-
Notifications
You must be signed in to change notification settings - Fork 16
/
0018-triangle-path.py
82 lines (70 loc) · 2.02 KB
/
0018-triangle-path.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
"""
Problem 18
By starting at the top of the triangle below and moving to adjacent numbers
on the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
NOTE: As there are only 16384 routes, it is possible to solve this problem
by trying every route. However, Problem 67, is the same challenge with a t
riangle containing one-hundred rows; it cannot be solved by brute force, and
requires a clever method! ;o)
"""
import copy
data = """\
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
"""
def traditional():
# Initialization of data
global data
data = data.splitlines()
data = [x.split() for x in data]
# Converting string to int
for i in range(len(data)):
data[i] = map(int, data[i])
# Creating a answer matrix
ans = copy.deepcopy(data)
for i in range(len(data)-1):
# Updating current matrix with answer matrix
data = copy.deepcopy(ans)
for j in range(len(data[i])):
# Computing the left child
temp = data[i][j] + data[i+1][j]
ans[i+1][j] = max(ans[i+1][j], temp)
# Computing the right child
temp = data[i][j] + data[i+1][j+1]
ans[i+1][j+1] = max(ans[i+1][j+1], temp)
return max(ans[-1])
print "Answer:", traditional()