-
Notifications
You must be signed in to change notification settings - Fork 2
/
alexnet.py
210 lines (159 loc) · 7.25 KB
/
alexnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
"""This is an TensorFLow implementation of AlexNet by Alex Krizhevsky at all.
Paper:
(http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)
Explanation can be found in blog post:
https://kratzert.github.io/2017/02/24/finetuning-alexnet-with-tensorflow.html
This script enables finetuning AlexNet on any given Dataset with any number of
classes. The structure of this script is strongly inspired by the fast.ai
Deep Learning class by Jeremy Howard and Rachel Thomas, especially their vgg16
finetuning script:
Link:
- https://github.com/fastai/courses/blob/master/deeplearning1/nbs/vgg16.py
The pretrained weights can be downloaded here and should be placed in the same
folder as this file:
- http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/
@author: Frederik Kratzert (contact: f.kratzert(at)gmail.com)
"""
import tensorflow as tf
import numpy as np
# provide full-path if possible
WEIGHTS_PATH = "./cnn_preweights/bvlc_alexnet.npy"
class AlexNet(object):
"""Implementation of the AlexNet."""
def __init__(self, source, keep_prob, device_str):
"""Create the graph of the AlexNet model.
Args:
source: Placeholder for the input tensor.
keep_prob: Dropout probability.
"""
# Parse input arguments into class variables
self.device_str = device_str
self.input = source
self.keep_prob = keep_prob
self.weights_path = WEIGHTS_PATH
# Call the create function to build the computational graph of AlexNet
self.create()
def create(self):
with tf.device(self.device_str):
"""Create the network graph."""
# 1st Layer: Conv (w ReLu) -> Lrn -> Pool
conv1 = conv(self.input, 11, 11, 96, 4, 4, padding="VALID", name="conv1")
norm1 = lrn(conv1, 2, 2e-05, 0.75, name="norm1")
pool1 = max_pool(norm1, 3, 3, 2, 2, padding="VALID", name="pool1")
# 2nd Layer: Conv (w ReLu) -> Lrn -> Pool with 2 groups
conv2 = conv(pool1, 5, 5, 256, 1, 1, groups=2, name="conv2")
norm2 = lrn(conv2, 2, 2e-05, 0.75, name="norm2")
pool2 = max_pool(norm2, 3, 3, 2, 2, padding="VALID", name="pool2")
# 3rd Layer: Conv (w ReLu)
conv3 = conv(pool2, 3, 3, 384, 1, 1, name="conv3")
# 4th Layer: Conv (w ReLu) splitted into two groups
conv4 = conv(conv3, 3, 3, 384, 1, 1, groups=2, name="conv4")
# 5th Layer: Conv (w ReLu) -> Pool splitted into two groups
conv5 = conv(conv4, 3, 3, 256, 1, 1, groups=2, name="conv5")
pool5 = max_pool(conv5, 3, 3, 2, 2, padding="VALID", name="pool5")
# 6th Layer: Flatten -> FC (w ReLu) -> Dropout
flattened = tf.reshape(pool5, [-1, 6 * 6 * 256])
fc6 = fc(flattened, 6 * 6 * 256, 4096, name="fc6")
dropout6 = dropout(fc6, self.keep_prob, name="dropout6")
# 7th Layer: FC (w ReLu) -> Dropout
fc7 = fc(dropout6, 4096, 4096, name="fc7")
dropout7 = dropout(fc7, self.keep_prob, name="dropout7")
self.output = tf.expand_dims(dropout7, 1, name="cnn_output")
def load_initial_weights(self, session):
"""Load weights from file into network.
As the weights from http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/
come as a dict of lists (e.g. weights['conv1'] is a list) and not as
dict of dicts (e.g. weights['conv1'] is a dict with keys 'weights' &
'biases') we need a special load function
"""
# Load the weights into memory
weights_dict = np.load(self.weights_path, encoding="bytes").item()
# Loop over all layer names stored in the weights dict
for op_name in weights_dict:
if op_name not in ["fc8"]:
with tf.variable_scope(op_name, reuse=True):
# Assign weights/biases to their corresponding tf variable
for data in weights_dict[op_name]:
# Biases
if len(data.shape) == 1:
var = tf.get_variable("biases", trainable=False)
session.run(var.assign(data))
# Weights
else:
var = tf.get_variable("weights", trainable=False)
session.run(var.assign(data))
def conv(
x,
filter_height,
filter_width,
num_filters,
stride_y,
stride_x,
name,
padding="SAME",
groups=1,
):
"""
Create a convolution layer.
Adapted from: https://github.com/ethereon/caffe-tensorflow
"""
# Get number of input channels
input_channels = int(x.get_shape()[-1])
# Create lambda function for the convolution
def convolve(i, k):
return tf.nn.conv2d(i, k, strides=[1, stride_y, stride_x, 1], padding=padding)
with tf.variable_scope(name) as scope:
# Create tf variables for the weights and biases of the conv layer
weights = tf.get_variable(
"weights",
shape=[filter_height, filter_width, input_channels / groups, num_filters],
)
biases = tf.get_variable("biases", shape=[num_filters])
if groups == 1:
conv = convolve(x, weights)
# In the cases of multiple groups, split inputs & weights and
else:
# Split input and weights and convolve them separately
input_groups = tf.split(axis=3, num_or_size_splits=groups, value=x)
weight_groups = tf.split(axis=3, num_or_size_splits=groups, value=weights)
output_groups = [
convolve(i, k) for i, k in zip(input_groups, weight_groups)
]
# Concat the convolved output together again
conv = tf.concat(axis=3, values=output_groups)
# Add biases
bias = tf.reshape(tf.nn.bias_add(conv, biases), tf.shape(conv))
# Apply relu function
relu = tf.nn.relu(bias, name=scope.name)
return relu
def fc(x, num_in, num_out, name, relu=True):
"""Create a fully connected layer."""
with tf.variable_scope(name) as scope:
# Create tf variables for the weights and biases
weights = tf.get_variable("weights", shape=[num_in, num_out], trainable=True)
biases = tf.get_variable("biases", [num_out], trainable=True)
# Matrix multiply weights and inputs and add bias
act = tf.nn.xw_plus_b(x, weights, biases, name=scope.name)
if relu:
# Apply ReLu non linearity
relu = tf.nn.relu(act)
return relu
else:
return act
def max_pool(x, filter_height, filter_width, stride_y, stride_x, name, padding="SAME"):
"""Create a max pooling layer."""
return tf.nn.max_pool(
x,
ksize=[1, filter_height, filter_width, 1],
strides=[1, stride_y, stride_x, 1],
padding=padding,
name=name,
)
def lrn(x, radius, alpha, beta, name, bias=1.0):
"""Create a local response normalization layer."""
return tf.nn.local_response_normalization(
x, depth_radius=radius, alpha=alpha, beta=beta, bias=bias, name=name
)
def dropout(x, keep_prob, name):
"""Create a dropout layer."""
return tf.nn.dropout(x, keep_prob, name=name)