-
Notifications
You must be signed in to change notification settings - Fork 5
/
demo.py
151 lines (129 loc) · 5.29 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
import math
import numbers
import random
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset
from PIL import Image, ImageOps
from tqdm import tqdm
from torchvision import datasets, transforms
from functions import rotation_invariant_encoding
from modules.ORConv import ORConv2d
# Training settings
parser = argparse.ArgumentParser(description='ORN.PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=200, metavar='N',
help='number of epochs to train (default: 200)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1234, metavar='S',
help='random seed (default: 1234)')
parser.add_argument('--log-interval', type=int, default=20, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--use-arf', action='store_true', default=False,
help='upgrading to ORN')
parser.add_argument('--orientation', type=int, default=8, metavar='O',
help='nOrientation for ARFs (default: 8)')
class toyDataset(Dataset):
def __init__(self, num_samples = 10000):
super(toyDataset, self).__init__()
self.num_samples = num_samples
def __len__(self):
return self.num_samples
def __getitem__(self, index):
assert index < len(self), 'index range error'
image = torch.randn(1, 32, 32)
label = torch.randint(0,10,(1,)).item()
return image, label
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
train_loader = torch.utils.data.DataLoader(toyDataset(10000),
batch_size=args.batch_size,
shuffle=True)
test_loader = torch.utils.data.DataLoader(toyDataset(100),
batch_size=args.batch_size,
shuffle=False)
class Net(nn.Module):
def __init__(self, use_arf=False, nOrientation=8):
super(Net, self).__init__()
self.use_arf = use_arf
self.nOrientation = nOrientation
if use_arf:
self.conv1 = ORConv2d(1, 10, arf_config=(1,nOrientation), kernel_size=3)
self.conv2 = ORConv2d(10, 20, arf_config=nOrientation,kernel_size=3)
self.conv3 = ORConv2d(20, 40, arf_config=nOrientation,kernel_size=3, stride=1, padding=1)
self.conv4 = ORConv2d(40, 80, arf_config=nOrientation,kernel_size=3)
else:
self.conv1 = nn.Conv2d(1, 80, kernel_size=3)
self.conv2 = nn.Conv2d(80, 160, kernel_size=3)
self.conv3 = nn.Conv2d(160, 320, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(320, 640, kernel_size=3)
self.fc1 = nn.Linear(640, 1024)
self.fc2 = nn.Linear(1024, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), 2)
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = F.max_pool2d(F.relu(self.conv3(x)), 2)
x = F.relu(self.conv4(x))
if self.use_arf:
x = rotation_invariant_encoding(x, self.nOrientation)
x = x.view(-1, 640)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
model = Net(args.use_arf, args.orientation)
print(model)
if args.cuda:
model.cuda()
optimizer = optim.Adadelta(model.parameters())
best_test_acc = 0.
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(tqdm(train_loader)):
if args.cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
# if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(epoch):
global best_test_acc
model.eval()
test_loss = 0
correct = 0
for data, target in tqdm(test_loader):
with torch.no_grad():
if args.cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
test_loss += F.nll_loss(output, target).item()
pred = output.data.max(1)[1] # get the index of the max log-probability
correct += pred.eq(target.data).cpu().sum()
test_loss = test_loss
test_loss /= len(test_loader) # loss function already averages over batch size
test_acc = 100. * correct / len(test_loader.dataset)
if test_acc > best_test_acc:
best_test_acc = test_acc
print('best test accuracy: {:.2f}%'.format(best_test_acc))
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
test_loss, correct, len(test_loader.dataset), test_acc))
for epoch in range(1, args.epochs + 1):
train(epoch)
test(epoch)
print('best test accuracy: {:.2f}%'.format(best_test_acc))