-
Notifications
You must be signed in to change notification settings - Fork 0
/
variable_mgr_util_test.py
152 lines (132 loc) · 5.72 KB
/
variable_mgr_util_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for variable_mgr_util."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import variable_mgr_util
class VariableMgrUtilTest(tf.test.TestCase):
def testGetLossScaleUpdateOpTruePath(self):
loss_scale = tf.Variable(4)
# loss_scale_normal_steps >= inc_loss_scale_every_n
loss_scale_normal_steps = tf.Variable(10)
inc_loss_scale_every_n = 10
update_op = variable_mgr_util.get_loss_scale_update_op(
loss_scale, loss_scale_normal_steps, inc_loss_scale_every_n)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(update_op)
self.assertEqual(sess.run(loss_scale), 8)
self.assertEqual(sess.run(loss_scale_normal_steps), 0)
def testGetLossScaleUpdateOpFalsePath(self):
loss_scale = tf.Variable(4)
# loss_scale_normal_steps < inc_loss_scale_every_n
loss_scale_normal_steps = tf.Variable(9)
inc_loss_scale_every_n = 10
update_op = variable_mgr_util.get_loss_scale_update_op(
loss_scale, loss_scale_normal_steps, inc_loss_scale_every_n)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(update_op)
self.assertEqual(sess.run(loss_scale), 4)
self.assertEqual(sess.run(loss_scale_normal_steps), 10)
def testAppendGradientsWithLossScaleWithAutoScaleDisabled(self):
v = tf.Variable(0)
training_ops = []
get_apply_gradients_ops_func = lambda: [tf.assign(v, v + 1)]
loss_scale_params = variable_mgr_util.AutoLossScaleParams(
enable_auto_loss_scale=False, # no auto loss scale.
loss_scale=tf.Variable(4),
loss_scale_normal_steps=tf.Variable(10),
inc_loss_scale_every_n=10,
is_chief=True)
variable_mgr_util.append_gradients_with_loss_scale(
training_ops,
get_apply_gradients_ops_func,
loss_scale_params,
grad_has_inf_nan=True)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(training_ops)
self.assertEqual(sess.run(v), 1)
self.assertEqual(sess.run(loss_scale_params.loss_scale), 4)
self.assertEqual(sess.run(loss_scale_params.loss_scale_normal_steps), 10)
def testAppendGradientsWithLossScaleForNonChiefWorker(self):
v = tf.Variable(0)
training_ops = []
get_apply_gradients_ops_func = lambda: [tf.assign(v, v + 1)]
loss_scale_params = variable_mgr_util.AutoLossScaleParams(
enable_auto_loss_scale=True,
loss_scale=tf.Variable(4),
loss_scale_normal_steps=tf.Variable(10),
inc_loss_scale_every_n=10,
is_chief=False) # Non-chief
variable_mgr_util.append_gradients_with_loss_scale(
training_ops,
get_apply_gradients_ops_func,
loss_scale_params,
grad_has_inf_nan=False)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(training_ops)
self.assertEqual(sess.run(v), 1)
self.assertEqual(sess.run(loss_scale_params.loss_scale), 4)
self.assertEqual(sess.run(loss_scale_params.loss_scale_normal_steps), 10)
def testAppendGradientsWithLossScaleWithoutNan(self):
v = tf.Variable(0)
training_ops = []
get_apply_gradients_ops_func = lambda: [tf.assign(v, v + 1)]
loss_scale_params = variable_mgr_util.AutoLossScaleParams(
enable_auto_loss_scale=True,
loss_scale=tf.Variable(4, dtype=tf.float32),
loss_scale_normal_steps=tf.Variable(10),
inc_loss_scale_every_n=10,
is_chief=True)
variable_mgr_util.append_gradients_with_loss_scale(
training_ops,
get_apply_gradients_ops_func,
loss_scale_params,
grad_has_inf_nan=tf.constant(False))
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(training_ops)
self.assertEqual(sess.run(v), 1)
self.assertEqual(sess.run(loss_scale_params.loss_scale), 8)
self.assertEqual(sess.run(loss_scale_params.loss_scale_normal_steps), 0)
def testAppendGradientsWithLossScaleWithtNan(self):
v = tf.Variable(0)
training_ops = []
get_apply_gradients_ops_func = lambda: [tf.assign(v, v + 1)]
loss_scale_params = variable_mgr_util.AutoLossScaleParams(
enable_auto_loss_scale=True,
loss_scale=tf.Variable(4, dtype=tf.float32),
loss_scale_normal_steps=tf.Variable(10),
inc_loss_scale_every_n=10,
is_chief=True)
variable_mgr_util.append_gradients_with_loss_scale(
training_ops,
get_apply_gradients_ops_func,
loss_scale_params,
grad_has_inf_nan=tf.constant(True))
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(training_ops)
self.assertEqual(sess.run(v), 0) # Skip updating for v.
# halve loss_scale and reset local_scale_normal_steps.
self.assertEqual(sess.run(loss_scale_params.loss_scale), 2)
self.assertEqual(sess.run(loss_scale_params.loss_scale_normal_steps), 0)
if __name__ == '__main__':
tf.test.main()