Skip to content

dj-gauthier/Integrated-Photonic-Encoder-for-Terapixel-Image-Processing

 
 

Repository files navigation

Integrated-Photonic-Encoder-for-Terapixel-Image-Processing

DOI
Offical repository for "Wang, Xiao, Brandon Redding, Nicholas Karl, Christopher Long, Zheyuan Zhu, Shuo Pang, David Brady, and Raktim Sarma. "Integrated Photonic Encoder for Terapixel Image Processing." arXiv preprint arXiv:2306.04554 (2023)"

Jupyter Notebooks

train_decoder.ipynb: Construction and training of a neural network optimized for a compressive ratio of 8:1. The network takes compressed data as input and outputs original images.
demo_decoder.ipynb: A guide on using a pre-trained model to reconstruct the original images from their compressed versions.

Files in data/

File formats

  • Ground truth data
    • dimension: 512 $×$ 512 (H $\times$ W)
    • format: PNG
    • total number: 19
  • Compressed data
    • dimension: 64 $×$ 64 $×$ 8 (H $\times$ W $\times$ C)
    • format: .npy
    • total number: 19

The corresponding compressed data of "000005_10.png" is "000005_10.npy", and the rest files follow the same pattern.

About

Python code for the neural networks in "Integrated Photonic Encoder for Terapixel Image Processing"

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 99.7%
  • Python 0.3%