-
Notifications
You must be signed in to change notification settings - Fork 86
/
s10-multiple-linear-regression.js
85 lines (68 loc) · 1.87 KB
/
s10-multiple-linear-regression.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
function multipleRegression(x, y, q) {
/* Gabriel Giordano's implementation from C to JavaScript with some modifications
on the research "An Efficient and Simple Algorithm for Matrix Inversion" by Ahmad Farooq and Khan Hamid */
function matrixInverse(a) {
let pivot = 0
for (let p = a.length; p-- > 0;) {
pivot = a[p][p]
if (Math.abs(pivot) < 1e-5)
return 0
for (let i = a.length; i-- > 0;)
a[i][p] /= -pivot
for (let i = a.length; i-- > 0;)
if (i != p)
for (let j = a.length; j-- > 0;)
if (j != p)
a[i][j] += a[p][j] * a[i][p]
for (let j = a.length; j-- > 0;)
a[p][j] /= pivot
a[p][p] = 1 / pivot
}
return a
}
function matrixTranspose(a) {
return Object.keys(a[0]).map((c) => a.map((r) => r[c]))
}
function matrixMultiply(a, b) {
return a.map(x => matrixTranspose(b).map(y => dotProduct(x, y)))
}
function dotProduct(a, b) {
return a.map((x, i) => a[i] * b[i]).reduce((m, n) => m + n)
}
let t = matrixTranspose(x),
b = matrixMultiply(matrixMultiply(matrixInverse(matrixMultiply(t, x)), t), y)
return dotProduct([1, ...q], b)
}
function processData(input) {
//Enter your code here
input = input.split('\n')
let [m, n] = input[0].split(' ').map(Number),
x = [],
y = []
for (let i = n + 1; i-- > 1;) {
let e = input[i].split(' ').map(Number)
let xe = [1]
for (let j = m + 1; j-- > 1;) {
xe[j] = e[j - 1]
}
x.push(xe)
y.push([e[m]])
}
for (let i = input.length - input[n + 1]; i < input.length; ++i) {
let f = input[i].split(' ').map(Number)
console.log(multipleRegression(x, y, f).toFixed(2))
}
}
processData(`2 7
0.18 0.89 109.85
1.0 0.26 155.72
0.92 0.11 137.66
0.07 0.37 76.17
0.85 0.16 139.75
0.99 0.41 162.6
0.87 0.47 151.77
4
0.49 0.18
0.57 0.83
0.56 0.64
0.76 0.18`)