-
Notifications
You must be signed in to change notification settings - Fork 1
/
Smeared2PTExact.nb
597 lines (575 loc) · 23.5 KB
/
Smeared2PTExact.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 23259, 589]
NotebookOptionsPosition[ 21636, 555]
NotebookOutlinePosition[ 22042, 571]
CellTagsIndexPosition[ 21999, 568]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{
RowBox[{"F", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
FractionBox["1",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}], ")"}],
"\[CapitalDelta]"]]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"G", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=",
RowBox[{
FractionBox["1",
RowBox[{"2", "\[Pi]", " ",
SuperscriptBox["\[Sigma]", "2"]}]],
RowBox[{"Exp", "[",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}],
FractionBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"]}],
SuperscriptBox["\[Sigma]", "2"]]}], "]"}]}]}]}], "Input",
CellChangeTimes->{{3.888340989051735*^9, 3.8883410261046286`*^9}, {
3.8883411037711105`*^9, 3.8883411893492856`*^9}, {3.8883412313126044`*^9,
3.888341356301338*^9}},
CellLabel->"In[5]:=",ExpressionUUID->"0c5a0ec5-a74c-43af-a4d6-32b158686631"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"kF", "=",
RowBox[{"FourierTransform", "[",
RowBox[{
RowBox[{"F", "[",
RowBox[{"x", ",", "y"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}], ",",
RowBox[{"{",
RowBox[{"kx", ",", "ky"}], "}"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"kG", "=",
RowBox[{
RowBox[{"FourierTransform", "[",
RowBox[{
RowBox[{"G", "[",
RowBox[{"x", ",", "y"}], "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}], ",",
RowBox[{"{",
RowBox[{"kx", ",", "ky"}], "}"}]}], "]"}], "//",
RowBox[{
RowBox[{"FullSimplify", "[",
RowBox[{"#", ",",
RowBox[{"Element", "[",
RowBox[{"\[Sigma]", ",", "Reals"}], "]"}]}], "]"}],
"&"}]}]}]}], "Input",
CellChangeTimes->{{3.88834156729576*^9, 3.8883416595705338`*^9}, {
3.888341702260209*^9, 3.8883417328541646`*^9}},
CellLabel->"In[21]:=",ExpressionUUID->"4b1d1896-53f5-4050-9beb-ef06fecaf2c4"],
Cell[BoxData[
FractionBox[
RowBox[{
SuperscriptBox["2",
RowBox[{"1", "-",
RowBox[{"2", " ", "\[CapitalDelta]"}]}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["kx", "2"], "+",
SuperscriptBox["ky", "2"]}], ")"}],
RowBox[{
FractionBox["1", "2"], " ",
RowBox[{"(",
RowBox[{
RowBox[{"-", "2"}], "+",
RowBox[{"2", " ", "\[CapitalDelta]"}]}], ")"}]}]], " ",
RowBox[{"Gamma", "[",
RowBox[{"1", "-", "\[CapitalDelta]"}], "]"}]}],
RowBox[{"Gamma", "[", "\[CapitalDelta]", "]"}]]], "Output",
CellChangeTimes->{{3.888341589167314*^9, 3.88834166087358*^9},
3.8883417333892508`*^9},
CellLabel->"Out[21]=",ExpressionUUID->"981e110b-db0f-4a98-b001-044a71eee721"],
Cell[BoxData[
FractionBox[
SuperscriptBox["\[ExponentialE]",
RowBox[{
RowBox[{"-",
FractionBox["1", "2"]}], " ",
RowBox[{"(",
RowBox[{
SuperscriptBox["kx", "2"], "+",
SuperscriptBox["ky", "2"]}], ")"}], " ",
SuperscriptBox["\[Sigma]", "2"]}]],
RowBox[{"2", " ", "\[Pi]"}]]], "Output",
CellChangeTimes->{{3.888341589167314*^9, 3.88834166087358*^9},
3.8883417336219916`*^9},
CellLabel->"Out[22]=",ExpressionUUID->"e9ae70a1-ab5f-4845-8ab6-ba7f72e1840b"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"kF", " ", "kG", " ", "kG"}], " ", "//", "FullSimplify"}]], "Input",
CellChangeTimes->{{3.8883417471780195`*^9, 3.8883417963820753`*^9}, {
3.888341931813156*^9, 3.8883419324437904`*^9}},
CellLabel->"In[28]:=",ExpressionUUID->"565513df-2b65-43f0-b048-5015735d698a"],
Cell[BoxData[
FractionBox[
RowBox[{
SuperscriptBox["2",
RowBox[{
RowBox[{"-", "1"}], "-",
RowBox[{"2", " ", "\[CapitalDelta]"}]}]], " ",
SuperscriptBox["\[ExponentialE]",
RowBox[{"-",
RowBox[{"(",
RowBox[{
RowBox[{"(",
RowBox[{
SuperscriptBox["kx", "2"], "+",
SuperscriptBox["ky", "2"]}], ")"}], " ",
SuperscriptBox["\[Sigma]", "2"]}], ")"}]}]], " ",
SuperscriptBox[
RowBox[{"(",
RowBox[{
SuperscriptBox["kx", "2"], "+",
SuperscriptBox["ky", "2"]}], ")"}],
RowBox[{
RowBox[{"-", "1"}], "+", "\[CapitalDelta]"}]], " ",
RowBox[{"Gamma", "[",
RowBox[{"1", "-", "\[CapitalDelta]"}], "]"}]}],
RowBox[{
SuperscriptBox["\[Pi]", "2"], " ",
RowBox[{"Gamma", "[", "\[CapitalDelta]", "]"}]}]]], "Output",
CellChangeTimes->{{3.8883417512277803`*^9, 3.888341764571332*^9},
3.8883417974449596`*^9, 3.8883419328652368`*^9},
CellLabel->"Out[28]=",ExpressionUUID->"36efc711-83a7-4f6b-8bda-1ffc361281cb"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"SmearedFunc", "[", "x_", "]"}], ":=",
RowBox[{"N", "[",
RowBox[{
RowBox[{"InverseFourierTransform", "[",
RowBox[{
RowBox[{
RowBox[{"kF", " ", "kG", " ", "kG"}], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"\[CapitalDelta]", "->", "0.125"}], ",",
RowBox[{"\[Sigma]", "->", "1"}]}], "}"}]}], ",",
RowBox[{"{",
RowBox[{"kx", ",", "ky"}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",", "y"}], "}"}]}], "]"}], "/.",
RowBox[{"{",
RowBox[{"y", "->", "0"}], "}"}]}], "]"}]}], "\[IndentingNewLine]",
RowBox[{"SmearedFunc", "[", ".1", "]"}]}], "Input",
CellChangeTimes->{{3.888341941371771*^9, 3.8883421006073723`*^9}, {
3.8883421376296997`*^9, 3.888342147992095*^9}},
CellLabel->"In[43]:=",ExpressionUUID->"a1162cec-25f8-460a-826a-0617299ee308"],
Cell[BoxData["0.023202516185805846`"], "Output",
CellChangeTimes->{{3.888342032191821*^9, 3.888342043733611*^9},
3.888342077622206*^9, {3.8883421407102313`*^9, 3.8883421483749633`*^9}},
CellLabel->"Out[44]=",ExpressionUUID->"232a7e9e-7fff-46d5-a1be-c713a36d3447"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"LogLogPlot", "[",
RowBox[{
RowBox[{"SmearedFunc", "[", "x", "]"}], ",",
RowBox[{"{",
RowBox[{"x", ",", ".1", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.888342152548481*^9, 3.888342159575367*^9}, {
3.8883421919662385`*^9, 3.8883421937165704`*^9}},
CellLabel->"In[46]:=",ExpressionUUID->"56895a7c-e90c-4981-8f29-81af48ac242c"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwl13s0lGsXAPCZIRU1M0pF7rmGJJWUmCmUdCREdORIRiShUkQi0UU5bpWS
EuniTqWQ9kNXjkt1RqIII7kVMwwTx/Tt1vfHu971+2c/ez1rX95X3SvQkUOj
UCjv8Pn9tlOQLyrxpxGh4YeZ2Yp0cvAsGDb40khB9a7I306c8Cns49CIgLFa
+Nvc5kcFqp40sqhlkHcbvSvZKf/iDhrx7vJ9eQftI/P3fT9zGumU+piWi46c
nnFbnUEjdtJ2MaXooq7RtKRSKmn/tCHk+e/4iZpNB4uoRPqWEeMF+hDLecYf
+VRSuDjt/m+bZJQFS92hkuqc919eop+6htmGX6WSyRiK4xt0XZN4yjuKSiwy
Uuwa0D1Vs/8y3UYl71/b3G5BK1xT1frSTyHvaiN7v6Pr03cn8Hsp5MqLzZd+
oKMy0ickeihElJdoNYzuy1xUp9tBIU/Ksm+PoMvuMgIPvacQJ6nW/aNox0e/
nsyopBD56n8ZP9Hn3375w+AChSy8WfJMUolOpqQyj4QZUsh2VfNXyujjuXLJ
1/QpRD1sOEUFPWl3rqhSl0IWeKz2UkWLUg8NTC+hkBVBJyjq6PEl1p6nFlHI
bmdpK020wGJgazyFQsJVQr7pobnffTety/kF1/0SskzRDxqSsqO/i8Fevpnm
gjZOvbh18zcx1O95NncnunTXudE5XWKw2HpMwRVd/C3KMo0rBqmYXSt3ofOp
QbzCSjGkWomCPNB3Vm/T+HxODCWZanL70NcypLNNtMWw7FqlOBQdFRCTNegx
Dapv4uJvorNbrxYruk3DwJyJ8kz0K+viZ1udpqEKNvbfQs9RaW/L2zwNwwMH
bW+j0xpN5h8wmoa2t/qL7qOLlg/EDFGnIV3tZVspuoO/nfP99n8wpiCiv0ab
H1XRHR6YgmZZqoMA3blnc3ZWzxRkZn1pHUWftgtScemYgvUiwV4huk6zRq7q
3RRIV1SGi9Au/3Ko8U+mYN26kXIxOsiooE07bgqkip8Gyyhj/gNmFz3Up8DG
9XWzFnr2X26Chp2TEDG4874H2iphuPmGwyRoJ16L9ERHVcWWB26dBGOJzc5e
6HHF0ihZ1iRE53dJ+aC7P0oznLUn4U3W+vAAdIXjU/3PYz9BOiXqfgT6wCZV
zkDST3Di6WpeRzct+9oiVS8C1+2a3C/oQtpl9Y2vRNCdn9vbhb7Qssn/BBFB
8JrCSR7aNvqeePShCDgKK3T60K+4/lpdGSLwoFslj6CfhgsOVQaKQEcvqYSq
Qie5tb/mBs0XQfvG00pa6FjOYqvWXRNQ+NG+JwjdU94+eWXHBJRtyk49jLai
3ypx2TYBd2Ppm4+iaY91VLkbJqCdb1wajo6ctXqyUXcCHPW6bsWhj+bZF78Y
HwcIsOq7jvbln1YqTh6HiX9Glf5B254YHourE0JKcPlZQ1U6sTvWIFv8QgjT
p8dTV6C3B+cZtj4TgvU7v+xVaBfOPl/9B0LQC/n5ah16j92XT03pQhhv7Nfd
jA5VbqqRDxDC6eIwN090TlVhYi5DCL6cgdBUNEUcYNC4YwzsDbJlJdXoJN2s
vETOfgxsy7fdmYk2CZNc8+eWMUg7Emsug/Yfu7ahz3wMgm+lH56H/jDw2oWm
Mwa3bTLEauj8FvVok5+jUHnhYpIF2rWkuflGxij0PljyJBxd7G1+MrBXALX7
Q46I0f+opwev7RTAge2S8hLqdNLbIdor0SYAnpwWzEQruT20udIggFuKOvKy
6LN2+vPgoQD8KsOEGmhPE4UceowAGrkv/rJFM2cJ6wpUBbDW9anUNXRgXv7C
IVc+fPJMsbReQieGdK1ANSc+WOweibZFDwVlvN5hxwfuJP2FPXq/SUJo1QY+
RFamO+1Ce1cHtiXo8aFU2yIzEL2rxfjGiv9GQGaHhOAaepNEudaxmyPwntFy
fgy9vuy8n2T9MLRSWMYPNbCej2eOHYZh2PZdQVyBNmWVneSVDoNDtmlTNXrV
m65LNVeH4UKkQ3QT2qDNtCZq3zCUKXhpDaIVxb2Lp2nDQJ1ICtLQxHlobVkv
XPsDHD97G6Why5unDL/dHYK6+JEtKVq4T9SHzielD4GmWsGedLRcwOdes7+H
4Myv+JPZ6CDJqhuJR4fAsqum4QFad2UkfZ31EKx8eOkhF305kfLjQvcg9ER1
FC3Sxv2ydUaBsfIg/AzRiMxC61XT9SOT+0HOmZpQr0Mnqq6rnKbj+kG1OSav
GS037BYeEd4Pg4bBTR3oX0o5/xz37ocZi2/o8dHcULMDx0z6YYF8leFCXewP
I9+CoLY+iEmcCt6D/vdm9fK9S/oAfI5ITqMjIo+ssintBfdGxb1b9DAfOTBp
zOmFtKXX9Z3Rvrmz1+642gtr+2WnPdFOH26Ye0b1gvRCUUUoWs+wdlPotl44
lOuXfQ/9sV3Z7d7AVxhTfmkgrY/3b/76xCyNr6DgHujARQ9NKbx+k8KDt1VS
h+OW0cnS9quXNM7yoHDv56cpaJ9nCt6RETxor5Vl3kJ3RSlQV3F4UOrz6H0l
+sMMBbObJjy4UpxSy0cThnxRSGs3NG1yjfnLkE5SNRZeWaLaDbH0Nc4bl2O9
bJ23LyK3E04MPOdrr8D9p/+Y0ZHRCZHJXEVT9BMZ9yespE5QNv7huAW9sj5n
tkRoJ7x38OrzR+vZrc0/Z90J7dZuJSVooxuke1n1F5C3HXnOMqaTbznuE17L
OkDG9LSRz0qcF49S1RpmfII+u2deHavpZMXplPlS39ugu3NRlQA9xylZisVt
A1p0hPZMEzqpGfl7qDirDWaqJWkboZcbxD9JZbVBTi2z/RR6Vnb0dvewVjDm
vjLQX4P1nngwanCoBdrvOGSfMaUT5QM2nbO5XAhjqXMOmWH/vivxH3rKhTyN
4VXn0AITxYnGHC7kH7eTy0S/ov6Ym3qMC2fsedRG9MErKWYqilwI2Rd/VW89
nUBNx2Vjr3+BkpfxvBe9RyHE7s+Rd6Dv5W/rb0EnWy5ahrgpNAKDUxt8dwOd
qO3IHVv7rQGENe3PXqDHF8seWfyoAfyWe6h3o7PudRz6tL0B5s5s11beiP31
PCxo99l6UFjutzoVnTtZ5L9nog6C9M8FxFni/fgqefk1vwaXhcKScGs6ebtR
uC0sqRp0/hN+zd9CJ16/3hy7FHYXlGheCZcccd7YaXcf3XeH1cBRv9Lujudz
pHI3ydSw7u3M7pPcj/nx1/jw7jawOM6rWoJC8XvK/JH4vUozq9G9LKriPJ3s
HJRu3/rHJ1bbHwbrS27SSczx3duLznSyquSjhCvLsH5AqHvqLo9Vv6Dk68L3
dLLA2GxMPbmXdYqz0zR+mE5+fuw4O/dgPyvnJb+zkMEgABtTN54dYsk8jJ2p
acIgOVynZKuAYdbVYktX/d0MUpaaLGFjw2cdKL4dEHmeQfQ+OKzZAQIWRy/k
stpjBsleQeyllo+xMnQ0MiJ6GGRuQYJGe5WQZZ+q88VfhknOwIOgxcYTrKGr
Of4rNZhEwDcNi3gpYlWMS6ozzJlkr0WAz2mHSZbPzoYgXxcm6VEX1Qtqpliz
gvTHRQFM4qzF+xHrNM06TEaKAs4wyQfQPH+yVsyKEE79UL7JJIYV0rEMJQp7
Ouexik0Zk/hpPsjid1PYqaO2g+5NTJyfUtNx16ns5d6eZyp6mURXtenu85tU
9oYoWt2Sb0yi5X3FkZJNZVtY0ufEo1V+6NwLu09l7xvxTvizj0mYtC1OB8qo
bAMdlQv/9TPJ2NL4+w5vqWy3xaYHLL4zSVUYw0VJksZ+vKCgpnqUSSqetVDc
ZtLYtDvnRpeOMUmZRGbeJWkau8C9UyMZXXzRiMqQpbEtl4pPeQmZJOuWQz5V
hcZekzbLTGKCSeJqU2jf1tDYS4XVyVaTTHKK7l6gYUZj5yeGVeajTzppunpa
YPy6Up7cFJOEtj8saLWisTfw8oy/ovfzm13rHWjsnhUv62KnmcTH5IbEbGca
W2XD5eHv6L3hPoXWrjT2wYih+S5iJnGfMSEBHjR242q9P7V/MYmrLRRO7cH4
yfMiE9DOf59xM+XQ2CkfojPH0Y5ce8kQXxo7LDi0xoMiS7b9//+Hve7tOO8V
+n/Ue2ab
"]]},
Annotation[#, "Charting`Private`Tag$127834#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{-2.3025850929940455`, -4.250758706988615},
CoordinatesToolOptions:>{"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Exp[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Exp[
Part[#, 2]]}& )},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}, {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None},
PlotRange->NCache[{{-2.3025850929940455`,
Log[
10]}, {-4.250758706988615, -3.7634945499647707`}}, \
{{-2.3025850929940455`,
2.302585092994046}, {-4.250758706988615, -3.7634945499647707`}}],
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->FrontEndValueCache[{Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& , Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6,
6}]]& }, {{{-2.3025850929940455`,
FormBox[
TagBox[
InterpretationBox[
StyleBox["\"0.1\"", ShowStringCharacters -> False], 0.1, AutoDelete ->
True], NumberForm[#, {
DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01,
0.}}, {-0.6931471805599453,
FormBox[
TagBox[
InterpretationBox[
StyleBox["\"0.5\"", ShowStringCharacters -> False], 0.5, AutoDelete ->
True], NumberForm[#, {
DirectedInfinity[1], 1}]& ], TraditionalForm], {0.01, 0.}}, {0.,
FormBox["1", TraditionalForm], {0.01, 0.}}, {1.6094379124341003`,
FormBox["5", TraditionalForm], {0.01, 0.}}, {2.302585092994046,
FormBox["10", TraditionalForm], {0.01, 0.}}, {-2.995732273553991,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.8134107167600364`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.659260036932778,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.5257286443082556`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-2.4079456086518722`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.6094379124341003`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-1.2039728043259361`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.916290731874155,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.5108256237659907,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.35667494393873245`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.2231435513142097,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-0.10536051565782628`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
0.6931471805599453,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.0986122886681098`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.3862943611198906`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.791759469228055,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
1.9459101490553132`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.0794415416798357`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.1972245773362196`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
2.995732273553991,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.4011973816621555`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.6888794541139363`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005, 0.}}, {
3.912023005428146,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}}, {{-4.268697949366879,
FormBox[
TagBox[
InterpretationBox[
StyleBox["\"0.014\"", ShowStringCharacters -> False], 0.014,
AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01,
0.}}, {-4.135166556742356,
FormBox[
TagBox[
InterpretationBox[
StyleBox["\"0.016\"", ShowStringCharacters -> False], 0.016,
AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01,
0.}}, {-4.017383521085972,
FormBox[
TagBox[
InterpretationBox[
StyleBox["\"0.018\"", ShowStringCharacters -> False], 0.018,
AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01,
0.}}, {-3.912023005428146,
FormBox[
TagBox[
InterpretationBox[
StyleBox["\"0.020\"", ShowStringCharacters -> False], 0.02,
AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01,
0.}}, {-3.816712825623821,
FormBox[
TagBox[
InterpretationBox[
StyleBox["\"0.022\"", ShowStringCharacters -> False], 0.022,
AutoDelete -> True], NumberForm[#, {
DirectedInfinity[1], 3}]& ], TraditionalForm], {0.01,
0.}}, {-4.422848629194137,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.382026634673881,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.3428059215206005`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.305065593537753,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.2336066295556085`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.199705077879927,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.166915255056936,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.104394898075602,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.074541934925921,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-4.045554398052668,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.989984546897858,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.9633162998156966`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.937340813412436,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.8873303928377747`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.863232841258714,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.83970234384852,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.7942399697717626`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.7722610630529876`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.750754857832024,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}, {-3.7297014486341915`,
FormBox[
TemplateBox[{0., 0.}, "Spacer2"], TraditionalForm], {0.005,
0.}}}}]]], "Output",
CellChangeTimes->{3.88834217081853*^9, 3.888342210482827*^9},
CellLabel->"Out[46]=",ExpressionUUID->"ab6a3425-5714-485b-9dee-8e124ae94118"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"data", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"{",
RowBox[{
SuperscriptBox["10", "x"], ",",
RowBox[{"SmearedFunc", "[",
SuperscriptBox["10", "x"], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "1"}], ",", "1", ",", ".01"}], "}"}]}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.888343258495154*^9, 3.8883433183541393`*^9},
3.8883433536496325`*^9},ExpressionUUID->"07dd64da-ebdf-426c-9197-\
262a7a7318f4"],
Cell[BoxData[
RowBox[{
RowBox[{"Export", "[",
RowBox[{"\"\<./Smeared2PTExact.csv\>\"", ",", "data", ",", "\"\<CSV\>\""}],
"]"}], ";"}]], "Input",
CellChangeTimes->{{3.888343330401647*^9, 3.888343397987996*^9}},
CellLabel->"In[51]:=",ExpressionUUID->"f016eece-48e5-41e7-bf89-094ff48b864a"],
Cell[BoxData[
RowBox[{"SystemOpen", "[",
RowBox[{"DirectoryName", "[",
RowBox[{"AbsoluteFileName", "[", "\"\<./Smeared2PTExact.csv\>\"", "]"}],
"]"}], "]"}]], "Input",
NumberMarks->False,
CellLabel->"In[52]:=",ExpressionUUID->"f264e170-34ea-45e7-a71a-c3e7c38bc4c6"]
},
WindowSize->{538.5, 646.875},
WindowMargins->{{Automatic, -4.125}, {Automatic, 0}},
FrontEndVersion->"12.3 for Microsoft Windows (64-bit) (July 9, 2021)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"35df8f2f-bddd-4aea-b7fe-5a5ebbea3526"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 982, 30, 95, "Input",ExpressionUUID->"0c5a0ec5-a74c-43af-a4d6-32b158686631"],
Cell[CellGroupData[{
Cell[1565, 54, 974, 28, 67, "Input",ExpressionUUID->"4b1d1896-53f5-4050-9beb-ef06fecaf2c4"],
Cell[2542, 84, 762, 22, 62, "Output",ExpressionUUID->"981e110b-db0f-4a98-b001-044a71eee721"],
Cell[3307, 108, 505, 14, 59, "Output",ExpressionUUID->"e9ae70a1-ab5f-4845-8ab6-ba7f72e1840b"]
}, Open ]],
Cell[CellGroupData[{
Cell[3849, 127, 302, 5, 28, "Input",ExpressionUUID->"565513df-2b65-43f0-b048-5015735d698a"],
Cell[4154, 134, 1035, 30, 62, "Output",ExpressionUUID->"36efc711-83a7-4f6b-8bda-1ffc361281cb"]
}, Open ]],
Cell[CellGroupData[{
Cell[5226, 169, 873, 22, 86, "Input",ExpressionUUID->"a1162cec-25f8-460a-826a-0617299ee308"],
Cell[6102, 193, 269, 3, 32, "Output",ExpressionUUID->"232a7e9e-7fff-46d5-a1be-c713a36d3447"]
}, Open ]],
Cell[CellGroupData[{
Cell[6408, 201, 384, 8, 28, "Input",ExpressionUUID->"56895a7c-e90c-4981-8f29-81af48ac242c"],
Cell[6795, 211, 13697, 307, 230, "Output",ExpressionUUID->"ab6a3425-5714-485b-9dee-8e124ae94118"]
}, Open ]],
Cell[20507, 521, 539, 16, 31, "Input",ExpressionUUID->"07dd64da-ebdf-426c-9197-262a7a7318f4"],
Cell[21049, 539, 301, 6, 28, "Input",ExpressionUUID->"f016eece-48e5-41e7-bf89-094ff48b864a"],
Cell[21353, 547, 279, 6, 78, "Input",ExpressionUUID->"f264e170-34ea-45e7-a71a-c3e7c38bc4c6"]
}
]
*)