-
Notifications
You must be signed in to change notification settings - Fork 24
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #753 from RemDelaporteMathurin/surface-reactions
Surface reactions
- Loading branch information
Showing
7 changed files
with
679 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,169 @@ | ||
import festim as F | ||
import numpy as np | ||
|
||
import dolfinx.fem as fem | ||
import ufl | ||
|
||
|
||
class FluxFromSurfaceReaction(F.SurfaceFlux): | ||
def __init__(self, reaction: F.SurfaceReactionBC): | ||
super().__init__( | ||
F.Species(), # just a dummy species here | ||
reaction.subdomain, | ||
) | ||
self.reaction = reaction.flux_bcs[0] | ||
|
||
def compute(self, ds): | ||
self.value = fem.assemble_scalar( | ||
fem.form(self.reaction.value_fenics * ds(self.surface.id)) | ||
) | ||
self.data.append(self.value) | ||
|
||
|
||
my_model = F.HydrogenTransportProblem() | ||
my_model.mesh = F.Mesh1D(vertices=np.linspace(0, 1, 1000)) | ||
my_mat = F.Material(name="mat", D_0=1, E_D=0) | ||
vol = F.VolumeSubdomain1D(id=1, borders=[0, 1], material=my_mat) | ||
left = F.SurfaceSubdomain1D(id=1, x=0) | ||
right = F.SurfaceSubdomain1D(id=2, x=1) | ||
|
||
my_model.subdomains = [vol, left, right] | ||
|
||
H = F.Species("H") | ||
D = F.Species("D") | ||
my_model.species = [H, D] | ||
|
||
my_model.temperature = 500 | ||
|
||
surface_reaction_hd = F.SurfaceReactionBC( | ||
reactant=[H, D], | ||
gas_pressure=0, | ||
k_r0=0.01, | ||
E_kr=0, | ||
k_d0=0, | ||
E_kd=0, | ||
subdomain=right, | ||
) | ||
|
||
surface_reaction_hh = F.SurfaceReactionBC( | ||
reactant=[H, H], | ||
gas_pressure=lambda t: ufl.conditional(ufl.gt(t, 1), 2, 0), | ||
k_r0=0.02, | ||
E_kr=0, | ||
k_d0=0.03, | ||
E_kd=0, | ||
subdomain=right, | ||
) | ||
|
||
surface_reaction_dd = F.SurfaceReactionBC( | ||
reactant=[D, D], | ||
gas_pressure=0, | ||
k_r0=0.01, | ||
E_kr=0, | ||
k_d0=0, | ||
E_kd=0, | ||
subdomain=right, | ||
) | ||
|
||
my_model.boundary_conditions = [ | ||
F.DirichletBC(subdomain=left, value=2, species=H), | ||
F.DirichletBC(subdomain=left, value=2, species=D), | ||
surface_reaction_hd, | ||
surface_reaction_hh, | ||
surface_reaction_dd, | ||
] | ||
|
||
H_flux_right = F.SurfaceFlux(H, right) | ||
H_flux_left = F.SurfaceFlux(H, left) | ||
D_flux_right = F.SurfaceFlux(D, right) | ||
D_flux_left = F.SurfaceFlux(D, left) | ||
HD_flux = FluxFromSurfaceReaction(surface_reaction_hd) | ||
HH_flux = FluxFromSurfaceReaction(surface_reaction_hh) | ||
DD_flux = FluxFromSurfaceReaction(surface_reaction_dd) | ||
my_model.exports = [ | ||
F.XDMFExport("test.xdmf", H), | ||
H_flux_left, | ||
H_flux_right, | ||
D_flux_left, | ||
D_flux_right, | ||
HD_flux, | ||
HH_flux, | ||
DD_flux, | ||
] | ||
|
||
my_model.settings = F.Settings(atol=1e-10, rtol=1e-10, final_time=5, transient=True) | ||
|
||
my_model.settings.stepsize = 0.1 | ||
|
||
my_model.initialise() | ||
my_model.run() | ||
|
||
import matplotlib.pyplot as plt | ||
|
||
plt.stackplot( | ||
H_flux_left.t, | ||
np.abs(H_flux_left.data), | ||
np.abs(D_flux_left.data), | ||
labels=["H_in", "D_in"], | ||
) | ||
plt.stackplot( | ||
H_flux_right.t, | ||
-np.abs(H_flux_right.data), | ||
-np.abs(D_flux_right.data), | ||
labels=["H_out", "D_out"], | ||
) | ||
plt.legend() | ||
plt.xlabel("Time (s)") | ||
plt.ylabel("Flux (atom/m^2/s)") | ||
plt.figure() | ||
plt.stackplot( | ||
HD_flux.t, | ||
np.abs(HH_flux.data), | ||
np.abs(HD_flux.data), | ||
np.abs(DD_flux.data), | ||
labels=["HH", "HD", "DD"], | ||
) | ||
plt.legend(reverse=True) | ||
plt.xlabel("Time (s)") | ||
plt.ylabel("Flux (molecule/m^2/s)") | ||
|
||
|
||
plt.figure() | ||
plt.plot(H_flux_right.t, -np.array(H_flux_right.data), label="from gradient (H)") | ||
plt.plot( | ||
H_flux_right.t, | ||
2 * np.array(HH_flux.data) + np.array(HD_flux.data), | ||
linestyle="--", | ||
label="from reaction rates (H)", | ||
) | ||
|
||
plt.plot(D_flux_right.t, -np.array(D_flux_right.data), label="from gradient (D)") | ||
plt.plot( | ||
D_flux_right.t, | ||
2 * np.array(DD_flux.data) + np.array(HD_flux.data), | ||
linestyle="--", | ||
label="from reaction rates (D)", | ||
) | ||
plt.xlabel("Time (s)") | ||
plt.ylabel("Flux (atom/m^2/s)") | ||
plt.legend() | ||
plt.show() | ||
|
||
# check that H_flux_right == 2*HH_flux + HD_flux | ||
H_flux_from_gradient = -np.array(H_flux_right.data) | ||
H_flux_from_reac = 2 * np.array(HH_flux.data) + np.array(HD_flux.data) | ||
assert np.allclose( | ||
H_flux_from_gradient, | ||
H_flux_from_reac, | ||
rtol=0.5e-2, | ||
atol=0.005, | ||
) | ||
# check that D_flux_right == 2*DD_flux + HD_flux | ||
D_flux_from_gradient = -np.array(D_flux_right.data) | ||
D_flux_from_reac = 2 * np.array(DD_flux.data) + np.array(HD_flux.data) | ||
assert np.allclose( | ||
D_flux_from_gradient, | ||
D_flux_from_reac, | ||
rtol=0.5e-2, | ||
atol=0.005, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,11 @@ | ||
from .dirichlet_bc import FixedConcentrationBC, FixedTemperatureBC | ||
from .flux_bc import HeatFluxBC, ParticleFluxBC | ||
from .surface_reaction import SurfaceReactionBC | ||
|
||
__all__ = ["FixedConcentrationBC", "FixedTemperatureBC", "ParticleFluxBC", "HeatFluxBC"] | ||
__all__ = [ | ||
"FixedConcentrationBC", | ||
"FixedTemperatureBC", | ||
"ParticleFluxBC", | ||
"SurfaceReactionBC", | ||
"HeatFluxBC", | ||
] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
from festim.boundary_conditions import ParticleFluxBC | ||
from festim import k_B | ||
from dolfinx import fem | ||
import ufl | ||
|
||
|
||
class SurfaceReactionBCpartial(ParticleFluxBC): | ||
"""Boundary condition representing a surface reaction | ||
A + B <-> C | ||
where A, B are the reactants and C is the product | ||
the forward reaction rate is K_r = k_r0 * exp(-E_kr / (k_B * T)) | ||
and the backward reaction rate is K_d = k_d0 * exp(-E_kd / (k_B * T)) | ||
The reaction rate is: | ||
K = K_r * C_A * C_B - K_d * P_C | ||
with C_A, C_B the concentration of species A and B, | ||
P_C the partial pressure of species C at the surface. | ||
This class is used to create the flux of a single species entering the surface | ||
Example: The flux of species A entering the surface is K. | ||
Args: | ||
reactant (list): list of F.Species objects representing the reactants | ||
gas_pressure (float, callable): the partial pressure of the product species | ||
k_r0 (float): the pre-exponential factor of the forward reaction rate | ||
E_kr (float): the activation energy of the forward reaction rate (eV) | ||
k_d0 (float): the pre-exponential factor of the backward reaction rate | ||
E_kd (float): the activation energy of the backward reaction rate (eV) | ||
subdomain (F.SurfaceSubdomain): the surface subdomain where the reaction occurs | ||
species (F.Species): the species to which the flux is applied | ||
""" | ||
|
||
def __init__( | ||
self, | ||
reactant, | ||
gas_pressure, | ||
k_r0, | ||
E_kr, | ||
k_d0, | ||
E_kd, | ||
subdomain, | ||
species, | ||
): | ||
self.reactant = reactant | ||
self.gas_pressure = gas_pressure | ||
self.k_r0 = k_r0 | ||
self.E_kr = E_kr | ||
self.k_d0 = k_d0 | ||
self.E_kd = E_kd | ||
super().__init__(subdomain=subdomain, value=None, species=species) | ||
|
||
def create_value_fenics(self, mesh, temperature, t: fem.Constant): | ||
kr = self.k_r0 * ufl.exp(-self.E_kr / (k_B * temperature)) | ||
kd = self.k_d0 * ufl.exp(-self.E_kd / (k_B * temperature)) | ||
if callable(self.gas_pressure): | ||
gas_pressure = self.gas_pressure(t=t) | ||
else: | ||
gas_pressure = self.gas_pressure | ||
|
||
product_of_reactants = self.reactant[0].concentration | ||
for reactant in self.reactant[1:]: | ||
product_of_reactants *= reactant.concentration | ||
|
||
self.value_fenics = kd * gas_pressure - kr * product_of_reactants | ||
|
||
|
||
class SurfaceReactionBC: | ||
"""Boundary condition representing a surface reaction | ||
A + B <-> C | ||
where A, B are the reactants and C is the product | ||
the forward reaction rate is K_r = k_r0 * exp(-E_kr / (k_B * T)) | ||
and the backward reaction rate is K_d = k_d0 * exp(-E_kd / (k_B * T)) | ||
The reaction rate is: | ||
K = K_r * C_A * C_B - K_d * P_C | ||
with C_A, C_B the concentration of species A and B, | ||
P_C the partial pressure of species C at the surface. | ||
The flux of species A entering the surface is K. | ||
In the special case where A=B, then the flux of particle entering the surface is 2*K | ||
Args: | ||
reactant (list): list of F.Species objects representing the reactants | ||
gas_pressure (float, callable): the partial pressure of the product species | ||
k_r0 (float): the pre-exponential factor of the forward reaction rate | ||
E_kr (float): the activation energy of the forward reaction rate (eV) | ||
k_d0 (float): the pre-exponential factor of the backward reaction rate | ||
E_kd (float): the activation energy of the backward reaction rate (eV) | ||
subdomain (F.SurfaceSubdomain): the surface subdomain where the reaction occurs | ||
""" | ||
|
||
def __init__( | ||
self, | ||
reactant, | ||
gas_pressure, | ||
k_r0, | ||
E_kr, | ||
k_d0, | ||
E_kd, | ||
subdomain, | ||
): | ||
self.reactant = reactant | ||
self.gas_pressure = gas_pressure | ||
self.k_r0 = k_r0 | ||
self.E_kr = E_kr | ||
self.k_d0 = k_d0 | ||
self.E_kd = E_kd | ||
self.subdomain = subdomain | ||
|
||
# create the flux boundary condition for each reactant | ||
self.flux_bcs = [ | ||
SurfaceReactionBCpartial( | ||
reactant=self.reactant, | ||
gas_pressure=self.gas_pressure, | ||
k_r0=self.k_r0, | ||
E_kr=self.E_kr, | ||
k_d0=self.k_d0, | ||
E_kd=self.E_kd, | ||
subdomain=self.subdomain, | ||
species=species, | ||
) | ||
for species in self.reactant | ||
] | ||
|
||
@property | ||
def time_dependent(self): | ||
return False # no need to update if only using ufl.conditional objects |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.