-
Notifications
You must be signed in to change notification settings - Fork 0
/
plan_overview.py
77 lines (63 loc) · 3.04 KB
/
plan_overview.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Copyright 2022 Diagnostic Image Analysis Group, Radboudumc, Nijmegen, The Netherlands
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from pathlib import Path
import numpy as np
import SimpleITK as sitk
from picai_baseline.splits.picai_nnunet import nnunet_splits
# specify paths to preprocessed data in nnU-Net Raw Data Archive
preprocessed_data_path = Path('./../workdir/nnUNet_raw_data/Task2201_picai_baseline/')
overviews_path = Path('./../workdir/results/UNet/overviews/')
# specify cases that should be excluded from the train and validation sets
excluded_cases = [
'11475_1001499' # cannot be preprocessed with the default baseline U-Net preprocessing config
]
# create directory to store overviews
overviews_path.mkdir(parents=True, exist_ok=True)
# iterate over each cross-validation fold
for fold, nnunet_fold in enumerate(nnunet_splits):
# iterate over train and validation splits
for split, nnunet_split in nnunet_fold.items():
print(f"Preparing fold {fold}..")
# initialize list of fields to collect for each split of each fold
overview = {
'pat_ids': [],
'study_ids': [],
'image_paths': [],
'label_paths': [],
'case_label': [],
'ratio_csPCa_bg': []
}
# iterate over each training/validation case
for subject_id in nnunet_split:
patient_id, study_id = subject_id.split('_')
# skip excluded case(s)
if subject_id in excluded_cases:
continue
# load annotation
lbl = sitk.GetArrayFromImage(sitk.ReadImage(str(preprocessed_data_path / 'labelsTr' / f'{subject_id}.nii.gz')))
overview['pat_ids'] += [patient_id]
overview['study_ids'] += [study_id]
overview['image_paths'] += [[
str((preprocessed_data_path / 'imagesTr' / f'{subject_id}_0000.nii.gz').as_posix()),
str((preprocessed_data_path / 'imagesTr' / f'{subject_id}_0001.nii.gz').as_posix()),
str((preprocessed_data_path / 'imagesTr' / f'{subject_id}_0002.nii.gz').as_posix()),
]]
overview['label_paths'] += [str((preprocessed_data_path / 'labelsTr' / f'{subject_id}.nii.gz').as_posix())]
overview['case_label'] += [float(np.max(lbl))]
overview['ratio_csPCa_bg'] += [float(np.sum(lbl)/np.size(lbl))]
# save overview
with open(overviews_path / f'PI-CAI_{split}-fold-{fold}.json', 'w') as fp:
json.dump(overview, fp, indent=4)
print("Finished.")