如果 Mathematica 版本 $\geqslant11.3$
可直接运行
ResourceFunction ["GitHubInstall" ]["RuleBasedIntegration" ,"Rubi" ]
版本低的就下载这个 https://github.com/RuleBasedIntegration/Rubi/releases/download/4.16.1.0/Rubi-4.16.1.0.paclet
然后运行
PacletInstall ["PATHto.paclet" ]
然后,运行下面的代码(Run following codes)
<< Rubi `
IntWithStepsOfTeXForm [expr_ ,var_ ]:= With [{TeX2Str = Convert ` TeX ` ExpressionToTeX },
Steps [Int [expr ,var ],RubiPrintInformation -> False ]//
Flatten //
Most //
Cases [RubiIntermediateResult [x_ ]:> "=&" <> (TeX2Str [HoldForm @@ x ])<> "\\\\ " ]//
{"\\ begin{aligned}" ,TeX2Str @ HoldForm @ Int [expr ,var ],## & @@ # ,"\\ end{aligned}" }& //
StringReplace [{"\\ ,d" -> "\\ ,\\ mathrm{d}" }]//
StringRiffle ]
IntWithStepsOfTeXForm [Sin [x ]/ x ^ 3 ,x ]
$$\begin{aligned}\int\frac{\sin(x)}{x^3}\mathrm{d}x=&-\frac{\sin(x)}{2x^2}+\frac{1}{2}\int\frac{\cos(x)}{x^2}\mathrm{d}x\\=&-\frac{\cos(x)}{2x}-\frac{\sin(x)}{2x^2}-\frac{1}{2}\int\frac{\sin(x)}{x}\mathrm{d}x\\=&-\frac{\cos(x)}{2x}-\frac{\sin(x)}{2x^2}-\frac{\text{Si}(x)}{2}+C\end{aligned}$$
IntWithStepsOfTeXForm [(x ^ 2 + x + 1 )/ (x ^ 4 + x ^ 3 + x + 1 ),x ]
$$\begin{aligned}\displaystyle\int\frac{1+x+x^2}{1+x+x^3+x^4},\mathrm{d}x=&\displaystyle\int\left(\frac{1}{3(1+x)^2}+\frac{2}{3\left(1-x+x^2\right)}\right),\mathrm{d}x\\=&-\frac{1}{3(1+x)}+\frac{2}{3}\displaystyle\int\frac{1}{1-x+x^2},\mathrm{d}x\\=&-\frac{1}{3(1+x)}-\frac{4}{3}\text{Subst}\left(\displaystyle\int\frac{1}{-3-x^2},\mathrm{d}x,x,-1+2x\right)\\=&-\frac{1}{3(1+x)}-\frac{4\tan^{-1}\left(\frac{1-2x}{\sqrt{3}}\right)}{3\sqrt{3}}+C\end{aligned}$$
本文目前发在了
Mathematica使用人数好少啊。。。