A python package that defines a partial order over RDF licenses
CaLi is a lattice-based model for license orderings. This repository contains a python package that implements this model.
Code uses the ODRL CaLi ordering ⟨A, LS, CL, C→⟩ such that:
- A is the set of 72 actions of ODRL (e.g., cc:Distribution, cc:ShareAlike, etc.),
- LS is the restrictiveness lattice of status
Undefined <= Permissions <= Duty <= Prohibition
(actions can be either permitted, obliged, prohibited or not specified; in this LS, the undefined status is the least restrictive and the prohibited one the most restrictive), - CL and
- C→ are sets of constraints.
CaLi online demonstrator Is an exemple of license compliant search engine using CaLi model.
Installation in a virtualenv
is recommended.
Assuming you already have python 3
and pip
installed
pip install pycali
this will automatically install rdflib used to manipulate RDF.
This section shows how to create a CaLi ordering with ease.
A vocabulary object is a set of URIs (rdflib.term.URIRef) identifying actions (e.g., cc:Distribution, cc:ShareAlike, odrl:play, etc.)
Create your own vocabulary inheriting from Vocabulary object or use the implemented ODRL Vocabulary:
from pycali.vocabulary import ODRLVocabulary
odrl = ODRLVocabulary()
# access the list of actions
odrl.actions
LS is a lattice defining the restrictiveness order between statuses of the actions (permitted, obliged, prohibited). Repository contains examples of LS in RDF. A Restrictiveness lattice of status is instantiated using a LS in RDF (rdflib.Graph):
from rdflib import Graph
from pycali.restrictiveness_lattice_of_status import RestrictivenessLatticeOfStatus
from pycali.examples.restrictiveness_lattice_of_status.DL1 import dl1_rdf
# Load the LS in the examples
DL1 = RestrictivenessLatticeOfStatus(Graph().parse(data=dl1_rdf, format='ttl'))
Note that you can parse your own file using location parameter
A license i a set of statuses associated to actions of the vocabulary. You can define your own license by creating a class inheriting from License object or use the implemented ODRLLicense object. Repository contains examples of ODRL licenses dataset.
ODRLLicenses object is able to generate a set of ODRLlicense object from a rdf dataset of licenses described using ODRL Vocabulary:
from rdflib import Graph
from pycali.license import ODRLLicenses
from pycali.examples.licenses.ld_licenses_odrl import ld_licenses_rdf
ld_licenses_graph = Graph().parse(data=ld_licenses_rdf,
format='ttl')
licenses = ODRLLicenses(vocabulary=odrl,
ls=DL1,
rdf_graph=ld_licenses_graph)
Note that you can parse your own file using location parameter
IRI of the license can be used to retrieve a specific license:
from pycali.license import ODRLLicense
from rdflib import Graph, URIRef
from pycali.vocabulary import ODRL
from pycali.ontologies.cali_onto import Permission
from pycali.examples.licenses.ld_licenses_odrl import ld_licenses_rdf
MIT = URIRef('http://cali.priloo.univ-nantes.fr/api/ld/licenses/65927752496731336041529177465061342556133156838395276')
ld_licenses_graph = Graph().parse(data=ld_licenses_rdf,
format='ttl')
mit_license = ODRLLicense(vocabulary=odrl,
ls=DL1,
rdf_graph=ld_licenses_graph,
iri=MIT)
# Returns a list of actions in the specified state
actions = mit_license.get_action(vocabulary=odrl, status=Permission)
# Returns the state of an action
state = mit_license.get_status(vocabulary=odrl, action=ODRL['derive'])
Constraints on license CL defines if a license is valid or not. Compatibility constraints C→ defines if a restrictiveness relation is a compatibility relation or not. Repository contains examples of license and compatibility constraints.
A constraints on license is a a python function that takes 2 parameters, a vocabulary and a license and returns a boolean:
from pycali.ontologies.cali_onto import Duty
from pycali.vocabulary import CC
# A License should not obligates the commercial use of a resource
def CommercialUse_Not_Duty(vocabulary, license):
return license.get_status(vocabulary, CC['CommericalUse']) != Duty
A compatibility constraint is a a python function that takes 3 parameters, a vocabulary and 2 licenses and returns a boolean:
from pycali.ontologies.cali_onto import Duty
from pycali.vocabulary import CC
# A license that obligates to share alike should not be compatible with another license
def ShareAlike_Compatibility(vocabulary, license1, license2):
return license1.get_status(vocabulary, CC['ShareAlike']) != Duty
Constraints are instantiated using LicenseConstraints and CompatibilityConstraints objects. They are initiated with a list of constraints (signature of functions (constraints) are tested during initialization).
from pycali.constraints import LicenseConstraints, CompatibilityConstraints
from pycali.examples.license_constraints import CommercialUse_Not_Duty, ShareAlike_Not_Prohibition, CommercialUse_Include_Use
from pycali.examples.compatibility_constraints import ShareAlike_Compatibility, DerivativeWorks_Compatibility
license_constraints = LicenseConstraints(odrl, [CommercialUse_Not_Duty, ShareAlike_Not_Prohibition, CommercialUse_Include_Use])
compatibility_constraints = CompatibilityConstraints(ODRL, [ShareAlike_Compatibility, DerivativeWorks_Compatibility])
# Checks if license respects all constraints on license
license_constraints.is_valid(license)
# Checks if the restrictiveness relation between license1 and license2 repects all compatibility relations
compatibility_constraints.is_compatible(license1, license2)
CaLi ordering automatically defines compatibility relations between licenses. It takes 4 parameters, the restrictiveness lattice of status (LS), the vocabulary, licenses constraints and compatibility constraints. Then, every license added in the cali_ordering is ordered among other using compatibility relation.
from rdflib import Graph
from pycali.cali_ordering import CaliOrdering
from pycali.restrictiveness_lattice_of_status import RestrictivenessLatticeOfStatus
from pycali.license import ODRLLicenses
from pycali.vocabulary import ODRLVocabulary
from pycali.constraints import LicenseConstraints, CompatibilityConstraints
from pycali.examples.license_constraints import CommercialUse_Not_Duty, ShareAlike_Not_Prohibition, CommercialUse_Include_Use
from pycali.examples.compatibility_constraints import ShareAlike_Compatibility, DerivativeWorks_Compatibility
from pycali.examples.restrictiveness_lattice_of_status.DL1 import dl1_rdf
from pycali.examples.licenses.ld_licenses_odrl import ld_licenses_rdf
# instantiate a cali ordering
odrl = ODRLVocabulary()
DL1 = RestrictivenessLatticeOfStatus(Graph().parse(data=dl1_rdf, format='ttl'))
cali_ordering = CaliOrdering(ls=DL1,
vocabulary=odrl,
license_constraints=LicenseConstraints(odrl, [CommercialUse_Not_Duty, ShareAlike_Not_Prohibition, CommercialUse_Include_Use]),
compatibility_constraints=CompatibilityConstraints(odrl, [ShareAlike_Compatibility, DerivativeWorks_Compatibility]))
# add licenses to order
ld_licenses_graph = Graph().parse(data=ld_licenses_rdf, format='ttl')
licenses = ODRLLicenses(vocabulary=odrl, ls=DL1, rdf_graph=ld_licenses_graph)
# use cali_ordering.add_license(license) to add one license
cali_ordering.add_licenses(licenses)
# checks if license1 is compatible with license2
boolean = cali_ordering.is_compatible(license1, license2)
# checks if license2 is compatible with license1
boolean = cali_ordering.is_compliant(license1, license2)
# Returns all licenses that are compatible with license entered in parameter
licenses = cali_ordering.all_compatible(license)
# Returns all licenses that are compliant with license entered in parameter
licenses = cali_ordering.all_compliant(license)
# Returns an RDF graph containing license IRI's and compatibility relations
rdf_graph = cali_ordering.get_rdf_graph()
# serialize rdf graph in turtle
turtle_string = rdf_graph.serialize(format='turtle')