-
Notifications
You must be signed in to change notification settings - Fork 0
/
process.py
114 lines (93 loc) · 3.65 KB
/
process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import json
import numpy as np
import pandas as pd
import argparse
from tqdm import tqdm
import sys
def get_one_hot(valid_len, tot_len):
return np.concatenate((np.eye(valid_len), np.zeros((valid_len, tot_len-valid_len))), axis=-1)
def preprocess(data_name):
u_list, i_list, ts_list, label_list = [], [], [], []
feat_l = []
idx_list = []
with open(data_name) as f:
s = next(f)
print(s)
for idx, line in tqdm(enumerate(f)):
e = line.strip().split(',')
u = int(e[0])
i = int(e[1])
ts = float(e[2])
label = int(e[3])
feat = np.array([float(x) for x in e[4:]])
u_list.append(u)
i_list.append(i)
ts_list.append(ts)
label_list.append(label)
idx_list.append(idx)
feat_l.append(feat)
return pd.DataFrame({'u': u_list,
'i':i_list,
'ts':ts_list,
'label':label_list,
'idx':idx_list}), np.array(feat_l)
def reindex(df, jodie_data):
if jodie_data:
upper_u = df.u.max() + 1
new_i = df.i + upper_u
new_df = df.copy()
new_df.i = new_i
new_df.u += 1
new_df.i += 1
new_df.idx += 1
else:
new_df = df.copy()
new_df.u += 1
new_df.i += 1
new_df.idx += 1
return new_df
def run(args):
data_name = args.dataset
node_edge_feat_dim = args.node_edge_feat_dim
PATH = './processed/{}.csv'.format(data_name)
OUT_DF = './processed/ml_{}.csv'.format(data_name)
OUT_FEAT = './processed/ml_{}.npy'.format(data_name)
OUT_NODE_FEAT = './processed/ml_{}_node.npy'.format(data_name)
jodie_data = data_name in ['wikipedia', 'reddit']
print('preprocess {} dataset ...')
df, feat = preprocess(PATH)
new_df = reindex(df, jodie_data)
if not args.one_hot_node:
empty = np.zeros(feat.shape[1])[np.newaxis, :]
feat = np.vstack([empty, feat])
max_idx = max(new_df.u.max(), new_df.i.max())
rand_feat = np.zeros((max_idx + 1, feat.shape[1]))
if 'socialevolve' in data_name:
feat = np.zeros((feat.shape[0], node_edge_feat_dim))
rand_feat = np.zeros((rand_feat.shape[0], node_edge_feat_dim))
print('node feature shape:', rand_feat.shape)
print('edge feature shape:', feat.shape)
else:
# (obsolete branch) TODO: still problematic, add one-hot encoding if possible
empty = np.zeros(feat.shape[1])[np.newaxis, :]
feat = np.vstack([empty, feat])
feat = np.concatenate()
max_idx = max(new_df.u.max(), new_df.i.max())
rand_feat = get_one_hot(max_idx+1, feat.shape[1])
print('one-hot node feature:', rand_feat.shape)
print(feat.shape)
new_df.to_csv(OUT_DF)
np.save(OUT_FEAT, feat)
np.save(OUT_NODE_FEAT, rand_feat)
parser = argparse.ArgumentParser('Interface for propressing csv source data for TGAT framework')
parser.add_argument('--dataset', choices = ['wikipedia', 'reddit', 'socialevolve', 'socialevolve_1month', 'socialevolve_2weeks'],
help='specify one dataset to preprocess')
parser.add_argument('--node_edge_feat_dim', default=172, help='number of dimensions for 0-padded node and edge features')
parser.add_argument('--one-hot-node', type=bool, default=False,
help='using one hot embedding for node (which means inductive learning is impossible though)')
try:
args = parser.parse_args()
except:
parser.print_help()
sys.exit(0)
run(args)