forked from rodyo/FEX-GODLIKE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pop_single.m
969 lines (800 loc) · 49.5 KB
/
pop_single.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
classdef pop_single < handle
% =insert documentation here=
% Author : Rody P.S. Oldenhuis
% Affiliation : Delft University of Technology
% Faculty of Aerospace Engineering
% Dep. of Astrodynamics & Satellite Systems
% Contact : oldnhuis@dds.nl
% Licensing/
% (C) info : Frankly I don't care what you do with it,
% as long as I get some credit when you copy
% large portions of the code ^_^
% all properties are public
properties
algorithm % type of optimization algorithm used
funfcn % objective function(s)
individuals % members of the population
fitnesses % corresponding fitnesses
size % population size
lb % lower bounds
ub % upper bounds
orig_size % original size of the input
dimensions % dimensions
funevals = 0; % number of function evaluations made
iterations = 0; % iterations so far performed
options % options structure (see function [set_options] for info)
pop_data % structure to store intermediate data
% contents for single-objective optimization:
% pop_data.parent_population
% pop_data.offspring_population
% pop_data.function_values_parent
% pop_data.function_values_offspring
end
% public methods
methods (Access = public)
% constructor
function pop = pop_single(varargin)
% TODO: too much stuff is done in constructor. This messes stuff
% up for subclasses (e.g., pop_multi). Divide constructor?
% default check
error(nargchk(2, 7, nargin));
% input is ( new [pop_data] structure, previous [population] object, options )
% (subsequent call from GODLIKE)
% = = = = = = = = = = = = = = = = = = = = = = = = = =
if (nargin == 3)
% assign new pop_data structure
pop.pop_data = varargin{1};
% simply copy previous object
pop.funfcn = varargin{2}.funfcn; pop.iterations = varargin{2}.iterations;
pop.algorithm = varargin{2}.algorithm; pop.lb = varargin{2}.lb;
pop.funevals = varargin{2}.funevals; pop.ub = varargin{2}.ub;
pop.dimensions = varargin{2}.dimensions; pop.orig_size = varargin{2}.orig_size;
% copy individuals and fitnesses
pop.individuals = pop.pop_data.parent_population;
pop.fitnesses = pop.pop_data.function_values_parent;
% size and options might have changed
pop.size = size(pop.individuals, 1);%#ok
pop.options = varargin{3};
% replicate [ub] and [lb]
pop.lb = repmat(pop.lb(1, :), pop.size, 1);
pop.ub = repmat(pop.ub(1, :), pop.size, 1);
% Some algorithms need some lengthier initializing
pop.initialize_algorithms;
% return
return
end
% input is ( funfcn, popsize, lb, ub, dimensions, options )
% (initialization call from GODLIKE)
% = = = = = = = = = = = = = = = = = = = = = = = = = =
% parse input
% · · · · · · · · · · · · · · · · · · · · · ·
% assign input
pop.funfcn = varargin{1}; pop.ub = varargin{4};
pop.size = varargin{2}; pop.orig_size = varargin{5};
pop.lb = varargin{3}; pop.dimensions = varargin{6};
pop.options = varargin{7};
% cast funfcn to cell if necessary
if ~iscell(pop.funfcn), pop.funfcn = {pop.funfcn}; end
% replicate [lb] and [ub] to facilitate things a bit
% (and speed it up some more)
pop.lb = repmat(pop.lb, pop.size, 1); pop.ub = repmat(pop.ub, pop.size, 1);
% set optimization algorithm
pop.algorithm = pop.options.algorithm;
% Initialize population
% · · · · · · · · · · · · · · · · · · · · · ·
% initialize population
pop.individuals = pop.lb + rand(pop.size, pop.dimensions) .* (pop.ub-pop.lb);
% insert copy into info structure
pop.pop_data.parent_population = pop.individuals;
% temporarily copy parents to offspring positions
pop.pop_data.function_values_offspring = [];
pop.pop_data.offspring_population = pop.individuals;
% evaluate function for initial population (parents only)
pop.evaluate_function;
% copy function values into fitnesses properties
pop.fitnesses = pop.pop_data.function_values_offspring;
pop.pop_data.function_values_parent = pop.fitnesses;
% delete entry again
pop.pop_data.function_values_offspring = [];
% some algorithms need some lengthier initializing
pop.initialize_algorithms;
end % function (constructor)
% single iteration
function iterate(pop, times, FE)
% [times] and [FE] are only used for the MultiStart algorithm
% select proper candiadates
if strcmpi(pop.algorithm, 'GA')
pool = ... % binary tournament selection for GA
pop.tournament_selection(pop.size, 2);
else
pool = 1:pop.size; % whole population otherwise
end
% create offspring
if nargin == 1
pop.create_offspring(pool);
else
pop.create_offspring(pool, times, FE);
end
% if the algorithm is MS, this is the only step
if strcmpi(pop.algorithm, 'MS')
% adjust iterations
pop.iterations = pop.iterations + times;
% then return
return
end
% carefully evaluate objective function(s)
try
pop.evaluate_function;
catch userFcn_ME
pop_ME = MException('pop_single:function_doesnt_evaluate',...
'GODLIKE cannot continue: failure during function evaluation.');
userFcn_ME = addCause(userFcn_ME, pop_ME);
rethrow(userFcn_ME);
end
% replace the parents
pop.replace_parents;
% increase number of iterations made
pop.iterations = pop.iterations + 1;
end % function (single iteration)
end % methods
% % protected/hidden methods
methods (Access = protected, Hidden)
% tournament selection (only for GA)
function pool = tournament_selection(pop, pool_size, tournament_size)
% initialize mating pool
pool = zeros(pool_size, 1);
% total number of competitors
rnd_inds = zeros(pool_size*tournament_size,1);
% create random indices outside the loop (faster)
for i = 1:floor(pool_size*tournament_size/pop.size)
offset = pop.size*(i-1);
[dummy, rnds] = sort(rand(pop.size,1));
rnd_inds(offset+1:min(end,offset+pop.size), :) = rnds(1:min(end,nnz(~rnd_inds)));
end
% fill the mating pool
for i = 1:pool_size
% select [tournament_size] individuals at random
inds = rnd_inds(1:tournament_size);
rnd_inds = rnd_inds(tournament_size+1:end);
% let them compete according to
% (xj < yj) if fit(xj) < fit(yj)
[best, ind] = min(pop.fitnesses(inds));
% insert the index of the best one in the pool
pool(i) = inds(ind);
end % for
end % function (tournament selection)
% generate new generation
function create_offspring(pop, pool, times, FE)
% get the size of the pool
pool_size = length(pool);
% rename some stuff
parent_pop = pop.individuals(pool, :);
parent_fit = pop.fitnesses(pool, :);
% initialize
newpop = zeros(pop.size, pop.dimensions); % empty new population
newfit = NaN(pop.size, pop.options.num_objectives); % placeholder for the sites to
% evaluate the function
% determine which algorithm to use
type = upper(pop.algorithm);
% generate offspring with selected algorithm
switch type
% Multistart
case 'MS' % Multistart
% number of function evaluations still allowed
allowed_FE = pop.options.MaxFunEvals - FE;
% set relaxed options
options = optimset(...
'MaxIter', times, ...
'display', 'off', ...
'TolFun' , 10*pop.options.TolFun,...
'TolX' , 10*pop.options.TolX);
% reinitialize newpop
newpop = parent_pop;
% loop through the population
for i = 1:pop.size
% reset options
options = optimset(options, 'MaxFunEvals', allowed_FE);
% optimize this individual
[newpop(i, :), newfit(i, :), ef, output] =...
fminsearch(pop.funfcn{1}, parent_pop(i, :), options);
% update function evaluations
pop.funevals = pop.funevals + output.funcCount;
% number of function evaluations still allowed
allowed_FE = allowed_FE - pop.funevals;
% if the maximum has been exceeded, exit
if allowed_FE < 0
% first insert result into pop
pop.pop_data.offspring_population = newpop;
pop.pop_data.function_values_offspring = newfit;
% replace the parents
pop.replace_parents;
% then exit
break
end
end
% Differential Evolution
case 'DE' % Differential Evolution
% I love DE for its elegance and simplicity, and
% yet powerful optimization qualities
% rename some stuff
Flb = pop.options.DE.Flb;
Fub = pop.options.DE.Fub;
crossconst = pop.options.DE.CrossConst;
% Neoteric Differential Evolution
for i = 1:pop.size
% random indices
base = round(rand*(pool_size-1))+1; % RANDI is slower
d1 = round(rand*(pool_size-1))+1;
d2 = round(rand*(pool_size-1))+1;
% d2 may not be equal to d1
while (d1 == d2), d2 = round(rand*(pool_size-1))+1; end
% DE operator
if rand < crossconst || round(rand*(pool_size-1))+1 == i;
% DE operator when rnd < Cr
F = rand*(Fub-Flb) + Flb;
newpop(i, :) = parent_pop(base,:) + ...
F*(parent_pop(d1,:) - parent_pop(d2,:));
else
% insert random parent otherwise
rnd_ind = round(rand*(pool_size-1))+1;
newpop(i, :) = parent_pop(rnd_ind, :);
newfit(i, :) = parent_fit(rnd_ind, :);
end
end % for
% Particle Swarm Optimization
case 'PSO' % Particle Swarm Optimization
% first, make sure the pool is large enough
temp_pop = zeros(pop.size, pop.dimensions);
if numel(parent_pop) ~= pop.size*pop.dimensions
% insert all values from the pool
temp_pop(1:size(parent_pop,1), :) = parent_pop; %#ok
% insert random members from [parent_pop]
for i = size(parent_pop,1)+1:pop.size %#ok
randinds = round(rand*(size(parent_pop,1)-1)+1); %#ok
temp_pop(i, :) = parent_pop(randinds, :);
end
% equate the two
parent_pop = temp_pop;
end
% Creating offspring with PSO is pretty simple:
newpop = parent_pop + pop.pop_data.velocities;
% Since the velocity can not be zero, each individual
% changes during the creation of offspring, so the
% function values of ALL new individuals have to be
% re-calculated.
% Genetic Algorithm
case 'GA' % Genetic Algorithm
% Generating offspring in GA requires quite many
% operations. Compared to DE or PSO, it's really
% quite messy:
% rename some stuff
Coding = pop.options.GA.Coding;
MutProb = pop.options.GA.MutationProb;
CrossProb = pop.options.GA.CrossProb;
NumBits = pop.options.GA.NumBits;
if strcmpi(Coding, 'Binary')
Binary = true; Real = false;
else
Binary = false; Real = true;
end
% save signs
signs = sign(parent_pop);
% initialize some arrays that keep track of the signs
child_signs = zeros(2, pop.dimensions);
new_signs = zeros(pop.size, pop.dimensions);
% convert to binary
if Binary
% find correct multiplier
multiplier = 1;
temp_pop = round(parent_pop); % initialize
parent_pop = abs(parent_pop); % take absolute value
temp_pop = abs(temp_pop); % take absolute value
while (max(temp_pop(:)) <= 2^(NumBits)) && ~all(temp_pop(:) == 0)
multiplier = multiplier*10; % adjust multiplier
temp_pop = round(parent_pop*multiplier);% convert to integers
end
multiplier = multiplier/10; % correct multiplier
temp_pop = round(parent_pop*multiplier);% convert to integers
% see if selected number of bits cannot represent population
if (multiplier == 0.1) && ~all(temp_pop(:) == 0)
error('pop_single:numbits_insufficient', ...
['Maximum value in population can not be represented by the\n',...
'selected number of bits. Increase ''NumBits'' option, or\n',...
'rescale your problem.']);
end
% convert each column separately
bit_representation = false(pool_size, pop.dimensions*NumBits);
% NOTE: MATLAB's DEC2BIN() should be avoided, as it would
% be called in a loop and is not a builtin. Moreover, the
% output of DEC2BIN() is a string, which is pretty
% inconvenient for the mutation operator. Therefore, do
% the conversion manually
for i = 1:pop.dimensions
% convert this column to bits
bits = temp_pop(:, i);
bits = bits*pow2(1-NumBits:0);
bits = floor(bits); % oddly enough, this is much faster
bits = bits - fix(bits/2)*2 ; % than using REM(bits,2)...
bits = logical(bits);
% append in output matrix
bit_representation(:, NumBits*(i-1)+1:NumBits*(i-1)+NumBits) = bits;
end
% equate the two
parent_pop = bit_representation;
% redefine newpop
newpop = false(pop.size, pop.dimensions*NumBits);
% initialize children
children = false(2, size(parent_pop,2)); %#ok
% and define convenient conversion array
% (starts mattering for large population sizes)
convert_to_dec = repmat(2.^(NumBits-1:-1:0), pop.size, 1);
% convert to array of strings in case of real-representation
elseif Real
% do everything in one go with INT2STR()
% (avoid NUM2STR, as its horrifically slowin a loop)
% (note that the signs are still included in the array)
real_representation = int2str(abs(parent_pop)*1e18);
% convert to array of doubles
real_representation = real_representation - '0';
% equate the two
parent_pop = real_representation;
% initialize children
children = zeros(2, size(parent_pop, 2)); %#ok
% redefine newpop
newpop = zeros(pop.size, size(parent_pop, 2)); %#ok
end
% perform crossover
for i = 1:2:pop.size-1
% select two parents at random
parent_inds = round(rand(2,1)*(pool_size-1)+1);
parents = parent_pop(parent_inds, :);
if Binary, parent_signs = signs(parent_inds, :); end
% crossover if a random number is less than [CrossProb]
% otherwise, just insert the two parents into the new
% population
if (rand < CrossProb)
% select random crossover point
crosspoint = round(rand*(size(parents,2)-1))+1; %#ok
% perform crossover
children(1, :) = [parents(1,1:crosspoint),parents(2,crosspoint+1:end)];
children(2, :) = [parents(2,1:crosspoint),parents(1,crosspoint+1:end)];
% also keep track of the signs
if Binary
index = ceil(crosspoint/NumBits);
child_signs(1, :) = [parent_signs(1,1:index),...
parent_signs(2,index+1:end)];
child_signs(2, :) = [parent_signs(2,1:index),...
parent_signs(1,index+1:end)];
end
% insert children
newpop(i:i+1, :) = children;
if Binary, new_signs(i:i+1, :) = child_signs; end
else
newpop(i:i+1, :) = parents;
newfit(i:i+1, :) = parent_fit(parent_inds, :);
if Binary, new_signs(i:i+1, :) = parent_signs; end
end % if
end % for
% if the population size is an uneven number, the last entry
% is still open. Just stick a random parent there
if mod(pop.size,2)
index = round(rand*(pool_size-1)+1);
newpop(end, :) = parent_pop(index, :);
newfit(end, :) = parent_fit(index, :);
if Binary, new_signs(end,:) = signs(index,:); end
end
% mutation operator
mutate = rand(pop.size, size(parent_pop,2)) < MutProb; %#ok
% If any individual mutates, the function has to be re-evaluated
newfit(sum(mutate,2)>0,:) = NaN;
% Binary coding - simply flip bits
if Binary, newpop(mutate) = ~newpop(mutate); end
% Real coding - select a new number from [0,9]
if Real
% don't mutate spaces
space_inds = newpop(mutate) == (' '-'0');
mutate(mutate) = ~space_inds;
% don't mutate signs
sign_inds = newpop(mutate) == ('-'-'0');
mutate(mutate) = ~sign_inds;
% random new digits
rnd_inds = round(rand(nnz(mutate),1)*9);
% convert to strings
newpop(mutate) = rnd_inds;
end
% convert back to real numbers
if Binary
% initialize
temp_pop = zeros(pop.size, pop.dimensions);
% convert columnwise again
for i = 1:pop.dimensions
% convert column to decimal representation
temp_pop(:, i) = sum(convert_to_dec.*newpop(:, 1:NumBits), 2);
% delete entries
newpop(:, 1:NumBits) = [];
end
% divide by multiplier, and re-assign signs
temp_pop = temp_pop/multiplier.*new_signs;
% assign newpop
newpop = temp_pop;
elseif Real
% initialize
temp_pop = zeros(pop.size, pop.dimensions);
% assign space character
space = ' '-'0';
% append one "space" to the end
newpop(:, end+1) = space;
% then convert back to double, column per column
for i = 1:pop.dimensions
% trim leading "spaces"
while all(newpop(:,1)==space), newpop = newpop(:, 2:end); end
% first find one that does not begin with a "space"
non_space = find(newpop(:,1) ~= space, 1);
% find indices for the next "space"
space_ind = find(newpop(non_space,:) == space, 1);
space_ind = space_ind-1;
% use power trick forthe conversion
powers = 10.^(space_ind-1:-1:0);
powers = powers(ones(pop.size,1),:);
% remove residual spaces
ttemp_pop = newpop(:,1:space_ind);
ttemp_pop(ttemp_pop == space) = 0;
% insert in final array
temp_pop(:, i) = sum(ttemp_pop.*powers,2)/1e18;
% adjust newpop
newpop = newpop(:, space_ind+1:end);
end
% assign newpop
% CG: removed 'signs.*' because it's not needed:
% Real representation preserves signs?
newpop = temp_pop;
end
% Adpative Simulated Annealing
case 'ASA' % Adpative Simulated Annealing
% Generating the new population is very straightforward
% in ASA. It only requires changing ONE of the decision
% variables per individual, which can easily be vectorized.
% first, make sure the pool is large enough
temp_pop = zeros(pop.size, pop.dimensions);
if numel(parent_pop) ~= pop.size*pop.dimensions
% insert all values from the pool
temp_pop(1:size(parent_pop,1), :) = parent_pop; %#ok
% insert random members from [parent_pop]
for i = size(parent_pop,1)+1:pop.size %#ok
randinds = round(rand*(size(parent_pop,1)-1)+1); %#ok
temp_pop(i, :) = parent_pop(randinds, :);
end
% equate the two
parent_pop = temp_pop;
end
% Use Bolzmann distribution to create new points
rands = sqrt(pop.pop_data.temperature)*randn(pop.size, pop.dimensions);
newpop = parent_pop + rands;
% at least one dimension always changes, so ALL function
% values have to be recomputed
end % switch
% check constraints and boundaries after
% offspring generation
[newpop, newfit] = pop.honor_bounds(newpop, newfit);
% insert result into pop
pop.pop_data.offspring_population = newpop;
pop.pop_data.function_values_offspring = newfit;
end % function (create offspring)
% selectively replace the parent population with members
% from the offspring population (single-objective optimization)
function replace_parents(pop)
% rename for clarity
new_fits = pop.pop_data.function_values_offspring;
new_inds = pop.pop_data.offspring_population;
% operation depends on the algorithm again
switch upper(pop.algorithm)
% Multistart algorithm
case 'MS'
% MS just replaces everything
pop.pop_data.parent_population = new_inds;
pop.pop_data.function_values_parent = new_fits;
% Differential Evolution
case 'DE' % Differential Evolution
% DE and GA both use simple greedy replacement
better_inds = new_fits < pop.fitnesses;
pop.pop_data.parent_population(better_inds, :) = new_inds(better_inds, :);
pop.pop_data.function_values_parent(better_inds, :) = new_fits(better_inds, :);
% Genetic Algorithm
case 'GA' % Genetic Algorithm
% DE and GA both use simple greedy replacement
better_inds = new_fits < pop.fitnesses;
pop.pop_data.parent_population(better_inds, :) = new_inds(better_inds, :);
pop.pop_data.function_values_parent(better_inds, :) = new_fits(better_inds, :);
% Particle Swarm Optimization
case 'PSO' % Particle Swarm Optimization
% PSO simply replaces all parents
pop.pop_data.parent_population = new_inds;
pop.pop_data.function_values_parent = new_fits;
% update the neighbor bests
% (this implementation is fast, not intuitive)
% add one NaN to the new_fits array
new_fits = [new_fits; NaN];
% copy neighbors
neighbors = pop.pop_data.neighbors;
% let those that are zero refer to the NaN entry
neighbors(neighbors == 0) = size(new_fits,1); %#ok
% find the best ones
[neighbor_best, ind] = min(new_fits(neighbors),[],2);
% find those that are better
better_neighbors = neighbor_best < pop.pop_data.neighbor_best_fits;
% no better ones might be found
if any(better_neighbors)
% insert function values
pop.pop_data.neighbor_best_fits(better_neighbors) = ...
neighbor_best(better_neighbors);
% insert individuals
for i = (find(better_neighbors)).'
pop.pop_data.neighbor_best_inds(i, :) = ...
new_inds(neighbors(i, ind(i)), :);
end
end
% chop off additional NaN-entry again
new_fits = new_fits(1:end-1);
% update the local bests
new_locals = new_fits < pop.pop_data.local_best_fits;
pop.pop_data.local_best_fits(new_locals, 1) = new_fits(new_locals, 1);
pop.pop_data.local_best_inds(new_locals, :) = new_inds(new_locals, :);
% update the global best
if (min(new_fits) < pop.pop_data.global_best_fit)
[pop.pop_data.global_best_fit, ind] = min(new_fits);
pop.pop_data.global_best_ind = new_inds(ind, :);
end
% create random matrices
r1 = rand(pop.size, 1); r1 = r1(:, ones(1,pop.dimensions));
r2 = rand(pop.size, 1); r2 = r2(:, ones(1,pop.dimensions));
r3 = rand(pop.size, 1); r3 = r3(:, ones(1,pop.dimensions));
% update velocities
pop.pop_data.velocities = ...
pop.options.PSO.omega *pop.pop_data.velocities + ...
pop.options.PSO.eta1 *r1.*(pop.pop_data.neighbor_best_inds - new_inds)+...
pop.options.PSO.eta2 *r2.*...
bsxfun(@minus, pop.pop_data.global_best_ind, new_inds)+...
pop.options.PSO.eta3 *r3.*(pop.pop_data.local_best_inds - new_inds);
% check the bounds
pop.honor_bounds([]);
% Adaptive Simulated Annealing
case 'ASA' % Adaptive Simulated Annealing
% rename some stuff
T = pop.pop_data.temperature;
T0 = pop.options.ASA.T0;
nrg = pop.pop_data.function_values_offspring;
prevnrg = pop.pop_data.function_values_parent;
cool = pop.options.ASA.CoolingSchedule;
iters = pop.iterations - pop.pop_data.iters;
% reject or accept the new population, according to
% the probabilistic rule
nrgdiff = (prevnrg - nrg); % energy difference
nrgdiff = nrgdiff / max(abs(nrgdiff(:))); % rescale the differences
ind = nrgdiff > 0; % always accept better ones
probind = ~ind & rand(pop.size, 1) < exp( nrgdiff/T );
% accept worse ones based on
% probabalistic rule
swapinds = ind|probind; % indices to be swapped
% apply cooling schedule
pop.pop_data.temperature = max(eps,cool(T, T0, iters));
% replace the individuals
pop.pop_data.parent_population(swapinds, :) = new_inds(swapinds, :);
% also replace the function values
pop.pop_data.function_values_parent(swapinds, :) = new_fits(swapinds, :);
end % switch
% copy individuals and fitnesses to respective properties
pop.fitnesses = pop.pop_data.function_values_parent;
pop.individuals = pop.pop_data.parent_population;
end % function
% evaluate the objective function(s) correctly
function evaluate_function(pop)
% multi-objective optimization overloads this function for
% some initialization, but returns here later.
% find evaluation sites
if isempty(pop.pop_data.function_values_offspring)
sites = 1:pop.size; % only in pop-initialization
fvs = zeros(length(sites), 1); % Single-objective only
else
% TODO: check if this works correctly; set as logicals
% here, but used as index below
sites = ~isfinite(pop.pop_data.function_values_offspring(:, 1));
fvs = zeros(nnz(sites), ...
size(pop.pop_data.function_values_offspring, 2));
end
num_pop = nnz(sites);
pop_inputs = ...
pop.pop_data.offspring_population(sites, :);
% evaluate all functions for each population member in
% parallel or in serial
if pop.options.UseParallel
parfor pop_num=1:num_pop
fvs(pop_num, :) = ...
evaluate_one_function(pop, pop_inputs(pop_num, :));
end
else
for pop_num=1:num_pop
fvs(pop_num, :) = ...
evaluate_one_function(pop, pop_inputs(pop_num, :));
end
end
pop.pop_data.function_values_offspring(sites, :) = fvs;
% update number of function evaluations
% (count each function call as one even though it returns
% multiple objectives)
pop.funevals = pop.funevals + num_pop*numel(pop.funfcn);
end % function
% Evaluate a single iterations of function(s), so that this can be run in
% parallel.
function pop_output = evaluate_one_function(pop, pop_input)
% TODO: move this to pop_multi and keep a simpler one here. Test
% with demo.
if pop.options.obj_columns
pop_output = ...
feval(pop.funfcn{1}, pop_input);
else
for ii = 1:numel(pop.funfcn)
pop_output(1, ii) = ...
feval(pop.funfcn{ii}, pop_input);
end
end
end % function
% check boundaries
function [newpop, newfit] = honor_bounds(pop, newpop, newfit)
% find violation sites
outsiders1 = false; outsiders2 = false;
if ~isempty(newpop)
outsiders1 = newpop < pop.lb;
outsiders2 = newpop > pop.ub;
end
% PSO requires more elaborate check
if strcmpi(pop.algorithm, 'PSO')
% rename for clarity
velocity = pop.pop_data.velocities; % extract velocities
velUb = (pop.ub - pop.lb)/5; % upper bounds on velocity
velLb = (pop.ub - pop.lb)/1e50; % lower bounds on velocity
% bounce against bounds
if any(outsiders1(:) | outsiders2(:))
newpop(outsiders1) = newpop(outsiders1) - velocity(outsiders1);
newpop(outsiders2) = newpop(outsiders2) - velocity(outsiders2);
velocity(outsiders1) = -velocity(outsiders1);
velocity(outsiders2) = -velocity(outsiders2);
end
% limit velocity
Velsign = sign(velocity);
outsiders1 = abs(velocity) > abs(velUb);
outsiders2 = abs(velocity) < abs(velLb);
if any(outsiders1(:)) || any(outsiders2(:))
velocity(outsiders1) = Velsign(outsiders1).*velUb(outsiders1);
velocity(outsiders2) = Velsign(outsiders2).*velLb(outsiders2);
end
% re-insert velocity
pop.pop_data.velocities = velocity;
% boundary violations in all other algorithms
% are simply reinitialized
else
reinit = pop.lb + rand(pop.size, pop.dimensions).*(pop.ub-pop.lb);
if any(outsiders1(:) | outsiders2(:))
newpop(outsiders1) = reinit(outsiders1);
newpop(outsiders2) = reinit(outsiders2);
% also remove any function values
newfit(any(outsiders1,2), :) = NaN;
newfit(any(outsiders2,2), :) = NaN;
end
end % if
end % function
% initialize algorithms
function initialize_algorithms(pop)
% PSO
if strcmpi(pop.algorithm, 'PSO')
% initialize velocities
% (average velocities about 20% of [[lb]-[ub]] interval)
pop.pop_data.velocities = randn(pop.size, pop.dimensions) .* (pop.ub-pop.lb)/5;
% rename for clarity
NumNeighbors = pop.options.PSO.NumNeighbors;
% initialize neighbors
switch lower(pop.options.PSO.NetworkTopology)
case 'star'
% star topology - in each star, there is one
% focal particle, to which the other members
% of the star are connected.
% initialize
all_particles = (1:pop.size).';
num_stars = floor(pop.size/NumNeighbors);
pop.pop_data.neighbors = zeros(pop.size, NumNeighbors-1);
% initialize stars
if num_stars ~= 0
[dummy, focals] = sort(rand(pop.size,1));
focals = all_particles(focals(1:num_stars));
all_particles(focals) = [];
% select [NumNeighbors] random & unique neighbors
% for each focal particle
for i = 1:num_stars
% select new neighbors
[dummy, inds] = sort(rand(size(all_particles,1),1)); %#ok
new_neighs = all_particles(inds(1:NumNeighbors-1));
% adjust array
for j = 1:NumNeighbors-1
all_particles(all_particles == new_neighs(j)) = [];
end
% assign new neighbors to focal particle
pop.pop_data.neighbors(focals(i), :) = new_neighs;
% assign focal particle to new neighbors
pop.pop_data.neighbors(new_neighs, 1) = focals(i);
end
else
end
% population might be badly scaled for selected
% number of stars. Correct for this
% TODO - it works; those particles simply have no neighbors
case 'ring'
% initialize
all_particles = (1:pop.size).';
num_rings = floor(pop.size/NumNeighbors);
pop.pop_data.neighbors = zeros(pop.size, 2);
% form the ring
for i = 1:num_rings
% randomly select [NumNeighbors] particles
[dummy, inds] = sort(rand(size(all_particles,1),1)); %#ok
new_neighs = all_particles(inds(1:NumNeighbors));
% insert circularly shifted arrays
pop.pop_data.neighbors(new_neighs, :) = ...
[circshift(new_neighs,1), circshift(new_neighs,-1)];
% adjust array
for j = 1:NumNeighbors
all_particles(all_particles == new_neighs(j)) = [];
end
end
% population might be badly scaled for selected
% number of rings. Correct for this
% TODO - it works; those particles simply have no neighbors
case 'fully_connected'
% fully connected swarm - all particles have
% ALL other particles as neighbor
% initialize
pop.pop_data.neighbors = zeros(pop.size, pop.size-1);
% fill the neighbors
for i = 1:pop.size
pop.pop_data.neighbors(i, :) = [1:i-1, i+1:pop.size];
end
end % switch
% find global best solution
[global_best, index] = min(pop.fitnesses);
pop.pop_data.global_best_ind = pop.individuals(index, :);
pop.pop_data.global_best_fit = global_best;
% initially, local best solutions are the function values themselves
pop.pop_data.local_best_inds = pop.individuals;
pop.pop_data.local_best_fits = pop.fitnesses;
% find the neighbor best
pop.pop_data.neighbor_best_fits = zeros(pop.size,1);
pop.pop_data.neighbor_best_inds = zeros(pop.size, pop.dimensions);
for i = 1:pop.size
neighbors = pop.pop_data.neighbors(i, :);
neighbors = neighbors(neighbors ~= 0);
if isempty(neighbors), continue, end
[neighbor_best, ind] = min(pop.fitnesses(neighbors));
pop.pop_data.neighbor_best_fits(i, 1) = neighbor_best;
pop.pop_data.neighbor_best_inds(i, :) = pop.individuals(ind, :);
end
% ASA
elseif strcmpi(pop.algorithm, 'ASA')
% if the initial temperature is left empty, estimate
% an optimal one. This is simply the largest quantity
% in (ub - lb), divided by 4, and squared. This
% ensures that during the first few iterations,
% particles are able to spread over the entire search
% space; 4 = 2*2*std(randn(inf,1)).
if isempty(pop.options.ASA.T0) && (pop.iterations == 0)
% only do it upon initialization
% find the maximum value
sqrtT0dv4 = max(pop.ub(1,:) - pop.lb(1, :))/4;
% set T0
pop.options.ASA.T0 = sqrtT0dv4^2;
end
% initialize temperature
pop.pop_data.temperature = pop.options.ASA.T0;
% initialize iterations
pop.pop_data.iters = pop.iterations;
end% if
end % function
end % methods (private)
end % classdef