-
Notifications
You must be signed in to change notification settings - Fork 1
/
NRTcell.hoc
executable file
·812 lines (762 loc) · 35.9 KB
/
NRTcell.hoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
/*----------------------------------------------------------------------------
NUCLEUS RETICULARIS THALAMI (NRT) CELL
=======================================
Simulations of a single-compartment model of reticular thalamic cell.
The geometric and passive parameters of this model cell were set to
give the membrane capacitance of < 70 pF since the reported values in
the literature range between 60 and 70 pF. The paprameters of K+ leak
current should be adjusted and used in combination with the second
Na+ leak current to obtain a range of input resistances that support
various oscillations. The voltage dependence of I_h current should also
be adjusted to reflect neuromodulatory effects on this current [1].
The cell is adapted to be used in parallel network simulations if
necessary.
The following active currents are included in the model (the references
describing the models are provided in the descriptions of the model
(.mod) files:
- HH mechanism (fast Na+ I_Na and K+ delayed rectifier I_K(DR)
currents). Required for action potential generation.
- I_Ts: slow low voltage-activated Ca2+ T-type current. Required
for low-threshold calcium spikes, rebound bursting, and a
number of oscillations including delta and slow (< 1 Hz).
- I_h anaomalous rectifier current (hyperpolarisation-activated
non-specific cation current). It is an essential pacemaking
current working in cooperation with I_Ts and involved in
generating the same oscillations as I_Ts.
- I_AHP: or I_K[Ca] is a Ca2+-activated K+ current. In NRT cells it
is coupled to I_Ts channels and works together to produce
dampened intrinsic spindle rhythmicity, as well as expand the
frequency range of the delta oscillation.
- I_CAN: slow Ca2+ dependent non-specific cation current. This
current is required for expanding the range of slow (< 1 Hz)
oscillations.
- I_Na(P): persistent low voltage-activated Na+ current. This
current boosts the Up states of the slow oscillation.
- I_K[Na]: a prominent current in NRT cells producing prolonged
Down states during the slow oscillation and the slow
afterhyperpolarisation following sleep spindles in vitro.
- I_HVA[Ca]: non-specific high voltage-activated Ca2+ current.
- I_AMPA
- I_NMDA
- I_GABAa
References:
[1] McCormick, D.A., Pape, H.-C. Noradrenergic and serotonergic
modulation of a hyperpolarization-activated cation current in
thalamic relay neurones. Journal of Physiology. 431: 319-342, 1990.
Written by Martynas Dervinis @Cardiff University, 2013.
*notes:
*1 - given diam = 42, L = 63, cm = 0.88, Ra = 150, celsius = 35,
depth_cad = 12, taux_cad = 5, cainf_cad = 50e-6,
g_pas = 0.00005836, e_pas = -90, g_naleak = 0.0000185, e_naleak = 10,
ena = 30, ek = -90, vtraubNa_hhT = -42, vtraubK_hhT = -38,
gnabar_hhT = 0.07, gkbar_hhT = 0.07, cao = 1.5, shift_its = 0,
gcabar_its = 0.000422, adj_its = 1, ekb = -90, cac_iahp = 0.00032,
power_iahp = 5.3, gkbar1_iahp = 0.0015, gkbar2_iahp = 3.1*gkbar1_iahp,
beta1_iahp = 0.05, beta2_iahp = 0.0012, tau_min_iahp = 5.
>> Vrest = -65, Ri = 160.5 with stim.amp = -0.02 nA
Ri = 162.6 with stim.amp = -0.05 nA
(Crunelli's way of estimating Ri)
*2 - depth_cad = 3.6, taux_cad = 2, cainf_cad = 50e-6,
g_pas = 0.00005836, e_pas = -90, g_naleak = 0.0000184, e_naleak = 10,
vtraubNa_hhT = -38, vtraubK_hhT = -38, gnabar_hhT = 0.07,
gkbar_hhT = 0.07, ghbar_iar = 0.0000014, shift_iar = -10,
cac1_iahp = 0.0002, cac2_iahp = 0.0002, power_iahp = 5.3,
gkbar1_iahp = 0.0024, gkbar2_iahp = 0, tau_m1_iahp = 19.4,
tau_m2_iahp = 830.
>> Vrest = -65, Ri = 157.7 with stim.amp = -0.02 nA
Ri = 160.7 with stim.amp = -0.05 nA
*3 - g_pas = 0.0000852, e_pas = -90, g_naleak = 0.0000219, e_naleak = 10,
vtraubNa_hhT = -50, vtraubK_hhT = -50, gnabar_hhT = 0.04,
gkbar_hhT = 0.04, gkbar1_iahp = 0, gkbar2_iahp = 0, en = 10,
gnbar_ican = 0.00005, k1_ican = 1e11, k2_ican = 0.005,
k3_ican = 0.0015, k4_ican = 0.00123, enaINaP_inap = 30,
gnabar_inap = 0.00001612, shift_inap = 0.
>> Vrest = -65, Ri = 160.3 with stim.amp = -0.02 nA
Ri = 154.7 with stim.amp = -0.05 nA
*4 - g_pas = 0.000119, e_pas = -90, g_naleak = 0.0000332, e_naleak = 10.
>> Vrest = -65, Ri = 100.4 with stim.amp = -0.02 nA
Ri = 99.5 with stim.amp = -0.05 nA
*5 - g_pas = 0.000259, e_pas = -90, g_naleak = 0.00008, e_naleak = 10.
>> Vrest = -65, Ri = 39.2 with stim.amp = -0.02 nA
Ri = 39.2 with stim.amp = -0.05 nA
*6 - g_pas = 0.0000695, e_pas = -90, g_naleak = 0.0000167, e_naleak = 10.
>> Vrest = -65, Ri = 219.8 with stim.amp = -0.02 nA
Ri = 202.8 with stim.amp = -0.05 nA
*7 - g_pas = 0.0000585, e_pas = -90, g_naleak = 0.000013, e_naleak = 10.
>> Vrest = -65, Ri = 294.9 with stim.amp = -0.02 nA
Ri = 252.6 with stim.amp = -0.05 nA
*8 - g_pas = 0.0000434, e_pas = -90, g_naleak = 0.000008, e_naleak = 10.
>> Vrest = -65, Ri = 496.3 with stim.amp = -0.02 nA
Ri = 343 with stim.amp = -0.05 nA
*9 - g_pas = 0.0000576, e_pas = -90, g_naleak = 0.0000175, e_naleak = 10,
cac1_iahp = 0.0002, cac2_iahp = 0.0002, power_iahp = 5.3,
gkbar1_iahp = 0.0003, gkbar2_iahp = 0, depth_nad = .1,
taux_nad = 7000, nainf_nad = 10, gkbar_ikna = 0.0005,
shift_p_ikna = 0, shift_n_ikna = 0, inactRate_ikna = 12,
vDep_ikna = 0, naDep_ikna = 1, inact_ikna = 1.
>> Vrest = -65, Ri = 160.4 with stim.amp = -0.02 nA
Ri = 161.2 with stim.amp = -0.05 nA
*10 - g_pas = 0.0000925, e_pas = -90, g_naleak = 0.0000224, e_naleak = 10,
depth_cap = 21, cainf_cap = 50e-6, KT1_cap = 7e-4, KT2_cap = 0,
Kd1_cap = 10000e-6, Kd2_cap = 500e-6, enaHH_hhT = 30,
ek = ekrev, vtraubNa_hhT = -50, vtraubK_hhT = -50,
gnabar_hhT = 0.03, gkbar_hhT = 0.03, cai = 50e-6, cao = 1.5,
mshift_its = 0, hshift_its = 0, gcabar_its = 0.00069, adj_its = 0,
ghbar_iar = 0.000014, shift_iar = -10, cac1_iahp = 0.00032,
cac2_iahp = 0.00032, power_iahp = 5.3, gkbar1_iahp = 0.00015,
gkbar2_iahp = 0, tau_m1_min_iahp = 11.65, tau_m2_min_iahp = 830,
en = 10, gnbar_ican = 0.000037, k1_ican = 1e11, k2_ican = 0.005,
k3_ican = 0.0015, k4_ican = 0.001, enaINaP_inap = 30,
gnabar_inap = 0.000033, shift_inap = 0, depth_nad = .1,
taux_nad = 7000, nainf_nad = 10, ek = ekrev, gkbar_ikna = 0.0002,
shift_p_ikna = 0, shift_n_ikna = 0, inactRate_ikna = 12,
vDep_ikna = 0, naDep_ikna = 1, inact_ikna = 1,
pcabar_ihvaNRT = 0.0002, act_ihvaNRT = 1, shift_ihvaNRT = 15.
>> Vrest = -65, Ri = 160.2 with stim.amp = -0.02 nA
Ri = 154.6 with stim.amp = -0.05 nA
*11 - g_pas = 0.0000970, e_pas = -90, g_naleak = 0.0000200, e_naleak = 10,
ghbar_iar = 0.000020, shift_iar = 0, gkbar_ikna = 0.00007.
>> Vrest = -65, Ri = 161 with stim.amp = -0.02 nA
Ri = 140.9 with stim.amp = -0.05 nA
*12 - g_pas = 0.000143, e_pas = -90, g_naleak = 0.000035, e_naleak = 10
>> Vrest = -65, Ri = 93.34 with stim.amp = -0.02 nA
Ri = 88.27 with stim.amp = -0.05 nA
*13 - g_pas = 0.000068, e_pas = -90, g_naleak = 0.0000145, e_naleak = 10,
gnabar_inap = 0.00001612, shift_inap = 0, depth_nad = .1.
>> Vrest = -65, Ri = 179.7 with stim.amp = -0.02 nA
Ri = 155.58 with stim.amp = -0.05 nA
*14 - g_pas = 0.00014, e_pas = -90, g_naleak = 0.0000385, e_naleak = 10.
>> Vrest = -65, Ri = 75.7 with stim.amp = -0.02 nA
Ri = 73.8 with stim.amp = -0.05 nA
*15 - g_pas = 0.0000980, e_pas = -90, g_naleak = 0.0000200, e_naleak = 10.
gnabar_inap = 0.000033.
>> Vrest = -65, Ri = 164.45 with stim.amp = -0.02 nA
Ri = 142.19 with stim.amp = -0.05 nA
*16 - g_pas = 0.0000488, e_pas = -90, g_naleak = 0.000012, e_naleak = 10,
gnbar_ican = 0, gnabar_inap = 0, gkbar_ikna = 0, pcabar_ihvaNRT = 0.
>> Vrest = -65, Ri = 159.74 with stim.amp = -0.02 nA
Ri = 146.78 with stim.amp = -0.05 nA
*17 - g_pas = 0.000015, e_pas = -90, g_naleak = 0.00000083, e_naleak = 10.
>> Vrest = -65, Ri = 333.65 with stim.amp = -0.02 nA
Ri = 247.79 with stim.amp = -0.05 nA
*18 - enarev = 60, ekrev = -90, diam = 42, L = 63, e_pas = ekrev,
g_pas = 0.000089, cm = 0.88, Ra = 150, g_naleak = 0.0000233,
e_naleak = 10, depth_cad = 17, taux_cad = 133, cainf_cad = 50e-6,
enaHH_hhT = 30, ek = ekrev, vtraubNa_hhT = -50, vtraubK_hhT = -50,
gnabar_hhT = 0.03, gkbar_hhT = 0.03, cai = 50e-6, cao = 1.5,
mshift_its = 0, hshift_its = 0, taum_shift_its = 0,
tauh_shift_its = 0, gcabar_its = 0.00069, adj_its = 0,
ghbar_iarg = 0.00001, shift_iarg = -18, ginc_iarg = 2,
cainf_iarg = 90e-6, cac_iarg = 0.001450, k2_iarg = 0.000150,
Pc_iarg = 0.017, k4_iarg = 0.00007, nca_iarg = 4, nexp_iarg = 1,
ekb = ekrev, cac1_iahp = 0.001, cac2_iahp = 0.00032,
power_iahp = 5.3, beta1_iahp = 0.05, beta2_iahp = 0.0012,
gkbar1_iahp = 0.0002, gkbar2_iahp = 0, tau_m1_min_iahp = 90, <--
tau_m2_min_iahp = 830, en = 10, gnbar_ican = 0.000012, <--
k1_ican = 1e11, k2_ican = 0.005, k3_ican = 0.0015,
k4_ican = 0.00123, enaINaP_inap = 30, gnabar_inap = 0.00001612, <--
shift_inap = 0, depth_nad = .1, taux_nad = 7000, nainf_nad = 10,
ek = ekrev, gkbar_ikna = 0, shift_p_ikna = 0, shift_n_ikna = 0, <--
inactRate_ikna = 12, vDep_ikna = 0, naDep_ikna = 1,
inact_ikna = 1, pcabar_ihvaNRT = 0.0002, act_ihvaNRT = 1,
shift_ihvaNRT = 15, nseg = 1.
>> Vrest = -65, Ri = 160.62 with stim.amp = -0.02 nA
Ri = 155.56 with stim.amp = -0.05 nA
*19 - g_pas = 0.000089, g_naleak = 0.0000233, gkbar1_iahp = 0.
>> Vrest = -65, Ri = 160.67 with stim.amp = -0.02 nA
Ri = 155.53 with stim.amp = -0.05 nA
*20 - g_pas = 0.000071, g_naleak = 0.00002, gkbar1_iahp = 0.0002,
gnbar_ican = 0.000007, gnabar_inap = 0.000007.
>> Vrest = -65, Ri = 158.47 with stim.amp = -0.02 nA
Ri = 162.79 with stim.amp = -0.05 nA
*21 - enarev = 60, ekrev = -90, diam = 42, L = 63, e_pas = ekrev,
g_pas = 0.000084, cm = 0.88, Ra = 150, g_naleak = 0.00001935,
e_naleak = 10, depth_cad = 17, taux_cad = 133, cainf_cad = 50e-6,
depth_cadhva = 17, taux_cadhva = 133, cainf_cadhva = 0,
enaHH_hhT = 30, ek = ekrev, vtraubNa_hhT = -50, vtraubK_hhT = -50,
gnabar_hhT = 0.03, gkbar_hhT = 0.03, cai = 50e-6, cao = 1.5,
mshift_its = -3, hshift_its = 0, taum_shift_its = 0,
tauh_shift_its = 0, speedUpm_its = 1, speedUph_its = 1,
gcabar_its = 0.00069, adj_its = 0, ghbar_iarg = 0.0000043,
shift_iarg = 0, ginc_iarg = 2, cainf_iarg = 90e-6,
cac_iarg = 1450, k2_iarg = 0.000150, Pc_iarg = 0.017,
k4_iarg = 0.00007, nca_iarg = 4, nexp_iarg = 1, ekb = ekrev,
cac1_iahp = 0.001, cac2_iahp = 0.00032, power_iahp = 5.3,
beta1_iahp = 0.05, beta2_iahp = 0.0012, gkbar1_iahp = 0.0002,
gkbar2_iahp = 0, tau_m1_min_iahp = 5, tau_m2_min_iahp = 830,
cac_icanm = 0.00045, beta_icanm = 0.0001, taumin_icanm = 0.1,
en = 0, gbar_icanm = 0.0001, enaINaP_inap = 30,
gnabar_inap = 0.000015, shift_inap = 0, depth_nad = .1,
taux_nad = 7000, nainf_nad = 10, ek = ekrev, gkbar_ikna = 0,
shift_p_ikna = 0, shift_n_ikna = 0, inactRate_ikna = 12,
vDep_ikna = 0, naDep_ikna = 1, inact_ikna = 1,
pcabar_ihvaNRT = 0.0002, act_ihvaNRT = 1, shift_ihvaNRT = 15,
nseg = 1.
>> Vrest = -65, Ri = 159.44 with stim.amp = -0.02 nA
Ri = 160.47 with stim.amp = -0.05 nA
----------------------------------------------------------------------------*/
begintemplate NRTcell
public soma, gid, devRi, enarev, ekrev, input, is_art
public createSyn, getSyn, getSynList, connect2target
public createMini, getMini, connectMini, appendGapList, getGapList, inserted, rcount, rlist
external varDt, randomise, globalIndex, min, lambda_f, state
objref AMPAsyn, GLUsyn, GLUfullsyn, GABAAsyn
objref AMPAsynList, GLUsynList, GLUfullsynList, GABAAsynList, synList
objref AMPAmini, GABAAmini, minisList, gapList, rlist, input, inserted
strdef section
create soma
proc init() {
gid = $1
devRi = $2
type = $3
section = $s4
insertNil = 1
insertExC = 1
insertHH = 1
insertITs = 1
insertIh = 1
insertIAHP = 1
insertICAN = 1
insertINaP = 1
insertIKNa = 1
insertIHVA = 1
inserted = new Vector(13)
AMPAsynList = new List()
GLUsynList = new List()
GLUfullsynList = new List()
GABAAsynList = new List()
synList = new List()
minisList = new List()
gapList = new List()
rlist = new List()
input = new List()
input.append(synList)
input.append(minisList)
rcount = 0
enarev = 60
ekrev = -90
soma {
diam = 42
L = 63
}
if (insertNil) {
forall {
insert pas // Passive properties and K+ leak current
inserted.x[0] = 1
e_pas = ekrev
g_pas = 0 //0.525*0.000084 //0.4475*0.000084 //0.375*0.000084 //0.000084
cm = 0.88
Ra = 150
insert naleak // Na+ leak current
inserted.x[1] = 1
if (!strcmp(state,"slow_short") || !strcmp(state,"slow_long")) {
g_naleak = 0.000004
} else if (!strcmp(state,"SWDs_short") || !strcmp(state,"SWDs_long") || !strcmp(state,"wake_short") || !strcmp(state,"wake_long")) {
g_naleak = 0
} else {
g_naleak = 0
}
e_naleak = 10
/*insert cap // Intracellular [Ca2+] decay
inserted.x[2] = 1
depth_cap = 21 // Adjust so that the [Ca2+]_i accumulation is ~713 nM during a typical LTCP
cainf_cap = 50e-6
KT1_cap = 7e-4
KT2_cap = 0 //5e-6
Kd1_cap = 10000e-6
Kd2_cap = 500e-6 */
insert cad // Intracellular [Ca2+] decay
inserted.x[2] = 1
depth_cad = 5.75 //5.75 //10.1 //11.15 //13.1 //14.75 //17
taux_cad = 30 //30 //50 //60 //80 //100 //133
cainf_cad = 50e-6
insert cadhva // Intracellular [Ca2+] decay
depth_cadhva = 5.75 //5.75 //10.1 //11.15 //13.1 //14.75 //17
taux_cadhva = 30 //30 //50 //60 //80 //100 //133
cainf_cadhva = 0e-6
}
}
if (insertExC && !varDt) {
forall {
insert extracellular // Extracellular fields for monitoring total membrane current
inserted.x[3] = 1
}
}
if (insertHH) {
soma { // HH mechanism
insert hhT
inserted.x[4] = 1
enaHH_hhT = 30
ek = ekrev
vtraubNa_hhT = -50
vtraubK_hhT = -50
gnabar_hhT = 0.05
gkbar_hhT = 0.05 // possible working sets: 30 -90 -50 -50 0.04 0.04
}
}
if (insertITs) {
forall {
insert its // LVA I_Ts current
inserted.x[5] = 1
cai = 50e-6
cao = 1.5 // Original parameters:
mshift_its = 0 // 0
hshift_its = 0 // 0
taum_shift_its = 0
tauh_shift_its = 0
speedUpm_its = 1
speedUph_its = 1
gcabar_its = 2*0.00069 // 0.0013: 9.947 nA; 0.00069: 5.576 nA
adj_its = 0 // 0
}
}
if (insertIh) {
forall {
/*insert iarreg // I_h (Na+/K+) current
inserted.x[6] = 1
ghbar_iarreg = 0.0000200 // Max: 0.0000486 (~260 pA), Min: 0.0000043 (~23 pA). 0.000014: ~75 pA.
shift_iarreg = 0 */
insert iarg
inserted.x[6] = 1
ghbar_iarg = 0.0000043
shift_iarg = 0
ginc_iarg = 2
cainf_iarg = 90e-6
cac_iarg = 0.001750 // Valid range: 0.001750-0.006000.
k2_iarg = 0.000150
Pc_iarg = 0.017
k4_iarg = 0.00007
nca_iarg = 8
nexp_iarg = 1
}
}
if (insertIAHP) {
forall {
insert iahp // Burst I_AHP mediated by SK channels
inserted.x[7] = 1
ekb = ekrev
cac1_iahp = 0.001 // Should be adjusted depending on the [Ca2+]i fluctuations
cac2_iahp = 0.00032
power1_iahp = 5.3
power2_iahp = 5.3
beta1_iahp = 0.05
beta2_iahp = 0.0012
if (!strcmp(state,"none")) {
gkbar1_iahp = 0.0003
gkbar2_iahp = 0.00003
} else if (!strcmp(state,"delta_short")) {
gkbar1_iahp = 0.01*0.0003 //Slow:0; Spindles:0.0003; SWDs:0.0003
gkbar2_iahp = 0.01*0.00006 //Slow:0; Spindles:0.00003-0.0001; SWDs:0.00018 //min:0.05*gkbar1_iahp; max:0.23*gkbar1_iahp
} else if (!strcmp(state,"delta_long")) {
gkbar1_iahp = 0.01*0.0003
gkbar2_iahp = 0.01*0.00006
} else if (!strcmp(state,"slow_short")) {
gkbar1_iahp = 0.01*0.0003
gkbar2_iahp = 0.01*0.00006
} else if (!strcmp(state,"slow_long")) {
gkbar1_iahp = 0.01*0.0003
gkbar2_iahp = 0.01*0.00006
} else if (!strcmp(state,"spindles_short")) {
gkbar1_iahp = 0.0003
gkbar2_iahp = 0.01*0.00006
} else if (!strcmp(state,"spindles_long")) {
gkbar1_iahp = 0.0003
gkbar2_iahp = 0.01*0.00006
} else if (!strcmp(state,"SWDs_short")) {
gkbar1_iahp = 0.01*0.0003
gkbar2_iahp = 0.00006
} else if (!strcmp(state,"SWDs_long")) {
gkbar1_iahp = 0.01*0.0003
gkbar2_iahp = 0.00006
} else if (!strcmp(state,"wake_short")) {
gkbar1_iahp = 0.01*0.0003
gkbar2_iahp = 0.00006
} else if (!strcmp(state,"wake_long")) {
gkbar1_iahp = 0.01*0.0003
gkbar2_iahp = 0.00006
}
tau_m1_min_iahp = 15
tau_m2_min_iahp = 830
}
}
if (insertICAN) {
forall {
/* insert ican // Nonspecific cation current I_CAN
inserted.x[8] = 1
en = 10
gnbar_ican = 0.000012 // SWD working set: gnbar_ican = 0.000007, 1e11, 0.005, 0.0015, 0.00123
k1_ican = 1e11 // old: gnbar_ican = 0.000012, 1e11, 0.005, 0.0015, 0.00123
k2_ican = 0.005 // TC: gnbar_ican = ???, 1e11, 0.01, 0.0015, 0.0007
k3_ican = 0.0015 // fast: gnbar_ican = ???, 1e11, 0.01, 0.25, 0.0123
k4_ican = 0.00123 */
insert icanmNRT // nonspecific cation current ICAN
cac_icanmNRT = 0.00045
beta_icanmNRT = 0.000004
taumin_icanmNRT = 0.1
inact_icanmNRT = 0
tau_hCa_icanmNRT = 1000
en = 0
gbar_icanmNRT = 0.475*0.0001
}
}
if (insertINaP) {
soma { // I_Na(P) Na+ low threshold persistent current
insert inap
inserted.x[9] = 1
enaINaP_inap = 30 // SWD working set: enaINaP_inap = 30, gnabar_inap = 0.000007 (standard is 0.000015), shift_inap = 0
gnabar_inap = 0.00001612 // 0.000033: 160.55 pA (max); 0.000021: 102.17 pA; 0.00001612: 78.43 pA.
shift_inap = 0 // ranges from -3 to 3
}
}
if (insertIKNa) {
forall {
insert nad // Intracellular [Na+] decay
inserted.x[10] = 1
depth_nad = .1
taux_nad = 10000 // Has to be very slow (5000-10000 ms)
nainf_nad = 10
/* insert ikna // Na+ activated K+ current I_K[Na]
inserted.x[11] = 1
ek = ekrev
gkbar_ikna = 5*0.00015
shift_p_ikna = 0
shift_n_ikna = 0
inactRate_ikna = 12
vDep_ikna = 0
naDep_ikna = 1
inact_ikna = 1 */
insert iknaThCx
inserted.x[10] = 1
ek = ekrev
gkbar_iknaThCx = 0.01*0.00001
nai_half_iknaThCx = 30
nai_exp_iknaThCx = 5
}
}
if (insertIHVA) {
forall {
insert ihvaNRT // I_HVA[Ca]
inserted.x[12] = 1
pcabar_ihvaNRT = 0.0002 // 0.0002: 2570.9 pA
act_ihvaNRT = 1
shift_ihvaNRT = 15
}
}
//forall nseg = int((L/(0.1*lambda_f(100))+0.9)/2)*2 + 1 // Lambda rule
forall nseg = 1
}
obfunc connect2target() {localobj nc //$o1 - target process, $2 - connection delay, $3 - connection weight
soma nc = new NetCon(&v(0.5), $o1)
nc.threshold = -14.5
nc.delay = $2
nc.weight = $3
return nc
}
obfunc connectMini() {localobj nc //$s1 - type of synapse, $2 - connection delay, $3 - connection weight
if (!strcmp($s1,"AMPA") || !strcmp($s1,"GLUfull")) {
nc = new NetCon(AMPAmini, AMPAsyn)
} else if (!strcmp($s1,"GLU")) {
nc = new NetCon(AMPAmini, GLUsyn)
} else if (!strcmp($s1,"GABAa")) {
nc = new NetCon(GABAAmini, GABAAsyn)
}
nc.delay = $2
nc.weight = $3
return nc
}
proc createAMPAsyn() {localobj r // $1 - release probability // TC>>NRT 4:1 Cx>>NRT (amplitude)
soma AMPAsyn = new AMPA_S(0.5)
AMPAsyn.gbar = 0.04
AMPAsyn.Alpha = 10
AMPAsyn.Beta = 3
AMPAsyn.Cmax = 0.5
AMPAsyn.Cdur = 0.3
AMPAsyn.Erev = 0
if (randomise.x[5]) {
AMPAsyn.P_release = $1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.uniform(0,1)
AMPAsyn.noiseFromRandom(r)
rlist.append(r)
rcount += 1
}
AMPAsynList.append(AMPAsyn)
synList.append(AMPAsyn)
}
proc createGLUsyn() {local wFactor localobj r // $1 - release probability // TC>>NRT 4:1 Cx>>NRT (amplitude)
soma GLUsyn = new GLU_S2(0.5)
GLUsyn.gbar_a = 0.04 // 7.613mV, 0.5ms, 15ms: 0.04, 10, 3, 0.5, 0.3, 0, 1, 0.2, 2500, 3, 2.2364, 25.057, 43.495, 232.27, 1, 0.0003, 0.5, 1
GLUsyn.Alpha_a = 10 // 7.721mV, 0.6ms, 10.78ms: 0.04, 10, 3, 0.5, 0.3, 0, 1, 0.2, 2500, 3, 2.2364, 25.057, 43.495, 232.27, 1, 0.0003, 0.5, 0
GLUsyn.Beta_a = 3 // 1.625mV, 0.6ms, 13ms: 0.04, 10, 3, 0.5, 0.3, 0, 0.2, 0.2, 2500, 3, 2.2364, 25.057, 43.495, 232.27, 1, 0.0003, 0.5, 0.2
GLUsyn.Cmax_a = 0.5
GLUsyn.Cdur_a = 0.3
GLUsyn.Erev_a = 0
GLUsyn.weight_a = 1
GLUsyn.tau1_init_b = 3
GLUsyn.a2_b = 2.2364
GLUsyn.tau2_0_b = 25.057
GLUsyn.a3_b = 43.495
GLUsyn.tau3_0_b = 232.27
GLUsyn.tauAdj_b = 1
GLUsyn.gf_b = 0.0003
GLUsyn.Mg_b = 0.5
GLUsyn.weight_b = 0.01 //1
if (randomise.x[5]) {
GLUsyn.P_release = $1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.uniform(0,1)
GLUsyn.noiseFromRandom(r)
rlist.append(r)
rcount += 1
}
GLUsynList.append(GLUsyn)
synList.append(GLUsyn)
}
proc createGLUfullsyn() {local wFactor localobj r // $1 - release probability // TC>>NRT 4:1 Cx>>NRT (amplitude)
soma GLUfullsyn = new GLU_S3(0.5)
GLUfullsyn.gbar_a = 0.04 // 7.613mV, 0.5ms, 15ms: 0.04, 10, 3, 0.5, 0.3, 0, 1, 0.2, 2500, 3, 2.2364, 25.057, 43.495, 232.27, 1, 0.0003, 0.5, 1
GLUfullsyn.Alpha_a = 10 // 7.721mV, 0.6ms, 10.78ms: 0.04, 10, 3, 0.5, 0.3, 0, 1, 0.2, 2500, 3, 2.2364, 25.057, 43.495, 232.27, 1, 0.0003, 0.5, 0
GLUfullsyn.Beta_a = 3 // 1.625mV, 0.6ms, 13ms: 0.04, 10, 3, 0.5, 0.3, 0, 0.2, 0.2, 2500, 3, 2.2364, 25.057, 43.495, 232.27, 1, 0.0003, 0.5, 0.2
GLUfullsyn.Cmax_a = 0.5
GLUfullsyn.Cdur_a = 0.3
GLUfullsyn.Erev_a = 0
GLUfullsyn.weight_a = 1
GLUfullsyn.u = 1 //1.7 //1.1
GLUfullsyn.tau_U = 50
GLUfullsyn.d1 = 1 //(1-(1-0.78)/1e9) //(1-(1-0.78)/6)
GLUfullsyn.d2 = 1 //(1-(1-0.97)/1e9) //(1-(1-0.97)/6)
GLUfullsyn.tau1_init_b = 3
GLUfullsyn.a2_b = 2.2364
GLUfullsyn.tau2_0_b = 25.057
GLUfullsyn.a3_b = 43.495
GLUfullsyn.tau3_0_b = 232.27
GLUfullsyn.tauAdj_b = 1
GLUfullsyn.gf_b = 0.0003
GLUfullsyn.Mg_b = 0.5
GLUfullsyn.weight_b = 0.01 //1
if (!strcmp(section, "FO")) {
if (type < 50) {
if (!strcmp(state,"none")) {
GLUfullsyn.gbase_c = 0.001
} else if (!strcmp(state,"delta_short")) {
GLUfullsyn.gbase_c = 0.0009 //Delta: 0.0006-0.0009; Slow: 0.0004; Spindles: 0.0004:; SWDs: 0.00015:0.00002
} else if (!strcmp(state,"delta_long")) {
GLUfullsyn.gbase_c = 0.0009
} else if (!strcmp(state,"slow_short")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"slow_long")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"spindles_short")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"spindles_long")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"SWDs_short")) {
GLUfullsyn.gbase_c = 0.0002
} else if (!strcmp(state,"SWDs_long")) {
GLUfullsyn.gbase_c = 0.0002
} else if (!strcmp(state,"wake_short")) {
GLUfullsyn.gbase_c = 0.0002
} else if (!strcmp(state,"wake_long")) {
GLUfullsyn.gbase_c = 0.0002
}
} else {
if (!strcmp(state,"none")) {
GLUfullsyn.gbase_c = 0.001
} else if (!strcmp(state,"delta_short")) {
GLUfullsyn.gbase_c = 0.0009
} else if (!strcmp(state,"delta_long")) {
GLUfullsyn.gbase_c = 0.0009
} else if (!strcmp(state,"slow_short")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"slow_long")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"spindles_short")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"spindles_long")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"SWDs_short")) {
GLUfullsyn.gbase_c = 0.0002
} else if (!strcmp(state,"SWDs_long")) {
GLUfullsyn.gbase_c = 0.0002
} else if (!strcmp(state,"wake_short")) {
GLUfullsyn.gbase_c = 0.0002
} else if (!strcmp(state,"wake_long")) {
GLUfullsyn.gbase_c = 0.0002
}
}
} else if (!strcmp(section, "HO")) {
if (type < 50) {
if (!strcmp(state,"none")) {
GLUfullsyn.gbase_c = 0.001
} else if (!strcmp(state,"delta_short")) {
GLUfullsyn.gbase_c = 0.0009
} else if (!strcmp(state,"delta_long")) {
GLUfullsyn.gbase_c = 0.0009
} else if (!strcmp(state,"slow_short")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"slow_long")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"spindles_short")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"spindles_long")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"SWDs_short")) {
GLUfullsyn.gbase_c = 0.0002
} else if (!strcmp(state,"SWDs_long")) {
GLUfullsyn.gbase_c = 0.0002
} else if (!strcmp(state,"wake_short")) {
GLUfullsyn.gbase_c = 0.0002
} else if (!strcmp(state,"wake_long")) {
GLUfullsyn.gbase_c = 0.0002
}
} else {
if (!strcmp(state,"none")) {
GLUfullsyn.gbase_c = 0.001
} else if (!strcmp(state,"delta_short")) {
GLUfullsyn.gbase_c = 0.0009
} else if (!strcmp(state,"delta_long")) {
GLUfullsyn.gbase_c = 0.0009
} else if (!strcmp(state,"slow_short")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"slow_long")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"spindles_short")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"spindles_long")) {
GLUfullsyn.gbase_c = 0.0004
} else if (!strcmp(state,"SWDs_short")) {
GLUfullsyn.gbase_c = 0.0002
} else if (!strcmp(state,"SWDs_long")) {
GLUfullsyn.gbase_c = 0.0002
} else if (!strcmp(state,"wake_short")) {
GLUfullsyn.gbase_c = 0.0002
} else if (!strcmp(state,"wake_long")) {
GLUfullsyn.gbase_c = 0.0002
}
}
}
GLUfullsyn.gbase_c = GLUfullsyn.gbase_c + 0.000001*devRi
GLUfullsyn.gbar_c = min(0.5*0.0014, 0.5*(GLUfullsyn.gbase_c/0.000285)*0.0014) // *0.1232 (koefWeiNRT)
GLUfullsyn.K1_c = 0.05 // (/ms mM) forward binding rate to receptor
GLUfullsyn.K2_c = 0.002 //0.0001 // (/ms) backward (unbinding) rate of receptor
GLUfullsyn.K3_c = 0.03 // (/ms) rate of G-protein production
GLUfullsyn.K4_c = 0.03 // (/ms) rate of G-protein decay
GLUfullsyn.KD_c = 0.0001 // dissociation constant of K+ channel
GLUfullsyn.n_c = 4 // nb of binding sites of G-protein on K+
GLUfullsyn.Erev_c = ekrev // (mV) reversal potential (E_K)
GLUfullsyn.Cmax_c = 0.5 // short pulses
GLUfullsyn.Cdur_c = 1.4
GLUfullsyn.weight_c = 1
if (randomise.x[5]) {
GLUfullsyn.P_release = $1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.uniform(0,1)
GLUfullsyn.noiseFromRandom(r)
rlist.append(r)
rcount += 1
}
GLUfullsynList.append(GLUfullsyn)
synList.append(GLUfullsyn)
soma.g_pas = 0
}
proc createGABAAsyn() {localobj r // $1 - release probability
soma GABAAsyn = new GABAa_S(0.5)
GABAAsyn.gbar = 0.8 // 0.8, 0.01, 0.04, 0.5, 1.5, -70: 58.0513 pA, 1.19ms, 25.37 ms
GABAAsyn.Alpha = .01
GABAAsyn.Beta = 0.04
GABAAsyn.Cmax = 0.5
GABAAsyn.Cdur = 1.5
GABAAsyn.Erev = -70
if (randomise.x[5]) {
GABAAsyn.P_release = $1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.uniform(0,1)
GABAAsyn.noiseFromRandom(r)
rlist.append(r)
rcount += 1
}
GABAAsynList.append(GABAAsyn)
synList.append(GABAAsyn)
}
proc createSyn() { // $s1 - the synapse type, $2 - release probability.
if (!strcmp($s1,"AMPA")) {
createAMPAsyn($2)
} else if (!strcmp($s1,"GLU")) {
createGLUsyn($2)
} else if (!strcmp($s1,"GLUfull")) {
createGLUfullsyn($2)
} else if (!strcmp($s1,"GABAa")) {
createGABAAsyn($2)
}
}
obfunc getSyn() {localobj syn // $s1 - the synapse type.
if (!strcmp($s1,"AMPA")) {
syn = AMPAsyn
} else if (!strcmp($s1,"GLU")) {
syn = GLUsyn
} else if (!strcmp($s1,"GLUfull")) {
syn = GLUfullsyn
} else if (!strcmp($s1,"GABAa")) {
syn = GABAAsyn
}
return syn
}
obfunc getSynList() {localobj list // $s1 - the synapse type.
if (!strcmp($s1,"AMPA")) {
list = AMPAsynList
} else if (!strcmp($s1,"GLU")) {
list = GLUsynList
} else if (!strcmp($s1,"GLUfull")) {
list = GLUfullsynList
} else if (!strcmp($s1,"GABAa")) {
list = GABAAsynList
} else {
list = synList
}
return list
}
proc createMini() {localobj mini, r // $s1 - the synapse type, $2 - number of input streams.
mini = new minis()
mini.noise = 1
r = new Random()
{r.Random123_globalindex(globalIndex)}
{r.Random123(rcount, gid)}
r.negexp(1)
mini.noiseFromRandom(r)
rlist.append(r)
rcount += 1
if (!strcmp($s1,"AMPA") || !strcmp($s1,"GLU") || !strcmp($s1,"GLUfull")) {
mini.interval1 = 150*$2
mini.interval2 = 75*$2
AMPAmini = mini
} else if (!strcmp($s1,"GABAa")) {
mini.interval1 = 300*$2
mini.interval2 = 150*$2
GABAAmini = mini
}
minisList.append(mini)
}
obfunc getMini() {localobj mini // $s1 - the synapse type
if (!strcmp($s1,"AMPA") || !strcmp($s1,"GLU") || !strcmp($s1,"GLUfull")) {
mini = AMPAmini
} else if (!strcmp($s1,"GABAa")) {
mini = GABAAmini
}
return mini
}
proc appendGapList() {
gapList.append($o1)
}
obfunc getGapList() {
return gapList
}
func is_art() { return 0 }
endtemplate NRTcell