-
Notifications
You must be signed in to change notification settings - Fork 15
/
fws_kinematic.py
135 lines (112 loc) · 3.04 KB
/
fws_kinematic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""
Example fws_beacons_observer.py
Author: Joshua A. Marshall <joshua.marshall@queensu.ca>
GitHub: https://github.com/botprof/agv-examples
"""
# %%
# SIMULATION SETUP
import numpy as np
import matplotlib.pyplot as plt
from mobotpy.integration import rk_four
from mobotpy.models import FourWheelSteered
# Set the simulation time [s] and the sample period [s]
SIM_TIME = 30.0
T = 0.1
# Create an array of time values [s]
t = np.arange(0.0, SIM_TIME, T)
N = np.size(t)
# %%
# VEHICLE SETUP
# Set the wheelbase and track of the vehicle [m]
ELL_W = 2.50
ELL_T = 1.75
# Let's now use the class Ackermann for plotting
vehicle = FourWheelSteered(ELL_W, ELL_T)
# %%
# RUN SIMULATION
# Initialize arrays that will be populated with our inputs and states
x = np.zeros((4, N))
u = np.zeros((2, N))
# Set the initial pose [m, m, rad, rad], velocities [m/s, rad/s]
x[0, 0] = 0.0
x[1, 0] = 0.0
x[2, 0] = np.pi / 2.0
x[3, 0] = 0.0
u[0, 0] = 5.0
u[1, 0] = 0.0
# Run the simulation
for k in range(1, N):
x[:, k] = rk_four(vehicle.f, x[:, k - 1], u[:, k - 1], T)
u[0, k] = 5.0
u[1, k] = -0.5 * np.sin(1.0 * t[k])
# %%
# MAKE SOME PLOTS
# Change some plot settings (optional)
plt.rc("text", usetex=True)
plt.rc("text.latex", preamble=r"\usepackage{cmbright,amsmath,bm}")
plt.rc("savefig", format="pdf")
plt.rc("savefig", bbox="tight")
# Plot the states as a function of time
fig1 = plt.figure(1)
fig1.set_figheight(6.4)
ax1a = plt.subplot(311)
plt.plot(t, x[0, :])
plt.grid(color="0.95")
plt.ylabel(r"$x$ [m]")
plt.setp(ax1a, xticklabels=[])
ax1b = plt.subplot(312)
plt.plot(t, x[1, :])
plt.grid(color="0.95")
plt.ylabel(r"$y$ [m]")
plt.setp(ax1b, xticklabels=[])
ax1c = plt.subplot(313)
plt.plot(t, x[2, :] * 180.0 / np.pi)
plt.grid(color="0.95")
plt.ylabel(r"$\theta$ [deg]")
plt.xlabel(r"$t$ [s]")
plt.legend()
# Save the plot
# plt.savefig("../agv-book/figs/ch3/ackermann_kinematic_fig1.pdf")
# Plot the position of the vehicle in the plane
fig2 = plt.figure(2)
plt.plot(x[0, :], x[1, :])
plt.axis("equal")
X_BL, Y_BL, X_BR, Y_BR, X_FL, Y_FL, X_FR, Y_FR, X_BD, Y_BD = vehicle.draw(x[:, 0])
plt.fill(X_BL, Y_BL, "k")
plt.fill(X_BR, Y_BR, "k")
plt.fill(X_FR, Y_FR, "k")
plt.fill(X_FL, Y_FL, "k")
plt.fill(X_BD, Y_BD, "C2", alpha=0.5, label="Start")
X_BL, Y_BL, X_BR, Y_BR, X_FL, Y_FL, X_FR, Y_FR, X_BD, Y_BD = vehicle.draw(x[:, N - 1])
plt.fill(X_BL, Y_BL, "k")
plt.fill(X_BR, Y_BR, "k")
plt.fill(X_FR, Y_FR, "k")
plt.fill(X_FL, Y_FL, "k")
plt.fill(X_BD, Y_BD, "C3", alpha=0.5, label="End")
plt.xlabel(r"$x$ [m]")
plt.ylabel(r"$y$ [m]")
plt.legend()
# Save the plot
# plt.savefig("../agv-book/figs/ch3/ackermann_kinematic_fig2.pdf")
# Show all the plots to the screen
plt.show()
# %%
# MAKE AN ANIMATION
# Create the animation
ani = vehicle.animate(
x,
T,
)
# Create and save the animation
# ani = vehicle.animate(
# x,
# T,
# True,
# "../agv-book/gifs/ch3/ackermann_kinematic.gif",
# )
# Show the movie to the screen
plt.show()
# # Show animation in HTML output if you are using IPython or Jupyter notebooks
# plt.rc('animation', html='jshtml')
# display(ani)
# plt.close()