Skip to content

Latest commit

 

History

History
208 lines (164 loc) · 10.1 KB

README.rst

File metadata and controls

208 lines (164 loc) · 10.1 KB

acf

Aggregated Channel Feature object detection in C++ and OpenGL ES 2.0

TravisCI Appveyor License Hunter

This module is very well suited to running real time object detection on mobile processors, where recent high performing but GPU needy DNN approaches aren't as suitable. The ACF pyramids can be computed with the OpenGL ES 2.0 shaders and retrieved more or less for free (< 1 frame time with 1 frame of latency). For selfie video, the pretrained face detectors (see FACE80 and FACE64) run in a few milliseconds on an iPhone 7. TODO: The Locally Decorrelated Channel Feature addition has not yet been added (see LDCF), but the 5x5 kernels should map well to OpenGL shaders. That should make performance very competitive (see Piotr's references for comparisons).

Sample 10 Channel ACF from GPU: LUV + magnitude (locally normalized) + gradient orientation (6 bins):

https://cloud.githubusercontent.com/assets/554720/21356618/4decbb4c-c6a0-11e6-8d8a-d1a3fc23c742.jpg

Quick Start

ACF is a CMake based project that uses the Hunter package manager to download and build project dependencies from source as needed. Hunter contains detailed documentation, but a few high level notes and documentation links are provided here to help orient first time users. In practice, some working knowledge of CMake may also be required. Hunter itself is written in CMake, and is installed as part of the build process from a single HunterGate() macro at the top of the root CMakeLists.txt file (typically cmake/Hunter/HunterGate.cmake) (you don't have to build or install it). Each CMake dependency's find_package(FOO) call that is paired with a hunter_add_package(FOO CONFIG REQUIRED) will be managed by Hunter. In most cases, the only system requirement for building a Hunter project is a recent CMake with CURL support and a working compiler correpsonding to the operative toolchain. Hunter will maintain all dependencies in a versioned local cache by default (typically ${HOME}/.hunter) where they can be reused in subsequent builds and shared between different projects. They can also be stored in a server side binary cache -- select toolchains will be backed by a server side binary cache (https://github.com/elucideye/hunter-cache) and will produce faster first time builds (use them if you can!).

The Travis (Linux/OSX/iOS/Android) and Appveyor (Windows) CI scripts in the project's root directory can serve as a reference for basic setup when building from source. To support cross platform builds and testing, the CI scripts make use of Polly: a set of common CMake toolchains paired with a simple polly.py CMake build script. Polly is used here for convenience to generate CMake command line invocations -- it is not required for building Hunter projects.

To reproduce the CI builds on a local host, the following setup is recommended:

Note: Polly is not a build requirement, CMake can always be used directly, but it is used here for convenience.

The bin/hunter_env.{sh,cmd} scripts (used in the CI builds) can be used as a fast shortcut to install these tools for you. You may want to add the PATH variables permanently to your .bashrc file (or equivalent) for future sessions.

Linux/OSX/Android/iOS Windows
source bin/hunter_env.sh bin\hunter_env.cmd

After the environment is configured, you can build for any supported Polly toolchain (see polly.py --help) with a command like this:

polly.py --toolchain ${TOOLCHAIN} --config-all ${CONFIG} --install --verbose

Training

To train your own model, you can use Piotr's Toolbox. This currently requires Matlab until the training code gets ported. There are a few existing samples for pedestrian detection applications that are well documented and can be modified for your application. See acfDemoCal.m for a sample training script.

Integration

If you would like to integrate the library in another project, the easiest thing will be to use Hunter to manage and build your application or SDK. The acf library and all dependencies will then be managed automatically. Please see the documentation in the above link for more details. If this isn't an option, it will be easiest to build ACF as a single shared library (without dependencies) that can then be integrated in your project. In the later case, you can pass ACF_BUILD_SHARED_SDK=ON on the command line while generating the project in order to build the ACF library as a shared library such that all dependencies will be compiled as static libraries and "absorbed" by the acf library.

polly.py --toolchain ${TOOLCHAIN} --config-all ${CONFIG} --fwd ACF_BUILD_SHARED_SDK=ON --install --verbose

For iOS, you can use polly to create a dynamic framework from the generated libacf.dylib (see command line options) as a post build step, note the additional --framework and --framework-lib options in the build command below:

polly.py --toolchain ${TOOLCHAIN} --config-all ${CONFIG} --fwd ACF_BUILD_SHARED_SDK=ON --install --verbose --framework --framework-lib libacf.dylib

The resulting framework will be generated in the _framework directory as shown below:

tree _framework/
_framework/
└── ios-11-3-dep-9-0-arm64
    └── acf.framework
        ├── Headers
        │   ├── ACF.h
        │   ├── ACFField.h
        │   ├── GPUACF.h
        │   ├── MatP.h
        │   ├── ObjectDetector.h
        │   ├── acf_common.h
        │   └── acf_export.h
        ├── Info.plist
        ├── _CodeSignature
        │   └── CodeResources
        └── acf

HOWTO

_install/
└── libcxx
    ├── bin
    │   ├── acf-detect
    │   └── acf-mat2cpb
    ├── include
    │   └── acf
    │       ├── ACF.h
    │       ├── ACFField.h
    │       ├── GPUACF.h
    │       ├── MatP.h
    │       ├── ObjectDetector.h
    │       ├── acf_common.h
    │       └── acf_export.h
    └── lib
         ├── cmake
         │   └── acf
         │       ├── acfConfig.cmake
         │       ├── acfConfigVersion.cmake
         │       ├── acfTargets-release.cmake
         │       └── acfTargets.cmake
         └── libacf.a
$ cd _install/${TOOLCHAIN}/bin
$ wget https://github.com/elucideye/drishti-assets/raw/master/drishti_face_gray_80x80.cpb
$ wget https://github.com/elucideye/drishti-faces/raw/master/lena512color.png
$ ./acf-detect --input=lena512color.png --output=/tmp/ --model=drishti_face_gray_80x80.cpb --nms --annotate --calibration=0.00001
[16:56:34.092 | thread:8703967691101883897 | acf-detect | info]: 1/1 /Users/dhirvonen/devel/elucideye//drishti-faces/lena512color.png = 1; score = 26.0038

Contributors

This C++/OpenGL adaptation of the original ACF/toolbox project has benefited from contributions by:

  • Ruslan Baratov @ruslo: Numerous CMake and CI contributions, and of course, Hunter
  • @JN-Jones: Several fixes where the C++ didn't match the matlab reference: #67, #62