forked from jensengroup/GB_GA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
scoring_functions.py
249 lines (195 loc) · 6.88 KB
/
scoring_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
'''
Written by Jan H. Jensen 2018
'''
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import Descriptors
from rdkit.DataStructs.cDataStructs import TanimotoSimilarity
from rdkit.Chem import rdFMCS
from rdkit import rdBase
rdBase.DisableLog('rdApp.error')
import numpy as np
import sys
from multiprocessing import Pool
import subprocess
import os
import shutil
import string
import random
import sascorer
logP_values = np.loadtxt('logP_values.txt')
SA_scores = np.loadtxt('SA_scores.txt')
cycle_scores = np.loadtxt('cycle_scores.txt')
SA_mean = np.mean(SA_scores)
SA_std=np.std(SA_scores)
logP_mean = np.mean(logP_values)
logP_std= np.std(logP_values)
cycle_mean = np.mean(cycle_scores)
cycle_std=np.std(cycle_scores)
def calculate_score(args):
'''Parallelize at the score level (not currently in use)'''
gene, function, scoring_args = args
score = function(gene,scoring_args)
return score
def calculate_scores_parallel(population,function,scoring_args, n_cpus):
'''Parallelize at the score level (not currently in use)'''
args_list = []
args = [function, scoring_args]
for gene in population:
args_list.append([gene]+args)
with Pool(n_cpus) as pool:
scores = pool.map(calculate_score, args_list)
return scores
def calculate_scores(population,function,scoring_args):
if 'pop' in function.__name__:
scores = function(population,scoring_args)
else:
scores = [function(gene,scoring_args) for gene in population]
return scores
def logP_max(m, dummy):
score = logP_score(m)
return max(0.0, score)
def logP_target(m,args):
target, sigma = args
score = logP_score(m)
score = GaussianModifier(score, target, sigma)
return score
def logP_score(m):
try:
logp = Descriptors.MolLogP(m)
except:
print (m, Chem.MolToSmiles(m))
sys.exit('failed to make a molecule')
SA_score = -sascorer.calculateScore(m)
#cycle_list = nx.cycle_basis(nx.Graph(rdmolops.GetAdjacencyMatrix(m)))
cycle_list = m.GetRingInfo().AtomRings() #remove networkx dependence
if len(cycle_list) == 0:
cycle_length = 0
else:
cycle_length = max([ len(j) for j in cycle_list ])
if cycle_length <= 6:
cycle_length = 0
else:
cycle_length = cycle_length - 6
cycle_score = -cycle_length
#print cycle_score
#print SA_score
#print logp
SA_score_norm=(SA_score-SA_mean)/SA_std
logp_norm=(logp-logP_mean)/logP_std
cycle_score_norm=(cycle_score-cycle_mean)/cycle_std
score_one = SA_score_norm + logp_norm + cycle_score_norm
return score_one
def shell(cmd, shell=False):
if shell:
p = subprocess.Popen(cmd, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
else:
cmd = cmd.split()
p = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, err = p.communicate()
return output
def write_xtb_input_file(fragment, fragment_name):
number_of_atoms = fragment.GetNumAtoms()
charge = Chem.GetFormalCharge(fragment)
symbols = [a.GetSymbol() for a in fragment.GetAtoms()]
for i,conf in enumerate(fragment.GetConformers()):
file_name = fragment_name+"+"+str(i)+".xyz"
with open(file_name, "w") as file:
file.write(str(number_of_atoms)+"\n")
file.write("title\n")
for atom,symbol in enumerate(symbols):
p = conf.GetAtomPosition(atom)
line = " ".join((symbol,str(p.x),str(p.y),str(p.z),"\n"))
file.write(line)
if charge !=0:
file.write("$set\n")
file.write("chrg "+str(charge)+"\n")
file.write("$end")
def get_structure(mol,n_confs):
mol = Chem.AddHs(mol)
new_mol = Chem.Mol(mol)
AllChem.EmbedMultipleConfs(mol,numConfs=n_confs,useExpTorsionAnglePrefs=True,useBasicKnowledge=True)
energies = AllChem.MMFFOptimizeMoleculeConfs(mol,maxIters=2000, nonBondedThresh=100.0)
energies_list = [e[1] for e in energies]
min_e_index = energies_list.index(min(energies_list))
new_mol.AddConformer(mol.GetConformer(min_e_index))
return new_mol
def compute_absorbance(mol,n_confs,path):
mol = get_structure(mol,n_confs)
dir = ''.join(random.choices(string.ascii_uppercase + string.digits, k=6))
os.mkdir(dir)
os.chdir(dir)
write_xtb_input_file(mol, 'test')
shell(path+'/xtb4stda test+0.xyz',shell=False)
out = shell(path+'/stda_v1.6.1 -xtb -e 10',shell=False)
#data = str(out).split('Rv(corr)\\n')[1].split('alpha')[0].split('\\n') # this gets all the lines
data = str(out).split('Rv(corr)\\n')[1].split('(')[0]
wavelength, osc_strength = float(data.split()[2]), float(data.split()[3])
os.chdir('..')
shutil.rmtree(dir)
return wavelength, osc_strength
def absorbance_target(mol,args):
n_confs, path, target, sigma, threshold = args
try:
wavelength, osc_strength = compute_absorbance(mol,n_confs,path)
except:
return 0.0
score = GaussianModifier(wavelength, target, sigma)
score += ThresholdedLinearModifier(osc_strength,threshold)
return score
# GuacaMol article https://arxiv.org/abs/1811.09621
# adapted from https://github.com/BenevolentAI/guacamol/blob/master/guacamol/utils/fingerprints.py
def get_ECFP4(mol):
return AllChem.GetMorganFingerprint(mol, 2)
def get_ECFP6(mol):
return AllChem.GetMorganFingerprint(mol, 3)
def get_FCFP4(mol):
return AllChem.GetMorganFingerprint(mol, 2, useFeatures=True)
def get_FCFP6(mol):
return AllChem.GetMorganFingerprint(mol, 3, useFeatures=True)
def rediscovery(mol,args):
target = args[0]
try:
fp_mol = get_ECFP4(mol)
fp_target = get_ECFP4(target)
score = TanimotoSimilarity(fp_mol, fp_target)
return score
except:
print('Failed ',Chem.MolToSmiles(mol))
return None
def MCS(mol,args):
target = args[0]
try:
mcs = rdFMCS.FindMCS([mol, target], bondCompare=rdFMCS.BondCompare.CompareOrderExact,ringMatchesRingOnly=True,completeRingsOnly=True)
score = mcs.numAtoms/target.GetNumAtoms()
return score
except:
print('Failed ',Chem.MolToSmiles(mol))
return None
def similarity(mol,target,threshold):
score = rediscovery(mol,target)
if score:
return ThresholdedLinearModifier(score,threshold)
else:
return None
# adapted from https://github.com/BenevolentAI/guacamol/blob/master/guacamol/score_modifier.py
def ThresholdedLinearModifier(score,threshold):
return min(score,threshold)/threshold
def GaussianModifier(score, target, sigma):
try:
score = np.exp(-0.5 * np.power((score - target) / sigma, 2.))
except:
score = 0.0
return score
if __name__ == "__main__":
n_confs = 20
xtb_path = '/home/jhjensen/stda'
target = 200.
sigma = 50.
threshold = 0.3
smiles = 'Cc1occn1' # Tsuda I
mol = Chem.MolFromSmiles(smiles)
wavelength, osc_strength = compute_absorbance(mol,n_confs,xtb_path)
print(wavelength, osc_strength)
score = absorbance_target(mol,[n_confs, xtb_path, target, sigma, threshold])
print(score)