-
Notifications
You must be signed in to change notification settings - Fork 0
/
convnet_builder.py
490 lines (462 loc) · 19.8 KB
/
convnet_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""CNN builder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import defaultdict
import contextlib
import numpy as np
import tensorflow as tf
from tensorflow.python.layers import convolutional as conv_layers
from tensorflow.python.layers import core as core_layers
from tensorflow.python.layers import pooling as pooling_layers
from tensorflow.python.training import moving_averages
import mlperf
class ConvNetBuilder(object):
"""Builder of cnn net."""
def __init__(self,
input_op,
input_nchan,
phase_train,
use_tf_layers,
data_format='NCHW',
dtype=tf.float32,
variable_dtype=tf.float32):
self.top_layer = input_op
self.top_size = input_nchan
self.phase_train = phase_train
self.use_tf_layers = use_tf_layers
self.data_format = data_format
self.dtype = dtype
self.variable_dtype = variable_dtype
self.counts = defaultdict(lambda: 0)
self.use_batch_norm = False
self.batch_norm_config = {} # 'decay': 0.997, 'scale': True}
self.channel_pos = ('channels_last'
if data_format == 'NHWC' else 'channels_first')
self.aux_top_layer = None
self.aux_top_size = 0
def get_custom_getter(self):
"""Returns a custom getter that this class's methods must be called under.
All methods of this class must be called under a variable scope that was
passed this custom getter. Example:
```python
network = ConvNetBuilder(...)
with tf.variable_scope('cg', custom_getter=network.get_custom_getter()):
network.conv(...)
# Call more methods of network here
```
Currently, this custom getter only does anything if self.use_tf_layers is
True. In that case, it causes variables to be stored as dtype
self.variable_type, then casted to the requested dtype, instead of directly
storing the variable as the requested dtype.
"""
def inner_custom_getter(getter, *args, **kwargs):
"""Custom getter that forces variables to have type self.variable_type."""
if not self.use_tf_layers:
return getter(*args, **kwargs)
requested_dtype = kwargs['dtype']
if not (requested_dtype == tf.float32 and
self.variable_dtype == tf.float16):
# Only change the variable dtype if doing so does not decrease variable
# precision.
kwargs['dtype'] = self.variable_dtype
var = getter(*args, **kwargs)
# This if statement is needed to guard the cast, because batch norm
# assigns directly to the return value of this custom getter. The cast
# makes the return value not a variable so it cannot be assigned. Batch
# norm variables are always in fp32 so this if statement is never
# triggered for them.
if var.dtype.base_dtype != requested_dtype:
var = tf.cast(var, requested_dtype)
return var
return inner_custom_getter
@contextlib.contextmanager
def switch_to_aux_top_layer(self):
"""Context that construct cnn in the auxiliary arm."""
if self.aux_top_layer is None:
raise RuntimeError('Empty auxiliary top layer in the network.')
saved_top_layer = self.top_layer
saved_top_size = self.top_size
self.top_layer = self.aux_top_layer
self.top_size = self.aux_top_size
yield
self.aux_top_layer = self.top_layer
self.aux_top_size = self.top_size
self.top_layer = saved_top_layer
self.top_size = saved_top_size
def get_variable(self, name, shape, dtype, cast_dtype, *args, **kwargs):
# TODO(reedwm): Currently variables and gradients are transferred to other
# devices and machines as type `dtype`, not `cast_dtype`. In particular,
# this means in fp16 mode, variables are transferred as fp32 values, not
# fp16 values, which uses extra bandwidth.
var = tf.get_variable(name, shape, dtype, *args, **kwargs)
return tf.cast(var, cast_dtype)
def _conv2d_impl(self, input_layer, num_channels_in, filters, kernel_size,
strides, padding, kernel_initializer):
if self.use_tf_layers:
return conv_layers.conv2d(input_layer, filters, kernel_size, strides,
padding, self.channel_pos,
kernel_initializer=kernel_initializer,
use_bias=False)
else:
weights_shape = [kernel_size[0], kernel_size[1], num_channels_in, filters]
# We use the name 'conv2d/kernel' so the variable has the same name as its
# tf.layers equivalent. This way, if a checkpoint is written when
# self.use_tf_layers == True, it can be loaded when
# self.use_tf_layers == False, and vice versa.
weights = self.get_variable('conv2d/kernel', weights_shape,
self.variable_dtype, self.dtype,
initializer=kernel_initializer)
if self.data_format == 'NHWC':
strides = [1] + strides + [1]
else:
strides = [1, 1] + strides
return tf.nn.conv2d(input_layer, weights, strides, padding,
data_format=self.data_format)
def conv(self,
num_out_channels,
k_height,
k_width,
d_height=1,
d_width=1,
mode='SAME',
input_layer=None,
num_channels_in=None,
use_batch_norm=None,
stddev=None,
activation='relu',
bias=0.0,
kernel_initializer=None):
"""Construct a conv2d layer on top of cnn."""
if input_layer is None:
input_layer = self.top_layer
if num_channels_in is None:
num_channels_in = self.top_size
if stddev is not None and kernel_initializer is None:
kernel_initializer = tf.truncated_normal_initializer(stddev=stddev)
if kernel_initializer is None:
kernel_initializer = tf.variance_scaling_initializer()
name = 'conv' + str(self.counts['conv'])
self.counts['conv'] += 1
with tf.variable_scope(name):
strides = [1, d_height, d_width, 1]
if self.data_format == 'NCHW':
strides = [strides[0], strides[3], strides[1], strides[2]]
if mode != 'SAME_RESNET':
conv = self._conv2d_impl(input_layer, num_channels_in, num_out_channels,
kernel_size=[k_height, k_width],
strides=[d_height, d_width], padding=mode,
kernel_initializer=kernel_initializer)
else: # Special padding mode for ResNet models
if d_height == 1 and d_width == 1:
conv = self._conv2d_impl(input_layer, num_channels_in,
num_out_channels,
kernel_size=[k_height, k_width],
strides=[d_height, d_width], padding='SAME',
kernel_initializer=kernel_initializer)
else:
rate = 1 # Unused (for 'a trous' convolutions)
kernel_height_effective = k_height + (k_height - 1) * (rate - 1)
pad_h_beg = (kernel_height_effective - 1) // 2
pad_h_end = kernel_height_effective - 1 - pad_h_beg
kernel_width_effective = k_width + (k_width - 1) * (rate - 1)
pad_w_beg = (kernel_width_effective - 1) // 2
pad_w_end = kernel_width_effective - 1 - pad_w_beg
padding = [[0, 0], [pad_h_beg, pad_h_end],
[pad_w_beg, pad_w_end], [0, 0]]
if self.data_format == 'NCHW':
padding = [padding[0], padding[3], padding[1], padding[2]]
padded_input_layer = tf.pad(input_layer, padding)
conv = self._conv2d_impl(padded_input_layer, num_channels_in,
num_out_channels,
kernel_size=[k_height, k_width],
strides=[d_height, d_width], padding='VALID',
kernel_initializer=kernel_initializer)
if use_batch_norm is None:
use_batch_norm = self.use_batch_norm
mlperf.logger.log_conv2d(input_tensor=input_layer, output_tensor=conv,
stride_height=d_height, stride_width=d_width,
filters=num_out_channels,
initializer=kernel_initializer,
use_bias=not use_batch_norm and bias is not None)
if not use_batch_norm:
if bias is not None:
biases = self.get_variable('biases', [num_out_channels],
self.variable_dtype, self.dtype,
initializer=tf.constant_initializer(bias))
biased = tf.reshape(
tf.nn.bias_add(conv, biases, data_format=self.data_format),
conv.get_shape())
else:
biased = conv
else:
self.top_layer = conv
self.top_size = num_out_channels
biased = self.batch_norm(**self.batch_norm_config)
if activation == 'relu':
mlperf.logger.log(key=mlperf.tags.MODEL_HP_RELU)
conv1 = tf.nn.relu(biased)
elif activation == 'linear' or activation is None:
conv1 = biased
elif activation == 'tanh':
conv1 = tf.nn.tanh(biased)
else:
raise KeyError('Invalid activation type \'%s\'' % activation)
self.top_layer = conv1
self.top_size = num_out_channels
return conv1
def _pool(self,
pool_name,
pool_function,
k_height,
k_width,
d_height,
d_width,
mode,
input_layer,
num_channels_in):
"""Construct a pooling layer."""
if input_layer is None:
input_layer = self.top_layer
else:
self.top_size = num_channels_in
name = pool_name + str(self.counts[pool_name])
self.counts[pool_name] += 1
if self.use_tf_layers:
pool = pool_function(
input_layer, [k_height, k_width], [d_height, d_width],
padding=mode,
data_format=self.channel_pos,
name=name)
else:
if self.data_format == 'NHWC':
ksize = [1, k_height, k_width, 1]
strides = [1, d_height, d_width, 1]
else:
ksize = [1, 1, k_height, k_width]
strides = [1, 1, d_height, d_width]
pool = tf.nn.max_pool(input_layer, ksize, strides, padding=mode,
data_format=self.data_format, name=name)
if pool_name == 'mpool':
mlperf.logger.log_max_pool(input_tensor=input_layer,
output_tensor=pool)
self.top_layer = pool
return pool
def mpool(self,
k_height,
k_width,
d_height=2,
d_width=2,
mode='VALID',
input_layer=None,
num_channels_in=None):
"""Construct a max pooling layer."""
return self._pool('mpool', pooling_layers.max_pooling2d, k_height, k_width,
d_height, d_width, mode, input_layer, num_channels_in)
def apool(self,
k_height,
k_width,
d_height=2,
d_width=2,
mode='VALID',
input_layer=None,
num_channels_in=None):
"""Construct an average pooling layer."""
return self._pool('apool', pooling_layers.average_pooling2d, k_height,
k_width, d_height, d_width, mode, input_layer,
num_channels_in)
def reshape(self, shape, input_layer=None):
if input_layer is None:
input_layer = self.top_layer
self.top_layer = tf.reshape(input_layer, shape)
self.top_size = shape[-1] # HACK This may not always work
return self.top_layer
def affine(self,
num_out_channels,
input_layer=None,
num_channels_in=None,
bias=0.0,
stddev=None,
activation='relu'):
if input_layer is None:
input_layer = self.top_layer
if num_channels_in is None:
num_channels_in = self.top_size
name = 'affine' + str(self.counts['affine'])
self.counts['affine'] += 1
with tf.variable_scope(name):
init_factor = 2. if activation == 'relu' else 1.
stddev = stddev or np.sqrt(init_factor / num_channels_in)
kernel = self.get_variable(
'weights', [num_channels_in, num_out_channels],
self.variable_dtype, self.dtype,
initializer=tf.truncated_normal_initializer(stddev=stddev))
biases = self.get_variable('biases', [num_out_channels],
self.variable_dtype, self.dtype,
initializer=tf.constant_initializer(bias))
mlperf.logger.log(key=mlperf.tags.MODEL_HP_DENSE,
value=num_out_channels)
logits = tf.nn.xw_plus_b(input_layer, kernel, biases)
if activation == 'relu':
mlperf.logger.log(key=mlperf.tags.MODEL_HP_RELU)
affine1 = tf.nn.relu(logits, name=name)
elif activation == 'linear' or activation is None:
affine1 = logits
else:
raise KeyError('Invalid activation type \'%s\'' % activation)
self.top_layer = affine1
self.top_size = num_out_channels
return affine1
def inception_module(self, name, cols, input_layer=None, in_size=None):
if input_layer is None:
input_layer = self.top_layer
if in_size is None:
in_size = self.top_size
name += str(self.counts[name])
self.counts[name] += 1
with tf.variable_scope(name):
col_layers = []
col_layer_sizes = []
for c, col in enumerate(cols):
col_layers.append([])
col_layer_sizes.append([])
for l, layer in enumerate(col):
ltype, args = layer[0], layer[1:]
kwargs = {
'input_layer': input_layer,
'num_channels_in': in_size
} if l == 0 else {}
if ltype == 'conv':
self.conv(*args, **kwargs)
elif ltype == 'mpool':
self.mpool(*args, **kwargs)
elif ltype == 'apool':
self.apool(*args, **kwargs)
elif ltype == 'share': # Share matching layer from previous column
self.top_layer = col_layers[c - 1][l]
self.top_size = col_layer_sizes[c - 1][l]
else:
raise KeyError(
'Invalid layer type for inception module: \'%s\'' % ltype)
col_layers[c].append(self.top_layer)
col_layer_sizes[c].append(self.top_size)
catdim = 3 if self.data_format == 'NHWC' else 1
self.top_layer = tf.concat([layers[-1] for layers in col_layers], catdim)
self.top_size = sum([sizes[-1] for sizes in col_layer_sizes])
return self.top_layer
def spatial_mean(self, keep_dims=False):
name = 'spatial_mean' + str(self.counts['spatial_mean'])
self.counts['spatial_mean'] += 1
axes = [1, 2] if self.data_format == 'NHWC' else [2, 3]
self.top_layer = tf.reduce_mean(
self.top_layer, axes, keepdims=keep_dims, name=name)
return self.top_layer
def dropout(self, keep_prob=0.5, input_layer=None):
if input_layer is None:
input_layer = self.top_layer
else:
self.top_size = None
name = 'dropout' + str(self.counts['dropout'])
with tf.variable_scope(name):
if not self.phase_train:
keep_prob = 1.0
if self.use_tf_layers:
dropout = core_layers.dropout(input_layer, 1. - keep_prob,
training=self.phase_train)
else:
dropout = tf.nn.dropout(input_layer, keep_prob)
self.top_layer = dropout
return dropout
def _batch_norm_without_layers(self, input_layer, decay, use_scale, epsilon):
"""Batch normalization on `input_layer` without tf.layers."""
# We make this function as similar as possible to the
# tf.contrib.layers.batch_norm, to minimize the differences between using
# layers and not using layers.
shape = input_layer.shape
num_channels = shape[3] if self.data_format == 'NHWC' else shape[1]
beta = self.get_variable('beta', [num_channels], tf.float32, tf.float32,
initializer=tf.zeros_initializer())
if use_scale:
gamma = self.get_variable('gamma', [num_channels], tf.float32,
tf.float32, initializer=tf.ones_initializer())
else:
gamma = tf.constant(1.0, tf.float32, [num_channels])
# For moving variables, we use tf.get_variable instead of self.get_variable,
# since self.get_variable returns the result of tf.cast which we cannot
# assign to.
moving_mean = tf.get_variable('moving_mean', [num_channels],
tf.float32,
initializer=tf.zeros_initializer(),
trainable=False)
moving_variance = tf.get_variable('moving_variance', [num_channels],
tf.float32,
initializer=tf.ones_initializer(),
trainable=False)
if self.phase_train:
bn, batch_mean, batch_variance = tf.nn.fused_batch_norm(
input_layer, gamma, beta, epsilon=epsilon,
data_format=self.data_format, is_training=True)
mean_update = moving_averages.assign_moving_average(
moving_mean, batch_mean, decay=decay, zero_debias=False)
variance_update = moving_averages.assign_moving_average(
moving_variance, batch_variance, decay=decay, zero_debias=False)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, mean_update)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, variance_update)
else:
bn, _, _ = tf.nn.fused_batch_norm(
input_layer, gamma, beta, mean=moving_mean,
variance=moving_variance, epsilon=epsilon,
data_format=self.data_format, is_training=False)
return bn
def batch_norm(self, input_layer=None, decay=0.999, scale=False,
epsilon=0.001):
"""Adds a Batch Normalization layer."""
if input_layer is None:
input_layer = self.top_layer
else:
self.top_size = None
name = 'batchnorm' + str(self.counts['batchnorm'])
self.counts['batchnorm'] += 1
center = True
with tf.variable_scope(name) as scope:
if self.use_tf_layers:
bn = tf.contrib.layers.batch_norm(
input_layer,
decay=decay,
scale=scale,
epsilon=epsilon,
is_training=self.phase_train,
fused=True,
data_format=self.data_format,
scope=scope,
center=center)
else:
bn = self._batch_norm_without_layers(input_layer, decay, scale, epsilon)
self.top_layer = bn
self.top_size = bn.shape[3] if self.data_format == 'NHWC' else bn.shape[1]
self.top_size = int(self.top_size)
mlperf.logger.log_batch_norm(
input_tensor=input_layer, output_tensor=bn, momentum=decay,
epsilon=epsilon, center=center, scale=scale, training=self.phase_train)
return bn
def lrn(self, depth_radius, bias, alpha, beta):
"""Adds a local response normalization layer."""
name = 'lrn' + str(self.counts['lrn'])
self.counts['lrn'] += 1
self.top_layer = tf.nn.lrn(
self.top_layer, depth_radius, bias, alpha, beta, name=name)
return self.top_layer