-
Notifications
You must be signed in to change notification settings - Fork 0
/
FS_ALO.py
182 lines (162 loc) · 5.37 KB
/
FS_ALO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import numpy
from sklearn import neighbors
from sklearn.metrics import accuracy_score
import math
def initialization(lb,ub,P):
dim=lb.shape[0]
pos=numpy.zeros((P,dim))
for i in range(0,dim):
pos[:,i]=numpy.random.uniform(lb[i],ub[i],P)
return pos
def sort_pos(fitness,solutions):
sort_index = numpy.argsort(fitness)
P,dim=solutions.shape
npos=numpy.zeros((P,dim))
for i in range(0,P):
npos[i,:]=solutions[int(sort_index[i]),:]
return npos
def sort_fit(fitness):
sort_index = numpy.argsort(fitness)
P=fitness.shape[0]
ncost=numpy.zeros(P)
for i in range(0,P):
ncost[i]=fitness[int(sort_index[i])]
return ncost
def RWSelection(acc,P):
acc=[1/x for x in acc]
cumulative_sum=numpy.cumsum(acc)
p=numpy.random.rand()*cumulative_sum[P-1]
idx=-1
for i in range(0,P):
if(cumulative_sum[i]>p):
idx=i
break
return idx
def select_feat(train,feat_weights):
dim=train.shape[1]
total_feat=numpy.count_nonzero(feat_weights)
ntrain=numpy.zeros((train.shape[0],total_feat))
cont=0
for i in range(0,dim):
if(feat_weights[i]!=0):
ntrain[:,cont]=train[:,i]
cont=cont+1
return ntrain
def KNNCV(train,label,cv,K):
accuracy=[]
dim=train.shape[1]
model = neighbors.KNeighborsClassifier(int(K),weights='uniform')
for train_index, test_index in cv.split(train,label):
train_data=train[train_index,0:dim]
train_label=label[train_index]
test_data=train[test_index,0:dim]
test_label=label[test_index]
model.fit(train_data,train_label)
pred_label = model.predict(test_data)
acc=accuracy_score(test_label,pred_label)
accuracy.append(acc)
return numpy.mean(accuracy)
def get_error(train,label,cv,kval,solution):
selected_data=select_feat(train,solution)
total_feat=selected_data.shape[1]
if(total_feat==0):
fitness=1
else:
fitness=1-KNNCV(selected_data,label,cv,kval)
return fitness
def RW(dim,lb,ub,Iter,current_iter,AL):
I=1
ratio=current_iter/Iter
if (current_iter>(Iter*0.95)):
I=1+50*ratio
elif (current_iter>(Iter*0.90)):
I=1+20*ratio
elif (current_iter>(Iter*0.75)):
I=1+10*ratio
elif (current_iter>(Iter*0.50)):
I=1+5*ratio
lb=lb/I
ub=ub/I
if(numpy.random.rand()<0.5):
lb=lb+AL
else:
lb=-lb+AL
if(numpy.random.rand()>0.5):
ub=ub+AL
else:
ub=-ub+AL
RW=[]
for i in range(0,dim):
X=numpy.cumsum(2*(numpy.random.rand(Iter,1)>0.5)-1)
a=min(X)
b=max(X)
c=lb[i]
d=ub[i]
tmp1=(X-a)/(b-a)
X_norm=c+tmp1*(d-c)
RW.append(X_norm)
return numpy.array(RW)
def blx_oper(RW,E,lb,ub):
dim=RW.shape
ant_pos=numpy.zeros(dim)
d=abs(RW-E)
for j in range(0,dim[0]):
x1=min(RW[j],E[j])-0.5*d[j]
x2=max(RW[j],E[j])+0.5*d[j]
rd=numpy.random.uniform(x1,x2,1)
ant_pos[j]=max(min(rd,ub[j]),lb[j])
return ant_pos
def conti_to_disc(cont_feat,dim):
disc_feat=numpy.zeros((1,dim))
for i in range(0,dim):
sg=1/(1 + math.exp(-cont_feat[i]))
rd=numpy.random.uniform(0,1,1)
if(sg>rd):
disc_feat[0,i]=1
else:
disc_feat[0,i]=0
return disc_feat
def WFS(train,label,cv,P,Iter):
size=train.shape
dim=size[1]
lb=numpy.zeros(dim)
ub=numpy.ones(dim)
lb=numpy.append(lb,1)
ub=numpy.append(ub,10)
CC=numpy.zeros(Iter)
antlions=initialization(lb,ub,P)
alion_acc=numpy.zeros(P)
for i in range(0,P):
antlions[i,dim]=numpy.rint(antlions[i,dim])
alion_acc[i]=get_error(train,label,cv,antlions[i,dim],antlions[i,0:dim])
sorted_antlions=sort_pos(alion_acc,antlions)
alion_acc=sort_fit(alion_acc)
Elite_acc=numpy.copy(alion_acc[0])
Elite_pos=numpy.copy(sorted_antlions[0,:])
CC[0]=Elite_acc
current_iter=2
while current_iter<=Iter:
print(current_iter)
ant_pos=numpy.zeros([P,dim+1])
ant_acc=numpy.zeros(P)
for i in range(0,P):
idx=RWSelection(alion_acc,P)
if(idx==-1):
idx=0
RW_EL=RW(dim+1,lb,ub,Iter,current_iter,Elite_pos)
RW_RWS=RW(dim+1,lb,ub,Iter,current_iter,sorted_antlions[idx,:])
cont_feat=blx_oper(RW_EL[:,current_iter-1],RW_RWS[:,current_iter-1],lb,ub)
ant_pos[i,0:dim]=conti_to_disc(cont_feat[0:dim],dim)
ant_pos[i,dim]=numpy.rint(cont_feat[dim])
ant_acc[i]=get_error(train,label,cv,ant_pos[i,dim],ant_pos[i,0:dim])
total_fitness=numpy.append(alion_acc,ant_acc)
total_pos=numpy.concatenate((sorted_antlions,ant_pos),axis=0)
tmp_sorted_antlions=sort_pos(total_fitness,total_pos)
total_fitness=sort_fit(total_fitness)
alion_acc=numpy.copy(total_fitness[0:P])
sorted_antlions=numpy.copy(tmp_sorted_antlions[0:P,:])
Elite_acc=numpy.copy(alion_acc[0])
Elite_pos=numpy.copy(sorted_antlions[0,:])
CC[current_iter-1]=Elite_acc
current_iter=current_iter+1
return Elite_acc,Elite_pos,CC