-
Notifications
You must be signed in to change notification settings - Fork 1
/
IAHPfull.mod
executable file
·120 lines (100 loc) · 3.53 KB
/
IAHPfull.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
TITLE [Ca2+]-activated small conductance (SK) K+ current in NRT cells
COMMENT
[Ca2+]-activated small conductance (SK) K+ current or slow
afterhyperpolarisation current (I_AHP) in NRT cells
The model is based on [1] which estimated the steady state activation
curve of the SK1 and SK2 channels (both channels are expressed in NRT)
and on [2] which identified fast and slow components of I_AHP in NRT
cells and measured their decay time constants. The I_AHP model
described here is non-specific and assumes two populations of distinct
SK apamine-sensitive channels in NRT cells with distinct dynamics. The
I_AHP model was calibrated to approximate the experimental data in [2].
The model is expressed in terms of Hill equation.
Written by Martynas Dervinis @ Cardiff University, 2013
martynas.dervinis@gmail.com
References:
[1] Xia, X.-M., Fakler, B., Rivard, A., Wayman, G., Johnson-Pais, T.,
Keen, J.E., Ishii, T., Hirschberg, B., Bond, C.T., Lutsenko, S.,
Maylie, J., Adelman, J. P. Mechanism of calcium gating in small-
conductance calcium-activated potassium channels. Nature, 396: 503-
507, 1998.
[2] Cueni, L., Canepari, M., Lujan, R., Emmenegger, Y., Watanabe, M.,
Bond, C.T., Franken, P., Adelman, J. P., Luthi, A. T-type Ca2+
channels, SK2 channels and SERCAs gate sleep-related oscillations
in thalamic dendrites. Nature Neuroscience, 11: 683-692, 2008.
Written by Martynas Dervinis @Cardiff University, 2013.
ENDCOMMENT
NEURON {
SUFFIX iahpFull
USEION kb READ ekb WRITE ikb VALENCE 1
USEION ca READ cai
USEION caHVA READ caHVAi VALENCE 2
RANGE gkbar1, gkbar2, m1_inf, m2_inf, tau_m1_min, tau_m2_min, beta1, beta2, cac1, cac2, power, cainf
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
}
PARAMETER {
v (mV)
celsius = 35 (degC)
ekb = -90 (mV)
cai = 50e-6 (mM) : initial [Ca2+]i
caHVAi = 0 (mM) : initial HVA [Ca2+]i
cainf = 0 (mM)
gkbar1 = .01 (mho/cm2)
gkbar2 = .001 (mho/cm2)
cac1 = 0.00032 (mM) : [Ca2+] at half activation of m1
cac2 = 0.00032 (mM) : [Ca2+] at half activation of m2
power = 5.3 : Hill coefficient
beta1 = 0.05 (1/ms) : Disociation rate for the first receptor population
beta2 = 0.0012 (1/ms) : Disociation rate for the second receptor population
tau_m1_min = 1 (ms) : minimal activation time constant for m1
tau_m2_min = 1 (ms) : minimal activation time constant for m2
}
STATE {
m1 m2
}
ASSIGNED {
ikb (mA/cm2)
m1_inf
m2_inf
tau_m1
tau_m2
phi
caiFull (mM)
}
BREAKPOINT {
caiFull = cai + caHVAi
SOLVE states METHOD cnexp
ikb = (gkbar1 * m1 + gkbar2 * m2) * (v - ekb)
}
DERIVATIVE states {
activation(v, caiFull)
m1' = (m1_inf - m1) / tau_m1
m2' = (m2_inf - m2) / tau_m2
}
UNITSOFF
INITIAL {
phi = 3 ^ ((celsius-34.25)/10)
caiFull = cai + caHVAi
activation(v, caiFull)
m1 = m1_inf
m2 = m2_inf
}
PROCEDURE activation(v(mV), caiFull(mM)) {
LOCAL caInc
caInc = caiFull - cainf
if (caInc < 0) {
caInc = 0
}
m1_inf = 1 / ((cac1 / caInc)^power + 1)
m2_inf = 1 / ((cac2 / caInc)^power + 1)
:tau_m1 = ((1/beta1) / ((caInc / cac1)^power + 1) / phi) + tau_m1_min
:tau_m2 = ((1/beta2) / ((caInc / cac2)^power + 1) / phi) + tau_m2_min
tau_m1 = tau_m1_min
tau_m2 = tau_m2_min
}
UNITSON