-
Notifications
You must be signed in to change notification settings - Fork 1
/
INaP.mod
executable file
·89 lines (72 loc) · 2.07 KB
/
INaP.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
TITLE Persistent Na+ current I_Na(P) in TC cells
COMMENT
The model was described by [1]. The activation time constant is the
same as for the fast transient Na+ current of action potentials
described in [2] but hyperpolarised.
References:
[1] Parri, H.R., Crunelli, V. Sodium current in rat and cat
thalamocortical neurons: role of a non-inactivating component in
tonic and burst firing. The Journal of Neuroscience 18: 854-867,
1998.
[2] Traub, R.D., Wong, R. K., Miles, R., and Michelson, H. A model of a
CA3 hippocampal pyramidal neuron incorporating voltage-clamp data
on intrinsic conductances. Journal of Neurophysiology 66: 635-650,
1991.
Written by Martynas Dervinis @Cardiff University, 2013.
ENDCOMMENT
NEURON {
SUFFIX inap
USEION na WRITE ina
RANGE enaINaP, gnabar, m_inf, tau_m, shift, delay
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(mS) = (millisecond)
}
PARAMETER {
gnabar = 0.0000085 (mho/cm2)
enaINaP = 30 (mV)
celsius = 35 (degC)
shift = 0 (mV)
delay = 0 (mS)
}
STATE {
m
}
ASSIGNED {
ina (mA/cm2)
m_inf
tau_m
}
BREAKPOINT {
SOLVE states METHOD cnexp
ina = gnabar * m * (v - enaINaP)
}
DERIVATIVE states {
gates(v)
m' = (m_inf - m) / tau_m
}
INITIAL {
gates(v)
m = m_inf
}
: Procedures & functions
PROCEDURE gates(v(mV)) { : computes gating functions and other constants at current v
LOCAL q10, alpha, beta
TABLE m_inf, tau_m DEPEND celsius FROM -120 TO 80 WITH 200
UNITSOFF
q10 = 3^((celsius - 35) / 10)
alpha = 0.32 * vtrap(-66.58 + shift - v, 4) : activation system
beta = 0.28 * vtrap(39.58 + v - shift, 5)
tau_m = (delay + 1 / (alpha + beta)) / q10
m_inf = 1 / (1 + exp(-(v + 53.87 - shift) / 8.57))
}
FUNCTION vtrap(x,y) { : traps for 0 in denominator of rate eqns.
if (fabs(x/y) < 1e-6) {
vtrap = y*(1 - x/y/2)
}else{
vtrap = x/(exp(x/y) - 1)
}
}
UNITSON