forked from lesgo-jhu/lesgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lagrange_Ssim.f90
299 lines (259 loc) · 10.1 KB
/
lagrange_Ssim.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
!!
!! Copyright (C) 2009-2017 Johns Hopkins University
!!
!! This file is part of lesgo.
!!
!! lesgo is free software: you can redistribute it and/or modify
!! it under the terms of the GNU General Public License as published by
!! the Free Software Foundation, either version 3 of the License, or
!! (at your option) any later version.
!!
!! lesgo is distributed in the hope that it will be useful,
!! but WITHOUT ANY WARRANTY; without even the implied warranty of
!! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!! GNU General Public License for more details.
!!
!! You should have received a copy of the GNU General Public License
!! along with lesgo. If not, see <http://www.gnu.org/licenses/>.
!!
!*******************************************************************************
subroutine lagrange_Ssim()
!*******************************************************************************
!
! This subroutine dynamically calculates Cs_opt2. See Meneveau, Lund, Cabot,
! JFM, 319: 353-385 (1996) DOI: 10.1017/S0022112096007379
!
use types, only : rprec
use param
use sim_param, only : u, v, w
use sgs_param, only : F_LM, F_MM, Beta, Cs_opt2, opftime, lagran_dt
use sgs_param, only : S11, S12, S13, S22, S23, S33, delta, S, ee_now, Tn_all, &
u_bar, v_bar, w_bar, &
L11, L12, L13, L22, L23, L33, M11, M12, M13, M22, M23, M33, &
S_bar, S11_bar, S12_bar, S13_bar, S22_bar, S23_bar, S33_bar, &
S_S11_bar, S_S12_bar, S_S13_bar, S_S22_bar, S_S23_bar, S_S33_bar
use test_filtermodule
use messages
use string_util, only : string_concat
#ifdef PPLVLSET
use level_set, only : level_set_lag_dyn, level_set_Cs_lag_dyn
#endif
#ifdef PPDYN_TN
use sgs_param, only:F_ee2,F_deedt2,ee_past
#endif
#ifdef PPMPI
use mpi_defs, only:mpi_sync_real_array,MPI_SYNC_DOWNUP
#endif
implicit none
character(*), parameter :: sub_name = 'lagrange_Ssim'
real(rprec), parameter :: eps = 1.e-32_rprec
real(rprec), dimension(ld,ny) :: fourbeta
real(rprec), dimension(ld,ny) :: LM, MM, Tn, epsi, dumfac
real(rprec) :: const
real(rprec) :: opftdelta, powcoeff
integer :: istart, iend, jz, ii, i
logical, save :: F_LM_MM_init = .false.
! Set coefficients
opftdelta = opftime*delta
powcoeff = -1._rprec/8._rprec
const = 2._rprec*delta**2
#ifdef PPLVLSET
call level_set_lag_dyn (S11, S12, S13, S22, S23, S33)
#else
Beta = 1._rprec
#endif
! "Rearrange" F_LM, F_MM, F_ee2, F_deedt2 (running averages) so that
! their new positions (i,j,k) correspond to the current (i,j,k) particle
call interpolag_Ssim()
! For each horizontal level, calculate Lij(:,:) and Mij(:,:). Then update
! the running averages, F_LM(:,:,jz) and F_MM(:,:,jz), which are used to
! calculate Cs_opt2(:,:,jz).
do jz = 1,nz
! Calculate Lij
! Interp u,v,w onto w-nodes and store result as u_bar,v_bar,w_bar
! (except for very first level which should be on uvp-nodes)
if ( ( coord == 0 ) .and. (jz == 1) ) then ! uvp-nodes
u_bar(:,:) = u(:,:,1)
v_bar(:,:) = v(:,:,1)
w_bar(:,:) = .25_rprec*w(:,:,2)
else ! w-nodes
u_bar(:,:) = .5_rprec*(u(:,:,jz) + u(:,:,jz-1))
v_bar(:,:) = .5_rprec*(v(:,:,jz) + v(:,:,jz-1))
w_bar(:,:) = w(:,:,jz)
end if
! First term before filtering (not the final value)
L11 = u_bar*u_bar
L12 = u_bar*v_bar
L13 = u_bar*w_bar
L23 = v_bar*w_bar
L22 = v_bar*v_bar
L33 = w_bar*w_bar
! Filter first term and add the second term to get the final value
call test_filter ( u_bar ) ! in-place filtering
call test_filter ( v_bar )
call test_filter ( w_bar )
call test_filter ( L11 )
L11 = L11 - u_bar*u_bar
call test_filter ( L12 )
L12 = L12 - u_bar*v_bar
call test_filter ( L13 )
L13 = L13 - u_bar*w_bar
call test_filter ( L22 )
L22 = L22 - v_bar*v_bar
call test_filter ( L23 )
L23 = L23 - v_bar*w_bar
call test_filter ( L33 )
L33 = L33 - w_bar*w_bar
! Calculate |S|
S(:,:) = sqrt(2._rprec*(S11(:,:,jz)**2+S22(:,:,jz)**2+S33(:,:,jz)**2+&
2._rprec*(S12(:,:,jz)**2+S13(:,:,jz)**2+S23(:,:,jz)**2)))
! Select Sij for this level for test-filtering, saving results as Sij_bar
! note: Sij is already on w-nodes
S11_bar(:,:) = S11(:,:,jz)
S12_bar(:,:) = S12(:,:,jz)
S13_bar(:,:) = S13(:,:,jz)
S22_bar(:,:) = S22(:,:,jz)
S23_bar(:,:) = S23(:,:,jz)
S33_bar(:,:) = S33(:,:,jz)
call test_filter ( S11_bar )
call test_filter ( S12_bar )
call test_filter ( S13_bar )
call test_filter ( S22_bar )
call test_filter ( S23_bar )
call test_filter ( S33_bar )
! Calculate |S_bar| (the test-filtered Sij)
S_bar = sqrt(2._rprec*(S11_bar**2 + S22_bar**2 + S33_bar**2 +&
2._rprec*(S12_bar**2 + S13_bar**2 + S23_bar**2)))
! Calculate |S|Sij then test-filter this quantity
S_S11_bar(:,:) = S(:,:)*S11(:,:,jz)
S_S12_bar(:,:) = S(:,:)*S12(:,:,jz)
S_S13_bar(:,:) = S(:,:)*S13(:,:,jz)
S_S22_bar(:,:) = S(:,:)*S22(:,:,jz)
S_S23_bar(:,:) = S(:,:)*S23(:,:,jz)
S_S33_bar(:,:) = S(:,:)*S33(:,:,jz)
call test_filter ( S_S11_bar )
call test_filter ( S_S12_bar )
call test_filter ( S_S13_bar )
call test_filter ( S_S22_bar )
call test_filter ( S_S23_bar )
call test_filter ( S_S33_bar )
! Calculate Mij
fourbeta=4._rprec*Beta(:,:,jz)
M11 = const*(S_S11_bar - fourbeta*S_bar*S11_bar)
M12 = const*(S_S12_bar - fourbeta*S_bar*S12_bar)
M13 = const*(S_S13_bar - fourbeta*S_bar*S13_bar)
M22 = const*(S_S22_bar - fourbeta*S_bar*S22_bar)
M23 = const*(S_S23_bar - fourbeta*S_bar*S23_bar)
M33 = const*(S_S33_bar - fourbeta*S_bar*S33_bar)
! Calculate LijMij and MijMij for each point in the plane
LM = L11*M11+L22*M22+L33*M33+2._rprec*(L12*M12+L13*M13+L23*M23)
MM = M11**2+M22**2+M33**2+2._rprec*(M12**2+M13**2+M23**2)
! Calculate ee_now (the current value of eij*eij)
ee_now(:,:,jz) = L11**2+L22**2+L33**2+2._rprec*(L12**2+L13**2+L23**2) &
-2._rprec*LM*Cs_opt2(:,:,jz) + MM*Cs_opt2(:,:,jz)**2
! Using local time counter to reinitialize SGS quantities when restarting
if (inilag) then
if ((.not. F_LM_MM_init) .and. (jt == cs_count .or. jt == DYN_init)) then
print *,'F_MM and F_LM initialized'
F_MM (:,:,jz) = MM
F_LM (:,:,jz) = 0.025_rprec*MM
F_MM(ld-1:ld,:,jz)=1._rprec
F_LM(ld-1:ld,:,jz)=1._rprec
if (jz == 1) then
if (coord == 0) then
write(*, *) 'LM(1, 1)=', LM(1, 1)
write(*, *) 'MM(1, 1)=', MM(1, 1)
write(*, *) 'M11(1, 1)=', M11(1, 1)
write(*, *) 'S_S11_bar(1, 1)=', S_S11_bar(1, 1)
write(*, *) 'S11(1, 1, 1)=', S11(1, 1, 1)
write(*, *) 'S(1, 1)=', S(1, 1)
write(*, *) 'S11_bar(1, 1)=', S11_bar(1, 1)
write(*, *) 'S_bar(1, 1)=', S_bar(1, 1)
endif
endif
if (jz == nz) F_LM_MM_init = .true.
endif
endif
! Inflow
if (inflow_type > 0) then
iend = floor (fringe_region_end * nx + 1._rprec)
istart = floor ((fringe_region_end - fringe_region_len) * nx + 1._rprec)
Tn = merge(.1_rprec*const*S**2,MM,MM.le..1_rprec*const*S**2)
MM = Tn
if (istart > iend) then
write (*, *) 'lagrange_Ssim: istart > iend'
stop
endif
do i = istart, iend
ii = modulo (i - 1, nx) + 1
LM(ii, :) = 0._rprec
F_LM(ii, :, jz) = 0._rprec
enddo
endif
! Update running averages (F_LM, F_MM, F_ee2, F_deedt2)
! Determine averaging timescale
#ifdef PPDYN_TN
! based on Taylor timescale
Tn = 4._rprec*pi*sqrt(F_ee2(:,:,jz)/F_deedt2(:,:,jz))
#else
! based on Meneveau, Cabot, Lund paper (JFM 1996)
Tn = max (F_LM(:,:,jz) * F_MM(:,:,jz), eps)
Tn = opftdelta*(Tn**powcoeff)
#endif
! Calculate new running average = old*(1-epsi) + instantaneous*epsi
dumfac = lagran_dt/Tn
epsi = dumfac / (1._rprec + dumfac)
F_LM(:,:,jz)=(epsi*LM + (1.0_rprec-epsi)*F_LM(:,:,jz))
F_MM(:,:,jz)=(epsi*MM + (1.0_rprec-epsi)*F_MM(:,:,jz))
! clipping to avoid instability
F_LM(:,:,jz)= max(eps, F_LM(:,:,jz))
#ifdef PPDYN_TN
! note: the instantaneous value of the derivative is a Lagrangian average
F_ee2(:,:,jz) = epsi*ee_now(:,:,jz)**2 + (1._rprec-epsi)*F_ee2(:,:,jz)
F_deedt2(:,:,jz) = epsi*( ((ee_now(:,:,jz)-ee_past(:,:,jz))/lagran_dt)**2 )&
+ (1._rprec-epsi)*F_deedt2(:,:,jz)
ee_past(:,:,jz) = ee_now(:,:,jz)
#endif
! Calculate Cs_opt2 (use only one of the methods below)
! Standard method - LASS
! Added +eps to avoid division by zero
Cs_opt2(:,:,jz) = F_LM(:,:,jz) / (F_MM(:,:,jz) + eps)
Cs_opt2(ld-1:ld,:,jz) = 0._rprec
! 9-point average
!do i=1,nx
!do j=1,ny
! ilo=i-1; ihi=i+1; jlo=j-1; jhi=j+1
! if (ilo.eq.0) ilo=nx
! if (jlo.eq.0) jlo=ny
! if (ihi.eq.nx+1) ihi=1
! if (jhi.eq.ny+1) jhi=1
! Cs_opt2(i,j,jz) = (LM(i,j)+LM(ilo,j)+LM(ihi,j)+LM(ilo,jlo)+&
! LM(ihi,jlo)+LM(i,jlo)+LM(ilo,jhi)+LM(i,jhi)+LM(ihi,jhi))/ &
! (MM(i,j)+MM(ilo,j)+MM(ihi,j)+MM(ilo,jlo)+&
! MM(ihi,jlo)+MM(i,jlo)+MM(ilo,jhi)+MM(i,jhi)+MM(ihi,jhi))
!enddo
!enddo
! Directly
!Cs_opt2(:,:,jz) = LM(:,:)/MM(:,:)
! Clip Cs if necessary
Cs_opt2(:,:,jz)= max (eps, Cs_opt2(:,:,jz))
! Save Tn to 3D array for use with tavg_sgs
Tn_all(:,:,jz) = Tn(:,:)
end do
! Share new data between overlapping nodes
#ifdef PPMPI
call mpi_sync_real_array( F_LM, 0, MPI_SYNC_DOWNUP )
call mpi_sync_real_array( F_MM, 0, MPI_SYNC_DOWNUP )
call mpi_sync_real_array( Tn_all, 0, MPI_SYNC_DOWNUP )
#ifdef PPDYN_TN
call mpi_sync_real_array( F_ee2, 0, MPI_SYNC_DOWNUP )
call mpi_sync_real_array( F_deedt2, 0, MPI_SYNC_DOWNUP )
call mpi_sync_real_array( ee_past, 0, MPI_SYNC_DOWNUP )
#endif
#endif
#ifdef PPLVLSET
call level_set_Cs_lag_dyn ()
#endif
! Reset variable for use during next set of cs_count timesteps
if( use_cfl_dt ) lagran_dt = 0._rprec
end subroutine lagrange_Ssim