layout | title |
---|---|
default |
Importance weighting estimators |
This blog will contain a series of posts describing the use of the importance sampling estimator in the context of a recommender system. The first posts introduce the topic, and should be readable with only basic knowledge of probabilities theory. After that, I would like to explain some more advanced details on bias/variance tradeoff which typically arises when using this kind of estimator, and describe a variant we found useful in practice at Criteo.
-
{% assign date_format = site.minima.date_format | default: "%b %-d, %Y" %}
{{ post.date | date: date_format }}
<h2> <a href="{{site.repo_name}}{{ post.url }}"> {{ post.title }} </a> {% if post.excerpt %} <span> {{ post.excerpt }} </span> {% endif %} </h2> </li>
{% endif %} {% endfor %}
{% assign orderedpages = site.counterfactual | sort:"order" %} {% for post in orderedpages %} {% if post.show == true %}