-
Notifications
You must be signed in to change notification settings - Fork 16
/
unicycle_dynamic.py
226 lines (183 loc) · 5.65 KB
/
unicycle_dynamic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
"""
Example unicycle_dynamic.py
Author: Joshua A. Marshall <joshua.marshall@queensu.ca>
GitHub: https://github.com/botprof/agv-examples
"""
# %%
# SIMULATION SETUP
from IPython.display import display
import numpy as np
import matplotlib.pyplot as plt
from mobotpy.integration import rk_four
from mobotpy.models import DiffDrive
# Set the simulation time [s] and the sample period [s]
SIM_TIME = 60.0
T = 0.04
# Create an array of time values [s]
t = np.arange(0.0, SIM_TIME, T)
N = np.size(t)
# Set the vehicle's mass and moment of inertia
M = 1.0 # kg
I = 1.0 # kg m^2
# Set the maximum lateral tire force [N]
LAMBDA_MAX = 0.1
# %%
# FUNCTION DEFINITIONS
def unicycle_f_dyn(x, u):
"""Unicycle dynamic vehicle model.
Parameters
----------
x : ndarray of length 6
The vehicle's state (x, y, theta, v_x, v_y, v_2).
u : ndarray of length 3
Force and torque applied to the wheel (f, tau, lambda_f).
Returns
-------
f_dyn : ndarray of length 6
The rate of change of the vehicle states.
"""
f_dyn = np.zeros(6)
f_dyn[0] = x[3]
f_dyn[1] = x[4]
f_dyn[2] = x[5]
f_dyn[3] = 1.0 / M * (u[0] * np.cos(x[2]) - u[2] * np.sin(x[2]))
f_dyn[4] = 1.0 / M * (u[0] * np.sin(x[2]) + u[2] * np.cos(x[2]))
f_dyn[5] = 1.0 / I * u[1]
return f_dyn
def lateral_force(x):
"""Computes the lateral tire force for a single wheel.
Parameters
----------
x : ndarray of length 6
The vehicle's state (x, y, theta, v_x, v_y, v_2).
Returns
-------
lambda_f : float
The computed lateral tire force [N].
old_x : ndarray of length 6
The vehicle's state with or without slip.
"""
# Compute lateral force
lambda_f = M * x[5] * (x[3] * np.cos(x[2]) + x[4] * np.sin(x[2]))
# Check if the required lateral force is bigger than the tire can handle
if np.abs(lambda_f) > LAMBDA_MAX:
# Wheel slips
lambda_f = LAMBDA_MAX * np.sign(lambda_f)
old_vx = x[3]
old_vy = x[4]
else:
# Wheel doesn't slip, so enforce velocity to be in the wheel's direction
old_vx = (x[3] * np.cos(x[2]) + x[4] * np.sin(x[2])) * np.cos(x[2])
old_vy = (x[3] * np.cos(x[2]) + x[4] * np.sin(x[2])) * np.sin(x[2])
# Assign the new state
old_x = np.array([x[0], x[1], x[2], old_vx, old_vy, x[5]])
# Return the output
return lambda_f, old_x
# %%
# RUN SIMULATION
# Initialize arrays that will be populated with our inputs and states
x = np.zeros((6, N))
u = np.zeros((3, N))
# Set the initial conditions
x_init = np.zeros(6)
x_init[0] = 0.0
x_init[1] = 3.0
x_init[2] = 0.0
x_init[3] = 0.0
x_init[4] = 0.0
x_init[5] = 0.0
x[:, 0] = x_init
# Run the simulation
for k in range(1, N):
# Make some force and torque inputs to steer the vehicle around
if k < round(N / 6):
u[0, k - 1] = 0.1 # Apply "large" force
u[1, k - 1] = 0.0
elif k < round(3 * N / 6):
u[0, k - 1] = 0.0 # Stop accelerating
u[1, k - 1] = -0.01 # Start turning
elif k < round(4 * N / 6):
u[0, k - 1] = 0.0
u[1, k - 1] = 0.02 # Turn the other way
else:
u[0, k - 1] = 0.0
u[1, k - 1] = 0.0
# Compute the lateral force applied to the vehicle's wheel
u[2, k - 1], x[:, k - 1] = lateral_force(x[:, k - 1])
# Update the motion of the vehicle
x[:, k] = rk_four(unicycle_f_dyn, x[:, k - 1], u[:, k - 1], T)
# %%
# MAKE PLOTS
# Change some plot settings (optional)
plt.rc("text", usetex=True)
plt.rc("text.latex", preamble=r"\usepackage{cmbright,amsmath,bm}")
plt.rc("savefig", format="pdf")
plt.rc("savefig", bbox="tight")
# Plot the states as a function of time
fig1 = plt.figure(1)
ax1 = plt.subplot(311)
plt.setp(ax1, xticklabels=[])
plt.plot(t, x[0, :], "C0")
plt.ylabel(r"$x$ [m]")
plt.grid(color="0.95")
ax2 = plt.subplot(312)
plt.setp(ax2, xticklabels=[])
plt.plot(t, x[1, :], "C0")
plt.ylabel(r"$y$ [m]")
plt.grid(color="0.95")
ax3 = plt.subplot(313)
plt.plot(t, x[2, :], "C0")
plt.xlabel(r"$t$ [s]")
plt.ylabel(r"$\theta$ [rad]")
plt.grid(color="0.95")
# Save the plot
plt.savefig("../agv-book/figs/ch3/unicycle_dynamic_fig1.pdf")
# Plot the lateral tire force
fig2 = plt.figure(2)
plt.plot(t[0 : N - 1], u[2, 0 : N - 1], "C0")
plt.xlabel(r"$t$ [s]")
plt.ylabel(r"$\lambda$ [N]")
plt.grid(color="0.95")
# Save the plot
plt.savefig("../agv-book/figs/ch3/unicycle_dynamic_fig2.pdf")
"""
To keep thing simple, we plot the unicycle as a differential drive vehicle,
because the differential drive vehicle has the same nonholonomic constraints.
"""
# Set the track of the vehicle [m]
ELL = 1.0
# Let's now use the class DiffDrive for plotting
vehicle = DiffDrive(ELL)
# Plot the position of the vehicle in the plane
fig3 = plt.figure(3)
plt.plot(x[0, :], x[1, :], "C0")
plt.axis("equal")
X_L, Y_L, X_R, Y_R, X_B, Y_B, X_C, Y_C = vehicle.draw(x[0, 0], x[1, 0], x[2, 0])
plt.fill(X_L, Y_L, "k")
plt.fill(X_R, Y_R, "k")
plt.fill(X_C, Y_C, "k")
plt.fill(X_B, Y_B, "C2", alpha=0.5, label="Start")
X_L, Y_L, X_R, Y_R, X_B, Y_B, X_C, Y_C = vehicle.draw(
x[0, N - 1], x[1, N - 1], x[2, N - 1]
)
plt.fill(X_L, Y_L, "k")
plt.fill(X_R, Y_R, "k")
plt.fill(X_C, Y_C, "k")
plt.fill(X_B, Y_B, "C3", alpha=0.5, label="End")
plt.xlabel(r"$x$ [m]")
plt.ylabel(r"$y$ [m]")
plt.legend()
# Save the plot
plt.savefig("../agv-book/figs/ch3/unicycle_dynamic_fig3.pdf")
# Show all the plots to the screen
plt.show()
# %%
# MAKE AN ANIMATION
# Create and save the animation
ani = vehicle.animate(x, T, True, "../agv-book/gifs/ch3/unicycle_dynamic.gif")
# Show the movie to the screen
plt.show()
# # Show animation in HTML output if you are using IPython or Jupyter notebooks
# plt.rc('animation', html='jshtml')
# display(ani)
# plt.close()