Daany
is .NET and cross platform data analytics and linear algebra library written in C# supposed to be a tool for data preparation, feature engineering and other kinds of data transformations. The library is implemented on top of .NET Standard 2.1 and supports .NET Core 3.0 and above separated on several Visual Studio projects that can be installed separately as a NuGet package. The library implements DataFrame
as the core component with extensions of a set of data science and linear algebra features. The library contains several implementation of time series decomposition (SSA, STL ARIMA), optimization methods (SGD) as well as plotting support. The library also implements set of features based on matrix, vectors and similar linear algebra operations. The main part of the library is the Daany.DataFrame
with similar implementation that can be found in python based Pandas library.
Daany
is .NET data analytic library written in C#
with support various kind of data transformation, descriptive statistics and linear algebra. With Daany
an user can load the data from txt based file into the DataFrame
arranged into columns, rows and index. The user can also create Series
object - a special kind of Daany.DataFrame
in order to work with time series data. Once the data is loaded the user can start analyzing the data by performing various transformation and results can be display as chart or tabular data.
The library implements the Daany.MathStuff
module which consists of of mathematics operations on matrix and vectors as well as rich set of statistics distributions and parameters. Furthermore Daany.LinA
extends it in order to gain better performance and functionalities. The Daany.LinA
is the .NET wrapper around the LAPACK and BLAS C++ libraries. Besides data analysis, the library implements a set of statistics or data science features e.g. time series decomposition, optimization performance parameters and similar. The main components of the library which can be installed separately as a NuGet package are:
Currently Daany
project consists of four main components:
Daany.DataFrame
,Daany.DataFrame.Ext
Daany.Stats
, andDaany.LinA
Daany
is a classic .NET component implemented through the several visual studio projects. The library is based on .NET Framework and Intel MKL implementation of LAPACK and BLASS libraries. The architecture diagram of the library is described at the following figure.
The project is developed as a need to have a set of data transformation features in one library while I am working with machine learning. So, I thought it might help to others. Currently, the library has pretty much data transformation features and might be your number one data analytics library on .NET platform. Collaboration to the project is also welcome.
Daany
is 100% .NET Core component and can be run on any platform .NET Core supports, from the Windows x86/x64 to Mac or Linux based OS. It can be used by Visual Studio or Visual Studio Code. It consisted of five NuGet packages, so the easiest way to start with it is to install the packages in your .NET application. Within Visual Studio create or open your .NET application and open
NuGet packages window. Type Daany
in the browse edit box and hit enter. You can find four packages starting with Daany. You have few options to install the packages.
-
Install
Daany.DataFrame
– only. Use this option if you want only data analysis by using data frame. Once you click Install button, Daany.DataFrame and Daany.Math will be installed into your project app. -
Install
Daany.Stat
package. This package already containsDataFrame
, as well as time series decomposition and related statistics features.
Once you install the packages, you can start developing your app using Daany packages.
Since Daany
has no dependency to other libraries you can copy three dlls and add them as reference to your project.
In order to do so clone the project from http://github.com/bhrnjica/daany,build it and copy Daany.DataFrame.dll
, Daany.Math.dll
and Daany.Stat.dll
to your project as assembly references. Whole project is just 270 KB.
Daany
project contains several namespaces for separating different
implementation. The following list contains relevant namespaces:
using Daany
– data frame and related code implementation,using Daany.Ext
– data frame extensions, used with dependency on third party library,using Daany.MathStuff
– math related stuff implemented in Daany,using Daany.Optimizers
– set of optimizers like SGD,using Daany.Stat
– set of statistics implementations in the project.using Daany.LineA
- Linear algebra routines for using LAPACK and BLASS.
The main part of Daany
project is Daany.DataFrame
- an c# implementation of data frame. A data frame is software component used for handling tabular data, especially for data preparation, feature engineering and analysis during development of machine learning models. The concept of Daany.DataFrame
implementation is based on simplicity and .NET coding standard. It represents tabular data consisting of columns and rows. Each column has name and type and each row has its index and label.
Usually, rows indicate a zero axis, while columns indicate axis one.
The following image shows a data frame structure
The basic components of the data frame are:
header
- list of column names,index
– list of object representing each row,data
– list of values in the data frame,missing value
– data with no values in data frame.
The image above shows the data frame components visually, and how they are positioned in the data frame.
In order to create a DataFrame there are several options:
- from a list of values, by specifying column names and row count
- from a dictionary, letting keys be column names and values be column values,
- from text-based file, where each line represents row values,
- as a return object for almost any data frame operations.
Daany.DataFrame
can be created by passing 1d list of data and column header. The following code shows such action.
//define a list of data
var lst = new List<object>() { 1, "Sarajevo", 77000, "BiH", true, 3.14,DateTime.Now.AddDays(-20),
2, "Seattle", 98101, "USA", false, 3.21, DateTime.Now.AddDays(-10),
3, "Berlin", 10115, "GER", false, 4.55, DateTime.Now.AddDays(-5),
};
//define column header for the data frame
var columns = new List<string>() { "ID", "City", "Zip Code","Country", "IsHome","Values", "Date" };
//create data frame with 3 rows and 7 columns
var df = new DataFrame(lst, columns);
//check the size of the data frame
Assert.Equal(3, df.RowCount());
Assert.Equal(7, df.ColCount());
Similarly Daany.DataFrame
can be created by passing dictionary collection. The following code shows how to create data frame from the dictionary:
//define a dictionary of data
var dict = new Dictionary<string, List<object>>
{
{ "ID",new List<object>() { 1,2,3} },
{ "City",new List<object>() { "Sarajevo", "Seattle", "Berlin" } },
{ "Zip Code",new List<object>() { 71000,98101,10115 } },
{ "State",new List<object>() {"BiH","USA","GER" } },
{ "IsHome",new List<object>() { true, false, false} },
{ "Values",new List<object>() { 3.14, 3.21, 4.55 } },
{ "Date",new List<object>() { DateTime.Now.AddDays(-20) ,
DateTime.Now.AddDays(-10) , DateTime.Now.AddDays(-5) } },
};
//create data frame with 3 rows and 7 columns
var df = new DataFrame(dict);
//check the size of the data frame
Assert.Equal(3, df.RowCount());
Assert.Equal(7, df.ColCount());
By using static method DataFrame.FromCsv
a user can create data frame object from the csv
file. Otherwise, data frame can be persisted on disk by calling static method DataFrame.ToCsv
.
The following code shows how to use static methods ToCsv
and FromCsv
to show persisting and loading data to data frame:
string filename = "df_file.txt";
//define a dictionary of data
var dict = new Dictionary<string, List<object>>
{
{ "ID",new List<object>() { 1,2,3} },
{ "City",new List<object>() { "Sarajevo", "Seattle", "Berlin" } },
{ "Zip Code",new List<object>() { 71000,98101,10115 } },
{ "State",new List<object>() {"BiH","USA","GER" } },
{ "IsHome",new List<object>() { true, false, false} },
{ "Values",new List<object>() { 3.14, 3.21, 4.55 } },
{ "Date",new List<object>() { DateTime.Now.AddDays(-20) , DateTime.Now.AddDays(-10) , DateTime.Now.AddDays(-5) } },
};
//create data frame with 3 rows and 7 columns
var df = new DataFrame(dict);
//first Save data frame on disk and load it
DataFrame.ToCsv(filename, df);
//create data frame with 3 rows and 7 columns
var dfFromFile = DataFrame.FromCsv(filename, sep:',');
//check the size of the data frame
Assert.Equal(3, dfFromFile.RowCount());
Assert.Equal(new string[] { "ID", "City", "Zip Code", "State", "IsHome", "Values", "Date" }, dfFromFile.Columns);
Assert.Equal(7, dfFromFile.ColCount());
First, we created data frame from the dictionary collection. Then we store data frame to file. After successfully saving, we load the same data frame from the csv file. The end of the code snippet, put asserts in order to prove everything is correctly implemented.
In case the performance is important, you should pass column types to FromCSV
method in order to achieve up to 50% of loading time.
For example the following code loads the data from the file, by passing predefined column types:
//defined types of the column
var colTypes1 = new ColType[] { ColType.I32, ColType.IN, ColType.I32, ColType.STR, ColType.I2, ColType.F32, ColType.DT };
//create data frame with 3 rows and 7 columns
var dfFromFile = DataFrame.FromCsv(filename, sep: ',', colTypes: colTypes1);
Data can be loaded directly from the web storage by using FromWeb
static method. The following code shows how to load the Concrete Slump Test
data from the web. The data set includes 103 data points. There are 7 input variables, and 3 output variables in the data set: Cement
, Slag
, Fly ash
, Water
, SP
, Coarse Aggr.
,Fine Aggr.
, SLUMP (cm)
, FLOW (cm)
, Strength (Mpa)
.
The following code load the Concrete Slump Test
data set into Daany DataFrame:
//define web url where the data is stored
var url = "https://archive.ics.uci.edu/ml/machine-learning-databases/concrete/slump/slump_test.data";
//
var df = DataFrame.FromWeb(url);
df.Head(5)
Besides above, the data frame can be created on other ways:
- Create data frame from existing one - This method can be used in order to create new data frame with different numbers of columns. For example, the new data frame can be created from existing one by specifying specific columns:
//now create a new data frame with only three columns
var newDf = df["City", "Zip Code", "State"];
//check the size of the data frame
Assert.Equal(3, df.RowCount());
Assert.Equal(3, newDf.ColCount());
- Data frame can be created using
Create
method and passing tuples of existing and new column name. For example:
//create data frame with 3 rows and 7 columns
var df = DataFrame.FromCsv(\$"{rootfolder}/simple_data_frame.txt", sep: ',',
names: null, dformat: "MM/dd/yyyy");
//now create a new data frame with three columns which can be renamed during creation
var newDf = df.Create(("City","Place"), ("Zip Code", null), ("State",
"Country"));
//check the size of the data frame
Assert.Equal(3, newDf.RowCount());
Assert.Equal(new string[] { "Place", "Zip Code", "Country" }, newDf.Columns);
Assert.Equal(3, newDf.ColCount());
In case you want the column names remains the same pass null
as second tuple
item, or write the same name.
- It is handy to create an empty data frame with specific column header. To do so use similar code like following:
var cols = new List<string> { "Place", "Country", "Zip Code", "Values" };
//create empty data frame with 4 columns
var df = DataFrame.CreateEmpty(cols);
//check the size of the data frame
Assert.Equal(0, df.RowCount());
Assert.Equal(new string[] { "Place", "Country", "Zip Code", "Values" },
df.Columns);
Assert.Equal(4, df.ColCount());
- Data frame is created almost in any performed operation like sorting, filtering, grouping, aggregation and similar.
Enumeration of data frame means iterating it row by row.
Daany.DataFrame
provides three ways for the enumeration:
-
Strongly typed enumeration – it means that you have to provide a Class type during enumeration, as well as mapping logic for conversion data frame row into the class object. This is done by providing callback mapping method.
-
Enumeration by dictionary – it means that each data frame row is returned as dictionary, where keys are column names and values are row array.
-
Enumeration by list – it means the each data frame row is returned as list of data.
This enumeration is suitable when data frame need to be converted into list of
custom types. Also, in order to convert Daany.DataFram
into ML.NET
IDataView
you have to use typed enumeration. The following code shows how data set as previously loaded into Daany.DataFrame
is converted into ML.NET
IDataView
.
Assume we defined Person
class as follow:
class Person
{
public int ID { get; set; }
public string City { get; set; }
public int Zip { get; set; }
public string State { get; set; }
public bool IsHome { get; set; }
public float Values { get; set; }
public DateTime Date { get; set; }
}
Previously we created Daany.DataFrame
from the file containing lists of Persons. Conversion from Daany.DataFrame
to list of Persons
the following code should be implemented:
//create data frame with 3 rows and 7 columns
var df = DataFrame.FromCsv($"{rootfolder}/simple_data_frame.txt");
//convert data frame into strongly typed list
List<Person> list = df.GetEnumerator<Person>((oRow) =>
{
//convert row object array into Iris row
var prRow = new Person();
prRow.ID = Convert.ToInt32(oRow["ID"]);
prRow.City = Convert.ToString(oRow["City"]);
prRow.Zip = Convert.ToInt32(oRow["Zip Code"]);
prRow.State = Convert.ToString(oRow["State"]);
prRow.IsHome = Convert.ToBoolean(oRow["IsHome"]);
prRow.Values = Convert.ToSingle(oRow["Values"]);
prRow.Date = Convert.ToDateTime(oRow["Date"]);
//
return prRow;
}).ToList();
//check some data from the second row
Assert.Equal("Seattle", list[1].City);
Assert.Equal("USA", list[1].State);
Assert.Equal(3.21f, list[1].Values);
As can be seen, GetEnumerator
takes one argument oRow
which is dictionary of the
data frame row. The oRow
is passed into delegate where conversion is performed.
In order to enumerate data frame by dictionary call GetEnumerator
method, without providing custom type. The following code uses previously loaded data frame and perform Linq
operators against it.
//create data frame with 3 rows and 7 columns
var df = DataFrame.FromCsv($"{rootfolder}/simple_data_frame.txt");
//get second data frame row
//row2 is a dictionary with column names as keys
var row2 = df.GetEnumerator().Skip(1).First();
//check some data from the second row
Assert.Equal("Seattle", row2["City"]);
Assert.Equal("USA", row2["State"]);
Assert.Equal(3.21f, row2["Values"]);
Data frame can be enumerated by returning the row as a list. This method can be use when the performance is important, otherwise use previous method. The following code shows how to use enumeration by list.
//create data frame with 3 rows and 7 columns
var df = DataFrame.FromCsv($"{rootfolder}/simple_data_frame.txt");
//get second data frame row
//row2 is a dictionary with column names as keys
var row2 = df.GetRowEnumerator().FirstOrDefault();
//check some data from the second row
Assert.Equal("Sarajevo", row2[1]);
Assert.Equal("BiH", row2[3]);
Assert.Equal(3.14f, row2[5]);
Accessing data in data frame can be achieved in many ways. Also different kind of data can be selected from the data frame. You can select a data as a single values, or list of data from a single row, list of column values or data frame as subset of the existing one. Let's see how can the column be selected from the data frame.
This code sample select two columns separately from data frame, and convert them into array and list.
//create data frame with 3 rows and 7 columns
var df = DataFrame.FromCsv($"{rootfolder}/simple_data_frame.txt");
//select one column from the data frame
var cities = df["City"].ToArray();
var zipCodes = df["Zip Code"].ToList();
//check for values
Assert.Equal(3, cities.Length);
Assert.Equal("Sarajevo", cities[0]);
Assert.Equal("Seattle", cities[1]);
Assert.Equal("Berlin", cities[2]);
//check for values
Assert.Equal(3, zipCodes.Count);
Assert.Equal(71000, zipCodes[0]);
Assert.Equal(98101, zipCodes[1]);
Assert.Equal(10115, zipCodes[2]);
Selecting more than one column at once returns data frame. The following code creates new data frame from selected columns:
//create data frame with 3 rows and 7 columns
var df = DataFrame.FromCsv($"{rootfolder}/simple_data_frame.txt");
//select one column from the data frame
var citiesDf = df["City", "Zip Code"];
//check for values
Assert.Equal(3, citiesDf.RowCount());
Assert.Equal(2, citiesDf.ColCount());
Selecting data by rows returns whole row from the data frame. The following code returns third rows from the existing data frame.
//select third row from data frame
//3, "Berlin", 10115, "GER", false, 4.55, DateTime.Now.AddDays(-5)
var row = df[2].ToArray();
//check for values
Assert.Equal(7, row.Length);
Assert.Equal(2, row[0]);
Assert.Equal("Berlin", row[1]);
Selecting data is achieved by using zero-based position of row and column or by column name and rows position. The following code select City
from the third row:
//create data frame with 3 rows and 7 columns
var df = DataFrame.FromCsv($"{rootfolder}/simple_data_frame.txt");
//select city from the third row
var city = df[2,1];
var city1 = df["City", 2];
//check for values
Assert.Equal(city,city1);
Assert.Equal("Berlin", city1);
Daany.DataFrame
supports the following operations:
- Add/Insert Column,
- AddRows,
- AddCalculatedColumns,
- Aggregate,
- Describe,
- Drop, DropNA and FillNA,
- Filter and RemoveRows,
- SortBy and SortByDescending,
- GroupBy and Rolling
- Merge and Join two data frames
- Select.
In the next section eery feature is going to be presented.
Adding one or more new columns into data frame can be achieve by calling
AddColumns
data frame method. The following code add two new columns Age
and
Gender
to existing data frame:
//create data frame with 3 rows and 7 columns
var df = DataFrame.FromCsv($"{rootfolder}/simple_data_frame.txt");
//add Age column
var newCols = new Dictionary<string, List<object>>()
{
{ "Age", new List<object>() { 31, 25, 45 } },
{ "Gender", new List<object>() { "male", "female", "male" } }
};
//add column
var newDf = df.AddColumns(newCols);
//check for values
Assert.Equal(9, newDf.ColCount());
Assert.Equal(25, newDf["Age", 1]);
Assert.Equal("female", newDf["Gender", 1]);
Similarly, column can be inserted at any column list position. In case the above column should be inserted somewhere in column header, InsertColumn
should be called:
//inser column at third position
var newDf= df.InsertColumn("Age", newCol, 2 );
In order to add one or more rows into existing data frame the AddRow
or AddRows
should be called respectively. The following code shows adding one row into
existing data frame:
//create data frame with 3 rows and 7 columns
var df = DataFrame.FromCsv($"{rootfolder}/simple_data_frame.txt");
//new row
var newRow = new List<object>() { 4, "London", 11000, "GB", false, 5.55,
DateTime.Now.AddDays(-5) };
//add column
df.AddRow(newRow);
//check for values
Assert.Equal(7, df.ColCount());
Assert.Equal(4, df.RowCount());
Assert.Equal("GB", df["State", 3]);
Assert.Equal(5.55, df["Values", 3]);
In case more than one rows should be added into data frame we can used AddRows
method by passing data frame object containing new rows. The data frame object must have the same number of columns as existing. More than one row can be added by calling AddRow
from the loop.
Adding calculated column into data frame is often task. We use this feature when performing features engineering or feature selection during data preparation. In order to add new column into data frame which is based on the calculation on each rows in the data frame use AddCalculatedColumn
method. The method has two variants with current row as dictionary or as list collection. Both methods are very similar, so we are going to show the example by using the first variant. The
following code shows adding calculated column into existing data frame:
var dict = new Dictionary<string, List<object>>
{
{ "col1",new List<object>() { 1,13,25,37,49} },
{ "col2",new List<object>() { 2,14,26,38,50} },
{ "col3",new List<object>() { 3,15,27,39,51} },
{ "col4",new List<object>() { 4,16,28,40,52} },
{ "col5",new List<object>() { 5,17,29,41,53} },
{ "col6",new List<object>() { 6,18,30,42,54} },
{ "col7",new List<object>() { 7,19,31,43,55} },
{ "col8",new List<object>() { 8,20,32,44,56} },
{ "col9",new List<object>() { 9,21,33,45,57} },
{ "col10",new List<object>(){ 10,22,34,46,58} },
};
//
var df = new DataFrame(dict);
var sCols = new string[] { "col11", "col12" };
var df01 = df.AddCalculatedColumns(sCols, (row, i) => calculate(row, i));
//column test
var c1 = new int[] { 11, 23, 35, 47, 59};
var c2 = new int[] { 12, 24, 36, 48, 60};
for (int i = 0; i < df.Values.Count; i++)
Assert.Equal(i+1, df.Values[i]);
//local function declaration
object[] calculate(IDictionary<string, object> row, int i)
{
return new object[2] { i * (row.Count() +2) + row.Count() + 1,
i * (row.Count()+ 2) + row.Count() +2};
}
As can be seen two new columns have been added by the calculations made by the current row.
Aggregation process include performing arithmetic operation on data frame. The result of the aggregation is new list of values or new data frame containing the result of aggregation operations. The following code shows Aggregation method in action:
var date = DateTime.Now.AddDays(-5);
//define a dictionary of data
var dict = new Dictionary<string, List<object>>
{
{ "ID",new List<object>() { 1,2,3} },
{ "City",new List<object>() { "Sarajevo", "Seattle", "Berlin" } },
{ "Zip Code",new List<object>() { 71000,98101,10115 } },
{ "State",new List<object>() {"BiH","USA","GER" } },
{ "IsHome",new List<object>() { true, false, false} },
{ "Values",new List<object>() { 3.14, 3.21, 4.55 } },
{ "Date",new List<object>() { DateTime.Now.AddDays(-20) ,
DateTime.Now.AddDays(-10) , date } },
{ "Age", new List<object>() { 31, 25, 45 } },
{ "Gender", new List<object>() { "male", "female", "male" } }
};
//create df
var df = new DataFrame(dict);
//define aggregation
var agg = new Dictionary<string, Aggregation>()
{
{"ID",Aggregation.Count},
{"City",Aggregation.Top},
{"Date", Aggregation.Max},
{"Values",Aggregation.Avg },
};
var row = df.Aggragate(agg);
var val = new List<object>() { 3, "Sarajevo", 3.6333333333333329, date };
Assert.Equal(val, row);
As can be seen from the code above. The aggregation process included performing
different operation on four columns ("ID"
,"City"
,"Date"
,"Values"
). In case
default argument allColumns:true
then all columns from data frame will be shown
in the aggregate result.
In case more than one aggregate operation should be applied to single column, then the second aggregate method will be used.
var date = DateTime.Now.AddDays(-5);
//define a dictionary of data
var dict = new Dictionary<string, List<object>>
{
{ "ID",new List<object>() { 1,2,3} },
{ "City",new List<object>() { "Sarajevo", "Seattle", "Berlin" } },
{ "Zip Code",new List<object>() { 71000,98101,10115 } },
{ "State",new List<object>() {"BiH","USA","GER" } },
{ "IsHome",new List<object>() { true, false, false} },
{ "Values",new List<object>() { 3.14, 3.21, 4.55 } },
{ "Date",new List<object>() { DateTime.Now.AddDays(-20) , DateTime.Now.AddDays(-10) , date } },
{ "Age", new List<object>() { 31, 25, 45 } },
{ "Gender", new List<object>() { "male", "female", "male" } }
};
//create df
var df = new DataFrame(dict);
//define aggregation
var agg = new Dictionary<string, Aggregation[]>() { {"ID",new Aggregation[]{Aggregation.Count,Aggregation.Sum }},
{"City",new Aggregation[]{Aggregation.Top,Aggregation.Frequency }},
{"Date", new Aggregation[]{Aggregation.Max }},
{"Values",new Aggregation[]{Aggregation.Avg } },
};
var newDf = df.Aggragate(agg);
var val = new List<object>() { 3, null, null, null, 6, null, null, null, null, "Sarajevo", null, null,
null, 1, null, null, null, null, 3.633333, null, null, null, null, date};
//
Assert.Equal(new string[] {"Count", "Sum", "Top", "Freq", "Mean", "Max" }, newDf.Index);
for (int i = 0; i < newDf.Values.Count; i++)
Assert.Equal(val[i], newDf.Values[i]);
Describe data frame method prints out the based descriptive statistics for specified columns in the data frame. The following code shows usage of Describe
method.
var date = DateTime.Now.AddDays(-5);
//define a dictionary of data
var dict = new Dictionary<string, List<object>>
{
{ "ID",new List<object>() { 1,2,3} },
{ "City",new List<object>() { "Sarajevo", "Seattle", "Berlin" } },
{ "Zip Code",new List<object>() { 71000,98101,10115 } },
{ "State",new List<object>() {"BiH","USA","GER" } },
{ "IsHome",new List<object>() { true, false, false} },
{ "Values",new List<object>() { 3.14, 3.21, 4.55 } },
{ "Date",new List<object>() { DateTime.Now.AddDays(-20) , DateTime.Now.AddDays(-10) , date } },
{ "Age", new List<object>() { 31, 25, 45 } },
{ "Gender", new List<object>() { "male", "female", "male" } }
};
//create df
var df = new DataFrame(dict);
df.Describe()
The following image shows the output of the Describe
method.
In case all columns should be presented the Describe
method should be called with df.Describe(numericOnly:false)
and the output should looks like:
We can drop or remove column from the data frame based on different criterion.
For example the following code will remove columns ID
, Date
, Age
, Gender
from the existing data frame:
var date1 = DateTime.Now.AddDays(-20);
var date2 = DateTime.Now.AddDays(-10);
var date3 = DateTime.Now.AddDays(-5);
//define a dictionary of data
var dict = new Dictionary<string, List<object>>
{
{ "ID",new List<object>() { 1,2,3} },
{ "City",new List<object>() { "Sarajevo", "Seattle", "Berlin" } },
{ "Zip Code",new List<object>() { 71000,98101,10115 } },
{ "State",new List<object>() {"BiH","USA","GER" } },
{ "IsHome",new List<object>() { true, false, false} },
{ "Values",new List<object>() { 3.14, 3.21, 4.55 } },
{ "Date",new List<object>() { date1 , date2 , date3 } },
{ "Age", new List<object>() { 31, 25, 45 } },
{ "Gender", new List<object>() { "male", "female", "male" } }
};
//create df
var df = new DataFrame(dict);
var df2 = df.Drop("ID", "Date", "Age", "Gender");
var lst = new List<object>() {"Sarajevo", 71000, "BiH", true, 3.14,"Seattle",
98101, "USA", false, 3.21, "Berlin",10115, "GER", false, 4.55 };
//
Assert.Equal(new string[] { "City", "Zip Code", "State", "IsHome", "Values" },
df2.Columns);
Assert.Equal(lst, df2.Values);
Drop row can be performed in case we want to remove missing values. The following code show dropping rows containing missing values:
var date = DateTime.Now.AddDays(-20);
//define a dictionary of data
var dict = new Dictionary<string, List<object>>
{
{ "ID",new List<object>() { 1,2,3} },
{ "City",new List<object>() { "Sarajevo", "Seattle", DataFrame.NAN } },
{ "Zip Code",new List<object>() { 71000,98101,10115 } },
{ "State",new List<object>() {"BiH","USA","GER" } },
{ "IsHome",new List<object>() { true, false, false} },
{ "Values",new List<object>() { 3.14, 3.21, 4.55 } },
{ "Date",new List<object>() { date , DateTime.Now.AddDays(-10) , date } },
{ "Age", new List<object>() { 31, 25, 45 } },
{ "Gender", new List<object>() { "male", DataFrame.NAN, "male" } }
};
//create df
var df = new DataFrame(dict);
//drop rows with missing values
var newDf = df.DropNA();
//check for values
Assert.Equal(9, newDf.ColCount());
Assert.Equal(1, newDf.RowCount());
Assert.Equal(new object[] {1, "Sarajevo", 71000, "BiH", true, 3.14,date, 31,
"male" }, newDf[0]);
Replacing missing values with specified value can be achieve by using FillNA
method. The following code replaces the missing values with replValue
:
var date = DateTime.Now.AddDays(-20);
//define a dictionary of data
var dict = new Dictionary<string, List<object>>
{
{ "ID",new List<object>() { 1,2,3} },
{ "City",new List<object>() { "Sarajevo", "Seattle", DataFrame.NAN } },
{ "Zip Code",new List<object>() { 71000,98101,10115 } },
{ "State",new List<object>() {"BiH","USA","GER" } },
{ "IsHome",new List<object>() { true, false, false} },
{ "Values",new List<object>() { 3.14, 3.21, 4.55 } },
{ "Date",new List<object>() { date , DateTime.Now.AddDays(-10) , date } },
{ "Age", new List<object>() { 31, 25, 45 } },
{ "Gender", new List<object>() { "male", "female", "male" } }
};
//create df
var df = new DataFrame(dict);
//drop rows with missing values
string replValue = "Berlin";
df.FillNA(replValue);
//check for values
Assert.Equal(9, df.ColCount());
Assert.Equal(3, df.RowCount());
Assert.Equal(new object[] { 3, "Berlin", 10115, "GER", false, 4.55, date, 45,
"male" }, df[2]);
Filter
operation returns data frame with specific filter condition. Also, RemoveRows
method acts opposite and removes all rows with specified condition by using delegate implementation. The following code shows filter data frame between dates:
var date1 = DateTime.Now.AddDays(-20);
var date2 = DateTime.Now.AddDays(-10);
var date3 = DateTime.Now.AddDays(-5);
//define a dictionary of data
var dict = new Dictionary<string, List<object>>
{
{ "ID",new List<object>() { 1,2,3} },
{ "City",new List<object>() { "Sarajevo", "Seattle", "Berlin" } },
{ "Zip Code",new List<object>() { 71000,98101,10115 } },
{ "State",new List<object>() {"BiH","USA","GER" } },
{ "IsHome",new List<object>() { true, false, false} },
{ "Values",new List<object>() { 3.14, 3.21, 4.55 } },
{ "Date",new List<object>() { date3 , date2 , date1 } },
{ "Age", new List<object>() { 31, 25, 45 } },
{ "Gender", new List<object>() { "male", "female", "male" } }
};
//create df
var df = new DataFrame(dict);
//filter data frame between dates
var opers = new FilterOperator[2] { FilterOperator.Greather, FilterOperator.Less };
var cols = new string[] { "Date", "Date" };
var values = (new DateTime[] { DateTime.Now.AddDays(-7), DateTime.Now.AddDays(-3) }).Select(x => (object)x).ToArray();
//filter
var filteredDF = df.Filter(cols, values, opers);
//
Assert.Equal(1, filteredDF.RowCount());
Assert.Equal(new List<object>() { 1, "Sarajevo", 71000, "BiH", true, 3.14, date3, 31, "male" }, filteredDF[0]);
The following code shows how to remove all rows in the data frame containing Miami
value in the City
column:
var date = DateTime.Now.AddDays(-20);
//define a dictionary of data
var dict = new Dictionary<string, List<object>>
{
{ "ID",new List<object>() { 1,2,3} },
{ "City",new List<object>() { "Sarajevo", "Seattle", DataFrame.NAN } },
{ "Zip Code",new List<object>() { 71000,98101,10115 } },
{ "State",new List<object>() {"BiH","USA","GER" } },
{ "IsHome",new List<object>() { true, false, false} },
{ "Values",new List<object>() { 3.14, 3.21, 4.55 } },
{ "Date",new List<object>() { date , DateTime.Now.AddDays(-10) , date } },
{ "Age", new List<object>() { 31, 25, 45 } },
{ "Gender", new List<object>() { "male", "female", "male" } }
};
//create df
var df = new DataFrame(dict);
//remove rows with 'Seattle'
DataFrame newDf = null;
df = df.RemoveRows((row, i) => row["City"]?.ToString() == "Seattle");
As can be seen the Function delegate is implemented with boolean return type. Every row will be remove if function delegate returns true
value.
The following code sorts data frame in ascending and descending order:
var dict = new Dictionary<string, List<object>>
{
{ "col1",new List<object>() { 1,31,41,51,61,11,21,71,81,91} },
{ "col2",new List<object>() { 2,32,42,52,62,12,22,72,82,92 } },
{ "col3",new List<object>() { 3,43,33,63,53,13,23,73,83,93 } },
{ "col4",new List<object>() { 4,54,44,34,64,14,24,74,84,94} },
};
//
var df = new DataFrame(dict);
var dict1 = new Dictionary<string, List<object>>
{
{ "col1",new List<object>() { 1,11,21,31,41,51,61,71,81,91} },
{ "col2",new List<object>() { 2,12,22,32,42,52,62,72,82,92 } },
{ "col3",new List<object>() { 3,13,23,43,33,63,53,73,83,93 } },
{ "col4",new List<object>() { 4,14,24,54,44,34,64,74,84,94} },
};
var df1 = new DataFrame(dict1);
var result = df.SortBy(new string[] { "col1", "col2", "col3", "col4" });
for (int i = 0; i < result.Values.Count; i++)
{
var expected = Convert.ToInt32(df1.Values[i]);
var actual = Convert.ToInt32(result.Values[i]);
Assert.Equal<int>(expected, actual);
}
Same implementation would be in case of descending sort, except that the SortByDescenging
would be called.
Rolling operation provides calculation on specific number (window size) of successive data frame rows. The following code shows rolling of sum
operation performed on column A
.
var dict = new Dictionary<string, List<object>>
{
{ "ID",new List<object>() { 1,2,3,4,5,6,7,8,9,10} },
{ "A",new List<object>() { -2.385977,-1.004295,0.735167, -0.702657,-0.246845,2.463718, -1.142255,1.396598, -0.543425,-0.64050} },
{ "B",new List<object>() { -0.102758,0.905829, -0.165272,-1.340923,0.211596, 3.157577, 2.340594, -1.647453,1.761277, 0.289374} },
{ "C",new List<object>() { 0.438822, -0.954544,-1.619346,-0.706334,-0.901819,-1.380906,-0.039875,1.677227, -0.220481,-1.55067} },
{ "D",new List<object>() { "chair", "label", "item", "window", "computer", "label", "chair", "item", "abaqus", "window" } },
{"E", new List<object>() { DateTime.ParseExact("12/20/2016", "MM/dd/yyyy", CultureInfo.InvariantCulture, DateTimeStyles.None),
DateTime.ParseExact("6/13/2016" , "M/dd/yyyy", CultureInfo.InvariantCulture, DateTimeStyles.None),
DateTime.ParseExact("8/25/2016", "M/dd/yyyy", CultureInfo.InvariantCulture, DateTimeStyles.None),
DateTime.ParseExact("11/4/2016" , "MM/d/yyyy", CultureInfo.InvariantCulture, DateTimeStyles.None),
DateTime.ParseExact("6/18/2016", "M/dd/yyyy", CultureInfo.InvariantCulture, DateTimeStyles.None),
DateTime.ParseExact("3/8/2016" , "M/d/yyyy", CultureInfo.InvariantCulture, DateTimeStyles.None),
DateTime.ParseExact("9/3/2016" , "M/d/yyyy", CultureInfo.InvariantCulture, DateTimeStyles.None),
DateTime.ParseExact("11/24/2016", "MM/dd/yyyy", CultureInfo.InvariantCulture, DateTimeStyles.None),
DateTime.ParseExact("6/16/2016", "M/dd/yyyy", CultureInfo.InvariantCulture, DateTimeStyles.None),
DateTime.ParseExact("1/31/2016", "M/dd/yyyy", CultureInfo.InvariantCulture, DateTimeStyles.None)}
}
};
//
var df = new DataFrame(dict);
var rollingdf = df.Rolling(3, new Dictionary<string, Aggregation> { { "A", Aggregation.Sum } });
The rollingdf
data frame looks like the following image:
GroupBy operation perform grouping similar rows in data frame. The following code groups data frame based on Gender
column:
var date1 = DateTime.Now.AddDays(-20);
var date2 = DateTime.Now.AddDays(-10);
var date3 = DateTime.Now.AddDays(-5);
//define a dictionary of data
var dict = new Dictionary<string, List<object>>
{
{ "ID",new List<object>() { 1,2,3} },
{ "City",new List<object>() { "Sarajevo", "Seattle", "Berlin" } },
{ "Zip Code",new List<object>() { 71000,98101,10115 } },
{ "State",new List<object>() {"BiH","USA","GER" } },
{ "IsHome",new List<object>() { true, false, false} },
{ "Values",new List<object>() { 3.14, 3.21, 4.55 } },
{ "Date",new List<object>() { date3 , date2 , date1 } },
{ "Age", new List<object>() { 31, 25, 45 } },
{ "Gender", new List<object>() { "male", "female", "male" } }
};
//create df
var df = new DataFrame(dict);
//group df by gender
var gDf = df.GroupBy("Gender");
var swqs = gDf.ToStringBuilder();
In case two grouping columns should be applied (Gender
and City
), the following code is used:
var date1 = DateTime.Now.AddDays(-20);
var date2 = DateTime.Now.AddDays(-10);
var date3 = DateTime.Now.AddDays(-5);
//define a dictionary of data
var dict = new Dictionary<string, List<object>>
{
{ "ID",new List<object>() { 1,2,3} },
{ "City",new List<object>() { "Sarajevo", "Sarajevo", "Berlin" } },
{ "Zip Code",new List<object>() { 71000,98101,10115 } },
{ "State",new List<object>() {"BiH","USA","GER" } },
{ "IsHome",new List<object>() { true, false, false} },
{ "Values",new List<object>() { 3.14, 3.21, 4.55 } },
{ "Date",new List<object>() { date3 , date2 , date1 } },
{ "Age", new List<object>() { 31, 25, 45 } },
{ "Gender", new List<object>() { "male", "female", "male" } }
};
//create df
var df = new DataFrame(dict);
//group df by gender
var gDf = df.GroupBy("Gender","City");
var swqs = gDf.ToStringBuilder();
Often, after grouping aggregation is applied on each group of data frame. The following code shows combination of grouping and rolling. The following code, groups data by Gender
column, then perform aggregation on two columns Age
and Values
.
var date1 = DateTime.Now.AddDays(-20);
var date2 = DateTime.Now.AddDays(-10);
var date3 = DateTime.Now.AddDays(-5);
//define a dictionary of data
var dict = new Dictionary<string, List<object>>
{
{ "ID",new List<object>() { 1,2,3,4} },
{ "City",new List<object>() { "Sarajevo", "Seattle", "Berlin", "Amsterdam" } },
{ "Zip Code",new List<object>() { 71000,98101,10115, 11000 } },
{ "State",new List<object>() {"BiH","USA","GER", "NL" } },
{ "IsHome",new List<object>() { true, false, false, true} },
{ "Values",new List<object>() { 3.14, 3.21, 4.55, 5.55 } },
{ "Date",new List<object>() { date3 , date2 , date1 , date2} },
{ "Age", new List<object>() { 31, 25, 45, 33 } },
{ "Gender", new List<object>() { "male", "female", "male", "female" } }
};
//create df
var df = new DataFrame(dict);
//group df by gender
var gDf = df.GroupBy("Gender")
.Rolling(2, new Dictionary<string, Aggregation>()
{ { "Values", Aggregation.Sum },
{ "Age", Aggregation.Avg } }).TakeEvery(2);
The output of the code above is shown on the following image:
Merge
method merges two data frames on a ways similar like SQL LIKE statement. In order to call it, you have to provide two data frames, left and right key columns and type of joining. The condition for merging is based on keys columns where the values from the first left key column must be equal to the first right key column. In case of more than one key column the values from the corresponded columns must be equal. The following code shows mergings two data frames with two keys columns with inner join type.
var dict = new Dictionary<string, List<object>>
{
{ "itemID",new List<object>() { "foo", "bar", "baz", "foo" } },
{ "catId",new List<object>() { "A", "A", "B", "B" } },
{ "value1",new List<object>() { 1,2,3,4 } },
};
var dict1 = new Dictionary<string, List<object>>
{
{ "item2ID",new List<object>() {"foo", "bar", "baz","foo" } },
{ "cat2ID",new List<object>() { "A", "B", "A", "B" } },
{ "value2",new List<object>() { 5,6,7,8 } },
};
//
var df1 = new DataFrame(dict);
var df2 = new DataFrame(dict1);
var mergedDf = df1.Merge(df2,
new string[] { "itemID", "catId" }, //left key columns
new string[] { "item2ID", "cat2ID" }, //right key columns
JoinType.Inner);//join type
The following output is shown as the result:
The limitation for the number of key columns is 3. That means you cannot merge two data frames with more than 3 key columns.
Unlike Merge
which is working on ordinary columns, a Join
method works only on data frame index, but the way of joining the data frames is the same. The following code joins two data frame base on their indexes:
var dict = new Dictionary<string, List<object>>
{
{ "itemID",new List<object>() { "foo", "bar", "baz", "foo" } },
{ "value1",new List<object>() { 1,2,3,4 } },
};
var dict1 = new Dictionary<string, List<object>>
{
{ "item2ID",new List<object>() {"foo", "bar", "baz" } },
{ "value2",new List<object>() { 5,6,7 } },
};
//
var df1 = new DataFrame(dict);
var df2 = new DataFrame(dict1);
//
var mergedDf = df1.Join(df2, JoinType.Inner);
var e1 = new object[] { "foo", 1, "foo", 5, "bar", 2, "bar", 6, "baz", 3, "baz", 7 };
var dd = mergedDf.ToStringBuilder();
//row test
for (int i = 0; i < mergedDf.Values.Count; i++)
Assert.Equal(mergedDf.Values[i], e1[i]);
//
mergedDf = df1.Join(df2, JoinType.Left);
e1 = new object[] { "foo", 1, "foo", 5, "bar", 2, "bar", 6, "baz", 3, "baz", 7, "foo", 4, DataFrame.NAN, DataFrame.NAN };
dd = mergedDf.ToStringBuilder();
//row test
for (int i = 0; i < mergedDf.Values.Count; i++)
Assert.Equal(mergedDf.Values[i], e1[i]);
The data from data frame can be selected on many ways. It is useful to have set of Linq
oriented methods. There are several methods for selecting data from data frame:
TakeEvery(int nthRow)
- select every nth row, created data frame and return.TakeRandom(int rows)
- select randomlynrows
and return data frame.Tail(int count = 5)
- select lastcount
rows.Head(int count = 5)
- select firstcount
rows.
Besides the Daany.DataFrame
the library contains set of implementation with working on time series data. The following list contains some of them:
- Conversion time series into
Daany.DataFrame
andSeries
- Seasonal and Trend decomposition using Loess -
STL
time series decomposition, - Singular Spectrum Analysis
SSA
time series decomposition, - Set of
Time Series
operations like moving average, etc....
With SSA
, you can decompose the time series into any number of components (signals). The following code loads the famous AirPassengers
time series data:
var strPath = $"{root}/AirPassengers.csv";
var mlDF = DataFrame.FromCsv(strPath, sep: ',');
var ts = mlDF["#Passengers"].Select(f => Convert.ToDouble(f));//create time series from data frame
Now that we have AirPasanger
time series object ts
, we can create SSA object by passing thets
into it:
//create Singular Spectrum Analysis object
var ssa = new SSA(ts);
//perform analysis
ssa.Fit(36);
So we created the ssa
object by passing the number of components that we are going to create. Once the ssa
object has been created we can call the Fit
method to start with time series SSA analysis.
Once we have analyzed the time series, we can plot its components. The following plot shows the first 4 components:
The following plot shows how previous 4 components approximate the actual AirPassengers
data:
At the end we can plot ssa
predicted and actual values of the time series:
The Daany.LinA
provides the ability to use Intel MKL a native and super fast math library to perform linear algebra calculations. With the combination of the previous packages (DataFrame
and Daany.Stat
) you are able to transform and analyze very complex data, solve system of linear equations, find eigen values and vectors, use least square method etc.