-
Notifications
You must be signed in to change notification settings - Fork 1
/
process_dbit.py
228 lines (179 loc) · 7.4 KB
/
process_dbit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import pandas as pd
import sys
import numpy as np
import bgzip
#import editdistance as ed
from tqdm import tqdm
import argparse
import HTSeq
# struct R1
# NNNNNNNNNNN…
# struct R2
# CAAGCGTTGGCTTCTCGCATCT AGTGGTCA ATCCACGTGCTTGAG AGGCCAGAGCATTCG AACGCTTA
# ---------------------- 22222222 --------------- --------------- 11111111
# in RNA
# GAAGCGTTGGCTTCTCGCATCT CAACCACA ATCCACGTGCTTGAG AGGCCAGAGCATTCG ACATTGGC GTGGCCGATGTTTCGCATCGGCGTACGA CTTAGTGGGT ATTTTTTTTTTTTTTTGTTTATGGGGTTTTTTTTGGTTTTTCGAG
# ---------------------- 22222222 --------------- --------------- 11111111 ---------------------------- UUUUUUUUUU TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
def hamming(a, b):
la = len(a)
lb = len(b)
if la != lb:
return la
return sum([a[x] != b[x] for x in range(len(a))])
def correct_bc(bc, bc_list, distance=1):
distances = np.array([hamming(bc, sh_bc) for sh_bc in bc_list])
accepted = np.where(distances <= distance)[0]
if len(accepted) >0:
# return the first one
return bc_list[accepted[0]]
else:
return b''
def get_options():
parser = argparse.ArgumentParser(prog='process_share.py')
parser.add_argument('-1', '--read1', help='Read 1 (R1)')
parser.add_argument('-2', '--read2', help='Read 2, containing pixel barcodes (R2)')
parser.add_argument('-R', '--rna', help='Process as scRNA-seq, stitching R3 and R2', action='store_true')
parser.add_argument('-L', '--umi_length', help='Length of UMI (stiched to CB)', default=10)
parser.add_argument('-F', '--filter_failed', help='Filter failed reads', action='store_true')
parser.add_argument('-p', '--prefix', help='Prefix for output files')
parser.add_argument('-C', '--bc_correct_file', help='Fix cell barcode to given list ', default='')
parser.add_argument('-t', '--threshold', help='Max distance when correcting barcodes', default=1, type=int)
parser.add_argument('-n', '--n_seq', help='Max number of sequences to process (for debugging)', default=0, type=int)
options = parser.parse_args()
return options
def main():
nl = b'\n'
dnl = b'\n+\n'
dark = b'GGGGGGGGGGGGGGGGGGGG'
_chunk_size = 512 # number
options = get_options()
bc_fix = False
if options.bc_correct_file:
bc_fix = True
bc_list = []
for line in open(options.bc_correct_file):
t = line.split()
bc_list.append(bytes(t[1], encoding='ascii'))
bc_list = np.array(bc_list)
sp1 = b'CAAGCGTTGGCTTCTCGCATCT' # [0:22]
sp2 = b'ATCCACGTGCTTGAGAGGCCAGAGCATTCG' # [30:60]
sp3 = b'GTGGCCGATGTTTCGCATCGGCGTACGA' # [68:96]
r1 = HTSeq.FastqReader(options.read1)
r2 = HTSeq.FastqReader(options.read2)
read_iterator = zip(r1, r2)
fout1 = f'{options.prefix}_R1.fastq.gz' # for R1
fout2 = f'{options.prefix}_PB.fastq.gz' # for Barcode
fout3 = f'{options.prefix}_R2.fastq.gz' # for R2 (if any...)
raw_out1 = open(fout1, 'wb')
raw_out2 = open(fout2, 'wb')
fh_out1 = bgzip.BGZipWriter(raw_out1, batch_size=256)
fh_out2 = bgzip.BGZipWriter(raw_out2, batch_size=256)
raw_out3 = open(fout3, 'wb')
fh_out3 = bgzip.BGZipWriter(raw_out3, batch_size=256)
# remember to write bytes, not strings
r1_spool = b''
r2_spool = b''
r3_spool = b''
_spool_counter = 0
n_tot = 0
n_spwrong = 0
n_fail = 0
umi_start = 96
umi_end = umi_start + options.umi_length
umi_end_trim = len(sp3) + options.umi_length
for item in read_iterator:
if options.n_seq > 0 and n_tot == options.n_seq:
break
seq1 = item[0].seq
seq2 = item[1].seq
seq3 = item[1].seq[68:]
qual1 = item[0].qualstr
qual2 = item[1].qualstr
qual3 = item[1].qualstr[68:]
if options.rna:
if umi_end < len(seq2):
umi_seq = seq2[umi_start:umi_end]
umi_qual = qual2[umi_start:umi_end]
seq3 = seq2[umi_end:]
qual3 = qual2[umi_end:]
else:
umi_seq = umi_qual = b''
seq3 = qual3 = b''
elif len(seq3) >= 50:
# if there's enough sequence beyond the adapter
# return the sequence
# otherwise we may return nothing?
# 49 is the length of the adapter in ATAC
seq3 = seq3[49:]
qual3 = qual3[49:]
else:
qual3 = seq3 = b''
n_tot += 1
spacer_wrong = False
# should I check also sp3 for RNA?
# for the time being skip it. If sp1 or sp2 are not in place it should be
# skipped, if they are in place there's a chance any problem with sp3
# is only a single mismatch. Spare some computational burden
if hamming(seq2[:22], sp1) > options.threshold or hamming(seq2[30:60], sp2) > options.threshold:
spacer_wrong = True
n_spwrong += 1
if options.filter_failed and spacer_wrong:
continue
name1 = bytes('@' + item[0].name, encoding='ascii')
name2 = bytes('@' + item[1].name, encoding='ascii')
name3 = bytes('@' + item[1].name, encoding='ascii')
bc1 = seq2[22:30]
bc2 = seq2[60:68]
q_bc1 = qual2[22:30]
q_bc2 = qual2[60:68]
if bc_fix:
bc1 = correct_bc(bc1, bc_list, options.threshold)
bc2 = correct_bc(bc2, bc_list, options.threshold)
seq2_out = bc1 + bc2
q_seq2_out = q_bc1 + q_bc2
if options.rna:
seq2_out = seq2_out + umi_seq
q_seq2_out = q_seq2_out + umi_qual
# since bccorrection returns empty bc if not found
# we can use it to skip bad reads
if options.bc_correct_file and len(seq2_out) != len(q_seq2_out):
n_fail += 1
continue
r1_spool = r1_spool + name1 + nl + seq1 + dnl + qual1 + nl
r2_spool = r2_spool + name2 + nl + seq2_out + dnl + q_seq2_out + nl
r3_spool = r3_spool + name3 + nl + seq3 + dnl + qual3 + nl
_spool_counter += 1
if _spool_counter == _chunk_size:
fh_out1.write(r1_spool)
fh_out2.write(r2_spool)
fh_out3.write(r3_spool)
r1_spool = b''
r2_spool = b''
r3_spool = b''
_spool_counter = 0
# end, write remaining spool and close files
fh_out1.write(r1_spool)
fh_out1.close()
raw_out1.close()
fh_out2.write(r2_spool)
fh_out2.close()
raw_out2.close()
fh_out3.write(r3_spool)
fh_out3.close()
raw_out3.close()
n_pass = n_tot - n_spwrong - n_fail
sys.stderr.write(f"Total sequences:\t{n_tot}\n")
f = n_spwrong / n_tot * 100
sys.stderr.write(f"Error in spacers:\t{n_spwrong} ({f:.3f}%)\n")
f = n_fail / (n_tot - n_spwrong) * 100
sys.stderr.write(f"Failed BC:\t{n_fail} ({f:.3f}%)\n")
f = n_pass / n_tot * 100
sys.stderr.write(f"Passing sequences:\t{n_pass} ({f:.3f}%)\n")
# eff = n_pass / n_tot * 100
# sys.stderr.write(f'Found {n_pass} out of {n_tot} sequences {eff:.3f}%\n')
# eff = n_spwrong / n_tot * 100
# sys.stderr.write(f'Found {n_spwrong} dark sequences {eff:.3f}%\n')
# eff = n_fail / (n_tot - n_spwrong) * 100
# sys.stderr.write(f'Could not fix barcode for {n_fail} sequences {eff:.3f}%\n')
if __name__ == '__main__':
main()