Fold 2
+#> Mon Sep 4 04:25:33 2023 Repetition - Fold 3
+#> Mon Sep 4 04:25:33 2023 Repetition 2
+#> Mon Sep 4 04:25:33 2023 Repetition - Fold 1
+#> Mon Sep 4 04:25:33 2023 Repetition - Fold 2
+#> Mon Sep 4 04:25:33 2023 Repetition - Fold 3
summary(sp_res$error_rep)
#> mean sd median IQR
#> train_auroc 0.8472530 0.017474834 0.8472530 0.012356574