-
Notifications
You must be signed in to change notification settings - Fork 9
/
transformer.py
78 lines (70 loc) · 2.56 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
import numpy as np
import pandas as pd
import scanpy as sc
import torch.nn.functional as F
from easydl import *
from anndata import AnnData
from torch import nn, einsum
from scipy.stats import pearsonr
from torch.autograd import Function
from torch.autograd.variable import *
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
class SelectItem(nn.Module):
def __init__(self, item_index):
super(SelectItem, self).__init__()
self.item_index = item_index
def forward(self, inputs):
return inputs[self.item_index]
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout = 0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
# @get_local('attn')
def forward(self, x):
b, n, _, h = *x.shape, self.heads
qkv = self.to_qkv(x).chunk(3, dim = -1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
attn = self.attend(dots)
out = einsum('b h i j, b h j d -> b h i d', attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class attn_block(nn.Module):
def __init__(self, dim, heads, dim_head, mlp_dim, dropout = 0.):
super().__init__()
self.attn=PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout))
self.ff=PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout))
def forward(self, x):
x = self.attn(x) + x
x = self.ff(x) + x
return x