forked from gorgonia/gorgonia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
operatorPointwise_unary.go
926 lines (784 loc) · 20.7 KB
/
operatorPointwise_unary.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
package gorgonia
import (
"github.com/chewxy/gorgonia/tensor"
"github.com/pkg/errors"
)
// a ʘUnaryOperator is essentially a function that takes a float32 or float64 and returns the same
// pros : no overloading = clear understanding
// cons : no overloading = a lot of extra code
//
// There are TWO ʘUnaryOperator types so far:
// sf32UnaryOperator - scalar float32 unary operator
// sf64UnaryOperator - scalar float64 unary operator
//
// Because TensorTypes are parameterized by a scalar type, it isn't necessary to create operators
// that will work on TensorTypes. A simple type switch will do.
//
// n.b.: ʘ is used to denote pointwiseness of the operator.
// if you want to type it, it's U+0298 - Latin Letter Bilabial Click
type ʘUnaryOperator interface {
unaryOpType() ʘUnaryOperatorType
String() string
}
type sf32UnaryOperator func(float32) float32
func (f *sf32UnaryOperator) unaryOpType() ʘUnaryOperatorType {
switch f {
case &absf32:
return absOpType
case &signf32:
return signOpType
case &ceilf32:
return ceilOpType
case &floorf32:
return floorOpType
case &sinf32:
return sinOpType
case &cosf32:
return cosOpType
case &expf32:
return expOpType
case &lnf32:
return lnOpType
case &log2f32:
return log2OpType
case &negf32:
return negOpType
case &squaref32:
return squareOpType
case &sqrtf32:
return sqrtOpType
case &inversef32:
return inverseOpType
case &cubef32:
return cubeOpType
case &tanhf32:
return tanhOpType
case &sigmoidf32:
return sigmoidOpType
case &log1pf32:
return log1pOpType
case &expm1f32:
return expm1OpType
case &softplusf32:
return softplusOpType
}
return maxʘUnaryOperator
}
func (f *sf32UnaryOperator) String() string { return f.unaryOpType().String() }
type sf64UnaryOperator func(float64) float64
func (f *sf64UnaryOperator) unaryOpType() ʘUnaryOperatorType {
switch f {
case &absf64:
return absOpType
case &signf64:
return signOpType
case &ceilf64:
return ceilOpType
case &floorf64:
return floorOpType
case &sinf64:
return sinOpType
case &cosf64:
return cosOpType
case &expf64:
return expOpType
case &lnf64:
return lnOpType
case &log2f64:
return log2OpType
case &negf64:
return negOpType
case &squaref64:
return squareOpType
case &sqrtf64:
return sqrtOpType
case &inversef64:
return inverseOpType
case &cubef64:
return cubeOpType
case &tanhf64:
return tanhOpType
case &sigmoidf64:
return sigmoidOpType
case &log1pf64:
return log1pOpType
case &expm1f64:
return expm1OpType
case &softplusf64:
return softplusOpType
}
return maxʘUnaryOperator
}
func (f *sf64UnaryOperator) String() string { return f.unaryOpType().String() }
/*
DIFFERENTIATION EXPRESSIONS
All the functions here are expressed in terms of *Node and/or Nodes
*/
func nondiffUnaryOpExpr(x, y, gradY *Node) (*Node, error) {
return nil, errors.Errorf("Nondifferentiable Function")
}
func nondiffUnaryOp(x, y *Node) error {
return AutoDiffError{}
}
// apparently abs is differentiable
func absDiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
if retVal, err = Sign(x); err == nil {
WithGroupName(gradClust)(retVal)
retVal, err = HadamardProd(gradY, retVal)
if err != nil {
return nil, errors.Wrap(err, hadamardProdFail)
}
} else {
return nil, errors.Wrap(err, "Failed to call Sign()")
}
return
}
func absDiff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
sign := newElemUnaryOp(signOpType, x)
var d Value
if d, err = sign.Do(xdv.Value); err == nil {
if dT, ok := d.(tensor.Tensor); ok {
defer returnTensor(dT)
}
mul := newElemBinOp(mulOpType, y, x)
err = mul.IncrDo(xdv.d, d, ydv.d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
}
return
}
// Solution here
// https://www.symbolab.com/solver/step-by-step/%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft(sin%5Cleft(x%5Cright)%5Cright)
func sinDiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
if retVal, err = Cos(x); err == nil {
WithGroupName(gradClust)(retVal)
retVal, err = HadamardProd(retVal, gradY)
if err != nil {
return nil, errors.Wrap(err, hadamardProdFail)
}
} else {
return nil, errors.Wrap(err, "Failed to carry Cos()")
}
return
}
func sinDiff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
cos := newElemUnaryOp(cosOpType, x)
var d Value
if d, err = cos.Do(xdv.Value); err == nil {
if dT, ok := d.(tensor.Tensor); ok {
defer returnTensor(dT)
}
mul := newElemBinOp(mulOpType, x, y)
err = mul.IncrDo(xdv.d, d, ydv.d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
}
return
}
// Solution here (then apply chain rule to result by multiplying gradY):
// https://www.symbolab.com/solver/step-by-step/%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft(cos%5Cleft(x%5Cright)%5Cright)
func cosDiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
if retVal, err = Sin(x); err == nil {
WithGroupName(gradClust)(retVal)
if retVal, err = Neg(retVal); err == nil {
WithGroupName(gradClust)(retVal)
retVal, err = HadamardProd(retVal, gradY)
if err != nil {
return nil, errors.Wrap(err, hadamardProdFail)
}
} else {
return nil, errors.Wrap(err, negFail)
}
} else {
return nil, errors.Wrap(err, "Failed to call Sin()")
}
return
}
func cosDiff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
sin := newElemUnaryOp(sinOpType, x)
var d Value
if d, err = sin.Do(xdv.Value); err == nil {
if dT, ok := d.(tensor.Tensor); ok {
defer returnTensor(dT)
}
neg := newElemUnaryOp(negOpType, x)
if d, err = neg.UnsafeDo(d); err == nil {
mul := newElemBinOp(mulOpType, x, y)
err = mul.IncrDo(xdv.d, d, ydv.d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
}
}
return
}
func expDiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
return HadamardProd(y, gradY)
}
func expDiff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
mul := newElemBinOp(mulOpType, x, y)
err = mul.IncrDo(xdv.d, ydv.Value, ydv.d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
return
}
// solution is 1/x.
// Upon multiplying with gradY for chain rule, it simply becomes gradY/x
func lnDiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
return HadamardDiv(gradY, x)
}
func lnDiff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
div := newElemBinOp(divOpType, y, x)
err = div.IncrDo(xdv.d, ydv.d, xdv.Value)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
return
}
// 1/(x*ln(2))
func log2DiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
var log2 *Node
var dt tensor.Dtype
if dt, err = dtypeOf(x.t); err != nil {
return nil, errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float32:
log2 = ln2f32
case Float64:
log2 = ln2f64
default:
return nil, errors.Errorf("log2DiffExpr does not handle Dtypes other than Float32 and Float64. Got %v instead", dt)
}
if retVal, err = HadamardProd(x, log2); err == nil {
WithGroupName(gradClust)(retVal)
retVal, err = HadamardDiv(gradY, retVal)
if err != nil {
return nil, errors.Wrap(err, hadamardDivFail)
}
} else {
return nil, errors.Wrap(err, hadamardProdFail)
}
return
}
func log2Diff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
var log2 *Node
var dt tensor.Dtype
if dt, err = dtypeOf(x.t); err != nil {
return errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float32:
log2 = ln2f32
case Float64:
log2 = ln2f64
default:
return errors.Errorf("log2DiffExpr does not handle Dtypes other than Float32 and Float64. Got %v instead", dt)
}
mul := newElemBinOp(mulOpType, x, log2)
var d Value
if d, err = mul.Do(xdv.Value, log2.boundTo); err != nil {
return errors.Wrapf(err, doFail, mul)
}
if dT, ok := d.(tensor.Tensor); ok {
defer returnTensor(dT)
}
div := newElemBinOp(divOpType, y, x)
err = div.IncrDo(xdv.d, ydv.d, d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
return
}
func negDiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
return Neg(gradY)
}
func negDiff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
sub := newElemBinOp(subOpType, x, y)
_, err = sub.UnsafeDo(xdv.d, ydv.d)
if ver, ok := err.(Valuer); ok {
return xdv.SetDeriv(ver.Value())
}
return
}
func squareDiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
var two *Node
var dt tensor.Dtype
if dt, err = dtypeOf(x.t); err != nil {
return nil, errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float32:
two = twof32
case Float64:
two = twof64
default:
return nil, errors.Errorf("squareDiffExpr does not handle Dtypes other than Float32 and Float64. Got %v instead", dt)
}
if retVal, err = HadamardProd(x, two); err == nil {
symdiffLogf("Spawned: %d", retVal.ID())
WithGroupName(gradClust)(retVal)
retVal, err = HadamardProd(retVal, gradY)
if err != nil {
return nil, errors.Wrap(err, hadamardProdFail)
}
symdiffLogf("Spawned: %d", retVal.ID())
} else {
return nil, errors.Wrap(err, hadamardProdFail)
}
return
}
func squareDiff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
var two *Node
var dt tensor.Dtype
if dt, err = dtypeOf(x.t); err != nil {
return errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float32:
two = twof32
case Float64:
two = twof64
default:
return errors.Errorf("squareDiffExpr does not handle Dtypes other than Float32 and Float64. Got %v instead", dt)
}
mul := newElemBinOp(mulOpType, x, y)
var d Value
if d, err = mul.Do(xdv.Value, two.boundTo); err == nil {
if dT, ok := d.(tensor.Tensor); ok {
defer returnTensor(dT)
}
err = mul.IncrDo(xdv.d, d, ydv.d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
}
return
}
func sqrtDiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
var two *Node
var dt tensor.Dtype
if dt, err = dtypeOf(x.t); err != nil {
return nil, errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float32:
two = twof32
case Float64:
two = twof64
default:
return nil, errors.Errorf("sqrtDiffExpr does not handle Dtypes other than Float32 and Float64. Got %v instead", dt)
}
if retVal, err = HadamardProd(two, y); err == nil {
WithGroupName(gradClust)(retVal)
retVal, err = HadamardDiv(gradY, retVal)
if err != nil {
return nil, errors.Wrap(err, hadamardDivFail)
}
} else {
return nil, errors.Wrap(err, hadamardProdFail)
}
return
}
func sqrtDiff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
var two *Node
var dt tensor.Dtype
if dt, err = dtypeOf(x.t); err != nil {
return errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float32:
two = twof32
case Float64:
two = twof64
default:
return errors.Errorf("sqrtDiff does not handle Dtypes other than Float32 and Float64. Got %v instead", dt)
}
mul := newElemBinOp(mulOpType, x, y)
var d Value
if d, err = mul.Do(ydv.Value, two.boundTo); err == nil {
if dT, ok := d.(tensor.Tensor); ok {
defer returnTensor(dT)
}
div := newElemBinOp(divOpType, y, x)
err = div.IncrDo(xdv.d, ydv.d, d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
}
return
}
func inverseDiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
if retVal, err = HadamardProd(y, y); err == nil {
WithGroupName(gradClust)(retVal)
if retVal, err = Neg(retVal); err == nil {
WithGroupName(gradClust)(retVal)
retVal, err = HadamardProd(retVal, gradY)
if err != nil {
return nil, errors.Wrap(err, hadamardProdFail)
}
} else {
return nil, errors.Wrap(err, negFail)
}
} else {
return nil, errors.Wrap(err, hadamardProdFail)
}
return
}
func inverseDiff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
sq := newElemUnaryOp(squareOpType, y)
var d Value
if d, err = sq.Do(ydv.Value); err != nil {
return errors.Wrapf(err, doFail, sq)
}
neg := newElemUnaryOp(negOpType, y)
if d, err = neg.Do(d); err != nil {
return errors.Wrapf(err, doFail, neg)
}
if dT, ok := d.(tensor.Tensor); ok {
defer returnTensor(dT)
}
mul := newElemBinOp(mulOpType, y, y)
err = mul.IncrDo(xdv.d, d, ydv.d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
return
}
func cubeDiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
var three *Node
var dt tensor.Dtype
if dt, err = dtypeOf(x.t); err != nil {
return nil, errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float32:
three = threef32
case Float64:
three = threef64
default:
return nil, errors.Errorf("cubeDiffExpr does not handle Dtypes other than Float32 and Float64. Got %v instead", dt)
}
if retVal, err = HadamardProd(x, x); err == nil {
WithGroupName(gradClust)(retVal)
if retVal, err = HadamardProd(retVal, three); err == nil {
WithGroupName(gradClust)(retVal)
retVal, err = HadamardProd(retVal, gradY)
if err != nil {
return nil, errors.Wrap(err, hadamardProdFail)
}
} else {
return nil, errors.Wrap(err, hadamardProdFail)
}
} else {
return nil, errors.Wrap(err, hadamardProdFail)
}
return
}
func cubeDiff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
var three *Node
var dt tensor.Dtype
if dt, err = dtypeOf(x.t); err != nil {
return errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float32:
three = threef32
case Float64:
three = threef64
default:
return errors.Errorf("cubeDiff does not handle Dtypes other than Float32 and Float64. Got %v instead", dt)
}
mul := newElemBinOp(mulOpType, x, y)
var d Value
if d, err = mul.Do(xdv.Value, xdv.Value); err != nil {
return errors.Wrapf(err, doFail, mul)
}
if dT, ok := d.(tensor.Tensor); ok {
defer returnTensor(dT)
}
if d, err = mul.UnsafeDo(d, three.boundTo); err != nil {
return errors.Wrapf(err, unsafeDoFail, mul)
}
err = mul.IncrDo(xdv.d, d, ydv.d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
return
}
func tanhDiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
var one *Node
var dt tensor.Dtype
if dt, err = dtypeOf(x.t); err != nil {
return nil, errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float32:
one = onef32
case Float64:
one = onef64
default:
return nil, errors.Errorf("tanhDiffExpr does not handle Dtypes other than Float32 and Float64. Got %v instead", dt)
}
if retVal, err = HadamardProd(y, y); err == nil {
WithGroupName(gradClust)(retVal)
if retVal, err = Sub(one, retVal); err == nil {
WithGroupName(gradClust)(retVal)
retVal, err = HadamardProd(retVal, gradY)
if err != nil {
return nil, errors.Wrap(err, hadamardProdFail)
}
} else {
return nil, errors.Wrap(err, subFail)
}
} else {
return nil, errors.Wrap(err, hadamardProdFail)
}
return
}
func tanhDiff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
var one *Node
var dt tensor.Dtype
if dt, err = dtypeOf(x.t); err != nil {
return errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float32:
one = onef32
case Float64:
one = onef64
default:
return errors.Errorf("tanhDiffExpr does not handle Dtypes other than Float32 and Float64. Got %v instead", dt)
}
sq := newElemUnaryOp(squareOpType, y)
var d Value
if d, err = sq.Do(ydv.Value); err != nil {
return errors.Wrapf(err, doFail, sq)
}
if dT, ok := d.(tensor.Tensor); ok {
defer returnTensor(dT)
}
sub := newElemBinOp(subOpType, one, y)
if d, err = sub.UnsafeDo(one.boundTo, d); err != nil {
return errors.Wrapf(err, unsafeDoFail, sub)
}
mul := newElemBinOp(mulOpType, x, y)
err = mul.IncrDo(xdv.d, d, ydv.d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
return
}
func sigmoidDiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
var one *Node
var dt tensor.Dtype
if dt, err = dtypeOf(x.t); err != nil {
return nil, errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float32:
one = onef32
case Float64:
one = onef64
default:
return nil, errors.Errorf("tanhDiffExpr does not handle Dtypes other than Float32 and Float64. Got %v instead", dt)
}
if retVal, err = Sub(one, y); err == nil {
WithGroupName(gradClust)(retVal)
if retVal, err = HadamardProd(y, retVal); err == nil {
WithGroupName(gradClust)(retVal)
retVal, err = HadamardProd(retVal, gradY)
if err != nil {
return nil, errors.Wrap(err, hadamardProdFail)
}
} else {
return nil, errors.Wrap(err, hadamardProdFail)
}
} else {
return nil, errors.Wrap(err, subFail)
}
return
}
func sigmoidDiff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
var one *Node
var dt tensor.Dtype
if dt, err = dtypeOf(x.t); err != nil {
return errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float32:
one = onef32
case Float64:
one = onef64
default:
return errors.Errorf("tanhDiffExpr does not handle Dtypes other than Float32 and Float64. Got %v instead", dt)
}
sub := newElemBinOp(subOpType, one, y)
var d Value
if d, err = sub.Do(one.boundTo, ydv.Value); err != nil {
return errors.Wrapf(err, doFail, sub)
}
if dT, ok := d.(tensor.Tensor); ok {
defer returnTensor(dT)
}
mul := newElemBinOp(mulOpType, x, y)
if d, err = mul.UnsafeDo(d, ydv.Value); err != nil {
return errors.Wrapf(err, unsafeDoFail, mul)
}
err = mul.IncrDo(xdv.d, d, ydv.d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
return
}
// 1/(x+1)
func log1pDiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
var one *Node
var dt tensor.Dtype
if dt, err = dtypeOf(x.t); err != nil {
return nil, errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float32:
one = onef32
case Float64:
one = onef64
default:
return nil, errors.Errorf("log1pDiffExpr does not handle Dtypes other than Float32 and Float64. Got %v instead", dt)
}
if retVal, err = Add(x, one); err == nil {
WithGroupName(gradClust)(retVal)
retVal, err = HadamardDiv(gradY, retVal)
if err != nil {
return nil, errors.Wrap(err, hadamardProdFail)
}
} else {
return nil, errors.Wrap(err, "Failed to carry Add()")
}
return
}
func log1pDiff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
var one *Node
var dt tensor.Dtype
if dt, err = dtypeOf(x.t); err != nil {
return errors.Wrap(err, dtypeOfFail)
}
switch dt {
case Float32:
one = onef32
case Float64:
one = onef64
default:
return errors.Errorf("log1pDiffExpr does not handle Dtypes other than Float32 and Float64. Got %v instead", dt)
}
add := newElemBinOp(addOpType, x, one)
var d Value
if d, err = add.Do(xdv.Value, one.boundTo); err != nil {
return errors.Wrapf(err, doFail, add)
}
if dT, ok := d.(tensor.Tensor); ok {
defer returnTensor(dT)
}
div := newElemBinOp(divOpType, y, x)
err = div.IncrDo(xdv.d, ydv.d, d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
return
}
func expm1DiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
if retVal, err = Exp(x); err == nil {
WithGroupName(gradClust)(retVal)
return HadamardProd(gradY, retVal)
}
return nil, errors.Wrap(err, "Failled to carry Exp()")
}
func expm1Diff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
exp := newElemUnaryOp(expOpType, x)
var d Value
if d, err = exp.Do(xdv.Value); err != nil {
return errors.Wrapf(err, doFail, exp)
}
if dT, ok := d.(tensor.Tensor); ok {
defer returnTensor(dT)
}
mul := newElemBinOp(mulOpType, x, y)
err = mul.IncrDo(xdv.d, d, ydv.d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
return
}
func softplusDiffExpr(x, y, gradY *Node) (retVal *Node, err error) {
if retVal, err = Sigmoid(x); err == nil {
WithGroupName(gradClust)(retVal)
return HadamardProd(retVal, gradY)
}
return nil, errors.Wrap(err, "Failed to carry Sigmoid()")
}
func softplusDiff(x, y *Node) (err error) {
xdv := x.boundTo.(*dualValue)
ydv := y.boundTo.(*dualValue)
sigmoid := newElemUnaryOp(sigmoidOpType, x)
var d Value
if d, err = sigmoid.Do(xdv.Value); err != nil {
return errors.Wrapf(err, doFail, sigmoid)
}
if dT, ok := d.(tensor.Tensor); ok {
defer returnTensor(dT)
}
mul := newElemBinOp(mulOpType, x, y)
err = mul.IncrDo(xdv.d, d, ydv.d)
if ver, ok := err.(Valuer); ok {
xdv.SetDeriv(ver.Value()) // ignore errors on purpose
return nil
}
return
}