forked from lesgo-jhu/lesgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
scaledep_dynamic.f90
276 lines (248 loc) · 10.2 KB
/
scaledep_dynamic.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
!!
!! Copyright (C) 2009-2017 Johns Hopkins University
!!
!! This file is part of lesgo.
!!
!! lesgo is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
!! the Free Software Foundation, either version 3 of the License, or
!! (at your option) any later version.
!!
!! lesgo is distributed in the hope that it will be useful,
!! but WITHOUT ANY WARRANTY; without even the implied warranty of
!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!! GNU General Public License for more details.
!!
!! You should have received a copy of the GNU General Public License
!! along with lesgo. If not, see <http://www.gnu.org/licenses/>.
!!
!*******************************************************************************
subroutine scaledep_dynamic(Cs_1D)
!*******************************************************************************
!
! Subroutine uses the scale dependent dynamic model to calculate the Smagorinsky
! coefficient Cs_1D and |S|. This is done layer-by-layer to save memory.
!
use types, only : rprec
use param, only : ld, nx, ny, nz, coord
use sim_param, only : u, v, w
use test_filtermodule
use sgs_stag_util, only : rtnewt
use sgs_param, only : S11, S12, S13, S22, S23, S33, delta, S, ee_now, &
u_bar, v_bar, w_bar, L11, L12, L13, L22, L23, L33, S_bar, &
S11_bar, S12_bar, S13_bar, S22_bar, S23_bar, S33_bar, &
S_S11_bar, S_S12_bar, S_S13_bar, S_S22_bar, S_S23_bar, S_S33_bar, &
u_hat, v_hat, w_hat, &
S_hat, S11_hat, S12_hat, S13_hat, S22_hat, S23_hat, S33_hat, &
S_S11_hat, S_S12_hat, S_S13_hat, S_S22_hat, S_S23_hat, S_S33_hat
implicit none
integer :: jz
real(rprec), dimension(nz), intent (inout) :: Cs_1D
real(rprec), save, allocatable, target, dimension(:,:) :: Q11, Q12, Q13, Q22, &
Q23, Q33
real(rprec), pointer, dimension(:,:) :: M11, M12, M13, M22, M23, M33
real(rprec), save, dimension(:), allocatable :: beta
logical, save :: arrays_allocated = .false.
real(rprec) :: const
real(rprec), dimension(0:5) :: A
real(rprec) :: a1, b1, c1, d1, e1, a2, b2, c2, d2, e2
real(rprec), dimension(ld,ny) :: LM,MM
! Allocate arrays
if( .not. arrays_allocated ) then
allocate ( Q11(ld,ny), Q12(ld,ny), Q13(ld,ny), &
Q22(ld,ny), Q23(ld,ny), Q33(ld,ny) )
allocate ( beta(nz) )
arrays_allocated = .true.
endif
! Associate pointers
M11 => Q11
M12 => Q12
M13 => Q13
M22 => Q22
M23 => Q23
M33 => Q33
do jz = 1, nz
! using L_ij as temp storage here
if ( (coord == 0) .and. (jz == 1) ) then
!!! watch the 0.25's: w = c*z**z near wall, so get 0.25
! put on uvp-nodes
L11(:,:) = u(:,:,1)*u(:,:,1) ! uv-node
L12(:,:) = u(:,:,1)*v(:,:,1) ! uv-node
L13(:,:) = u(:,:,1)*0.25_rprec*w(:,:,2) ! assume parabolic near wall
L22(:,:) = v(:,:,1)*v(:,:,1) ! uv-node
L23(:,:) = v(:,:,jz)*0.25_rprec*w(:,:,2) ! uv-node
L33(:,:) = (0.25_rprec*w(:,:,2))**2 ! uv-node
u_bar(:,:) = u(:,:,1)
v_bar(:,:) = v(:,:,1)
w_bar(:,:) = 0.25_rprec*w(:,:,2)
else ! w-nodes
L11(:,:) = 0.5_rprec*(u(:,:,jz) + u(:,:,jz-1))* &
0.5_rprec*(u(:,:,jz) + u(:,:,jz-1))
L12(:,:) = 0.5_rprec*(u(:,:,jz) + u(:,:,jz-1))* &
0.5_rprec*(v(:,:,jz) + v(:,:,jz-1))
L13(:,:) = 0.5_rprec*(u(:,:,jz) + u(:,:,jz-1))*w(:,:,jz)
L22(:,:) = 0.5_rprec*(v(:,:,jz) + v(:,:,jz-1))* &
0.5_rprec*(v(:,:,jz) + v(:,:,jz-1))
L23(:,:) = 0.5_rprec*(v(:,:,jz) + v(:,:,jz-1))*w(:,:,jz)
L33(:,:) = w(:,:,jz)*w(:,:,jz)
u_bar(:,:) = 0.5_rprec*(u(:,:,jz) + u(:,:,jz-1))
v_bar(:,:) = 0.5_rprec*(v(:,:,jz) + v(:,:,jz-1))
w_bar(:,:) = w(:,:,jz)
end if
u_hat = u_bar
v_hat = v_bar
w_hat = w_bar
! Filter first term and add the second term to get the final value
! in-place filtering
call test_filter ( u_bar )
call test_filter ( v_bar )
call test_filter ( w_bar )
call test_filter ( L11 )
L11 = L11 - u_bar*u_bar
call test_filter ( L12 )
L12 = L12 - u_bar*v_bar
call test_filter ( L13 )
L13 = L13 - u_bar*w_bar
call test_filter ( L22 )
L22 = L22 - v_bar*v_bar
call test_filter ( L23 )
L23 = L23 - v_bar*w_bar
call test_filter ( L33 )
L33 = L33 - w_bar*w_bar
Q11 = u_bar*u_bar
Q12 = u_bar*v_bar
Q13 = u_bar*w_bar
Q22 = v_bar*v_bar
Q23 = v_bar*w_bar
Q33 = w_bar*w_bar
call test_test_filter ( u_hat )
call test_test_filter ( v_hat )
call test_test_filter ( w_hat )
call test_test_filter ( Q11 )
Q11 = Q11 - u_hat*u_hat
call test_test_filter ( Q12 )
Q12 = Q12 - u_hat*v_hat
call test_test_filter ( Q13 )
Q13 = Q13 - u_hat*w_hat
call test_test_filter ( Q22 )
Q22 = Q22 - v_hat*v_hat
call test_test_filter ( Q23 )
Q23 = Q23 - v_hat*w_hat
call test_test_filter ( Q33 )
Q33 = Q33 - w_hat*w_hat
! calculate |S|
S(:,:) = sqrt(2._rprec*(S11(:,:,jz)**2 + S22(:,:,jz)**2 +&
S33(:,:,jz)**2 + 2._rprec*(S12(:,:,jz)**2 + &
S13(:,:,jz)**2 + S23(:,:,jz)**2)))
! already on w-nodes
S11_bar(:,:) = S11(:,:,jz)
S12_bar(:,:) = S12(:,:,jz)
S13_bar(:,:) = S13(:,:,jz)
S22_bar(:,:) = S22(:,:,jz)
S23_bar(:,:) = S23(:,:,jz)
S33_bar(:,:) = S33(:,:,jz)
S11_hat = S11_bar
S12_hat = S12_bar
S13_hat = S13_bar
S22_hat = S22_bar
S23_hat = S23_bar
S33_hat = S33_bar
call test_filter ( S11_bar )
call test_filter ( S12_bar )
call test_filter ( S13_bar )
call test_filter ( S22_bar )
call test_filter ( S23_bar )
call test_filter ( S33_bar )
call test_test_filter ( S11_hat )
call test_test_filter ( S12_hat )
call test_test_filter ( S13_hat )
call test_test_filter ( S22_hat )
call test_test_filter ( S23_hat )
call test_test_filter ( S33_hat )
S_bar = sqrt(2._rprec*(S11_bar**2 + S22_bar**2 + S33_bar**2 + &
2._rprec*(S12_bar**2 + S13_bar**2 + S23_bar**2)))
S_hat = sqrt(2._rprec*(S11_hat**2 + S22_hat**2 + S33_hat**2 + &
2._rprec*(S12_hat**2 + S13_hat**2 + S23_hat**2)))
S_S11_bar = S*S11(:,:,jz)
S_S12_bar = S*S12(:,:,jz)
S_S13_bar = S*S13(:,:,jz)
S_S22_bar = S*S22(:,:,jz)
S_S23_bar = S*S23(:,:,jz)
S_S33_bar = S*S33(:,:,jz)
S_S11_hat = S_S11_bar
S_S12_hat = S_S12_bar
S_S13_hat = S_S13_bar
S_S22_hat = S_S22_bar
S_S23_hat = S_S23_bar
S_S33_hat = S_S33_bar
call test_filter ( S_S11_bar )
call test_filter ( S_S12_bar )
call test_filter ( S_S13_bar )
call test_filter ( S_S22_bar )
call test_filter ( S_S23_bar )
call test_filter ( S_S33_bar )
call test_test_filter ( S_S11_hat )
call test_test_filter ( S_S12_hat )
call test_test_filter ( S_S13_hat )
call test_test_filter ( S_S22_hat )
call test_test_filter ( S_S23_hat )
call test_test_filter ( S_S33_hat )
! note: check that the Nyquist guys are zero!
! the 1./(nx*ny) is not really neccessary, but in practice it does
! affect the results.
a1 = -2._rprec*(delta**2)*4._rprec*sum( S_bar*(S11_bar*L11 + S22_bar*L22 + &
S33_bar*L33 + 2._rprec*( S12_bar*L12 + S13_bar*L13 + S23_bar*L23)))/ &
(nx*ny)
b1 = -2._rprec*(delta**2)*sum( S_S11_bar*L11 + S_S22_bar*L22 + &
S_S33_bar*L33 + 2._rprec*( S_S12_bar*L12 + S_S13_bar*L13 + &
S_S23_bar*L23))/(nx*ny)
c1 = (2._rprec*delta**2)**2 * sum( S_S11_bar**2 + S_S22_bar**2 + &
S_S33_bar**2 + &
2._rprec*( S_S12_bar**2 + S_S13_bar**2 + S_S23_bar**2))/(nx*ny)
d1 = (2._rprec*delta**2)**2 * 16._rprec*sum( 0.5_rprec*S_bar**4 )/(nx*ny)
e1 = 2._rprec*(2._rprec*delta**2)**2*4._rprec*sum( S_bar*( S11_bar* &
S_S11_bar +S22_bar*S_S22_bar + S33_bar*S_S33_bar + 2._rprec*( &
S12_bar*S_S12_bar + S13_bar*S_S13_bar + S23_bar*S_S23_bar)))/ &
(nx*ny)
a2 = -2._rprec*(delta**2)*16._rprec*sum( S_hat*(S11_hat*Q11 + S22_hat*Q22 +&
S33_hat*Q33 + 2._rprec*( S12_hat*Q12 + S13_hat*Q13 + S23_hat*Q23)))/&
(nx*ny)
b2 = -2._rprec*(delta**2)*sum( S_S11_hat*Q11 + S_S22_hat*Q22 +&
S_S33_hat*Q33 + 2._rprec*( S_S12_hat*Q12 + S_S13_hat*Q13 + &
S_S23_hat*Q23))/(nx*ny)
c2 = (2._rprec*delta**2)**2 * sum( S_S11_hat**2 + S_S22_hat**2 +&
S_S33_hat**2 + &
2._rprec*( S_S12_hat**2 + S_S13_hat**2 + S_S23_hat**2))/(nx*ny)
d2 = (2._rprec*delta**2)**2 *256._rprec*sum( 0.5_rprec*S_hat**4 )/(nx*ny)
e2 = 2._rprec*(2._rprec*delta**2)**2*16._rprec*sum( S_hat*( S11_hat* &
S_S11_hat + S22_hat*S_S22_hat + S33_hat*S_S33_hat + 2.*( &
S12_hat*S_S12_hat + S13_hat*S_S13_hat + S23_hat*S_S23_hat)))/ &
(nx*ny)
A(0) = b2*c1 - b1*c2
A(1) = a1*c2 - b2*e1
A(2) = b2*d1 + b1*e2 - a2*c1
A(3) = a2*e1 - a1*e2
A(4) = -a2*d1 - b1*d2
A(5) = a1*d2
beta(jz) = rtnewt(A,jz)
! now put beta back into M_ij: using Q_ij as storage
const = 2._rprec*delta**2
M11 = const*(S_S11_bar - 4._rprec*beta(jz)*S_bar*S11_bar)
M12 = const*(S_S12_bar - 4._rprec*beta(jz)*S_bar*S12_bar)
M13 = const*(S_S13_bar - 4._rprec*beta(jz)*S_bar*S13_bar)
M22 = const*(S_S22_bar - 4._rprec*beta(jz)*S_bar*S22_bar)
M23 = const*(S_S23_bar - 4._rprec*beta(jz)*S_bar*S23_bar)
M33 = const*(S_S33_bar - 4._rprec*beta(jz)*S_bar*S33_bar)
Cs_1D(jz) = sum(L11*M11 + L22*M22 + L33*M33 + 2._rprec*(L12*M12 + &
L13*M13 + L23*M23)) / &
sum(M11**2 + M22**2 + M33**2 + 2._rprec*(M12**2 + M13**2 + M23**2))
Cs_1D(jz) = max(0._rprec, real(Cs_1D(jz),rprec))
! Calculate ee_now (the current value of eij*eij)
LM = L11*M11+L22*M22+L33*M33+2._rprec*(L12*M12+L13*M13+L23*M23)
MM = M11**2+M22**2+M33**2+2._rprec*(M12**2+M13**2+M23**2)
ee_now(:,:,jz) = L11**2+L22**2+L33**2+2._rprec*(L12**2+L13**2+L23**2) &
-2._rprec*LM*Cs_1D(jz) + MM*Cs_1D(jz)**2
end do
! Nullify pointers
nullify( M11, M12, M13, M22, M23, M33 )
end subroutine scaledep_dynamic