From 48f5823785e71444558f0f296f30e52cc623d777 Mon Sep 17 00:00:00 2001 From: arsalanyavari Date: Thu, 26 Sep 2024 17:12:29 +0330 Subject: [PATCH] add ML naive bayes and random forrest --- ML/classification/naive bayes/.gitignore | 3 + .../naive bayes/naive_bayes.ipynb | 803 +++++++++++++++++ ML/classification/random forrest/.gitignore | 3 + ML/classification/random forrest/.gitkeep | 0 .../random forrest/dataset/archive.zip | Bin 0 -> 4963 bytes .../random forrest/random_forest.ipynb | 814 ++++++++++++++++++ 6 files changed, 1623 insertions(+) create mode 100644 ML/classification/naive bayes/.gitignore create mode 100644 ML/classification/naive bayes/naive_bayes.ipynb create mode 100644 ML/classification/random forrest/.gitignore create mode 100644 ML/classification/random forrest/.gitkeep create mode 100644 ML/classification/random forrest/dataset/archive.zip create mode 100644 ML/classification/random forrest/random_forest.ipynb diff --git a/ML/classification/naive bayes/.gitignore b/ML/classification/naive bayes/.gitignore new file mode 100644 index 0000000..849d8e6 --- /dev/null +++ b/ML/classification/naive bayes/.gitignore @@ -0,0 +1,3 @@ +*.csv +.ipynb_checkpoints + diff --git a/ML/classification/naive bayes/naive_bayes.ipynb b/ML/classification/naive bayes/naive_bayes.ipynb new file mode 100644 index 0000000..0037d7b --- /dev/null +++ b/ML/classification/naive bayes/naive_bayes.ipynb @@ -0,0 +1,803 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "29b5381a-72b4-4f81-9208-2075f7acad85", + "metadata": {}, + "source": [ + "# Naive Bayes Classification" + ] + }, + { + "cell_type": "markdown", + "id": "cac03d32", + "metadata": {}, + "source": [ + "Configure the project. Indeed you create a dataset in csv format." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "6f480cda-8380-4355-998a-5c59d6203b05", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Archive: ./dataset/archive.zip\n", + " inflating: Graduate.csv \n", + " inflating: play.csv \n" + ] + } + ], + "source": [ + "! rm -rf *.csv\n", + "! unzip ./dataset/archive.zip\n", + "! rm play.csv\n", + "! mv Graduate.csv data.csv" + ] + }, + { + "cell_type": "markdown", + "id": "52ec2f48", + "metadata": {}, + "source": [ + "Import needed libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "dd17f780", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.naive_bayes import GaussianNB\n", + "from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, jaccard_score\n", + "import scikitplot as skplt\n", + "from sklearn.preprocessing import LabelEncoder\n", + "import matplotlib.pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "57b33a77", + "metadata": {}, + "source": [ + "Read data from data.csv using pandas and store in data frame structure. Also shuffle data to have uniform distribution. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a102a751", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Serial No.GRE ScoreTOEFL ScoreUniversity RatingSOPLORCGPAResearchAdmit
036233411644.03.59.5411
17431410844.54.09.0411
237531510522.02.57.6500
315631210933.03.08.6901
410532611233.53.09.0511
\n", + "
" + ], + "text/plain": [ + " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n", + "0 362 334 116 4 4.0 3.5 9.54 \n", + "1 74 314 108 4 4.5 4.0 9.04 \n", + "2 375 315 105 2 2.0 2.5 7.65 \n", + "3 156 312 109 3 3.0 3.0 8.69 \n", + "4 105 326 112 3 3.5 3.0 9.05 \n", + "\n", + " Research Admit \n", + "0 1 1 \n", + "1 1 1 \n", + "2 0 0 \n", + "3 0 1 \n", + "4 1 1 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"data.csv\")\n", + "df.head()\n", + "df = df.sample(frac=1.0, random_state=42).reset_index(drop=True)\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "ca6a571f", + "metadata": {}, + "source": [ + "## Preprocessing" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "6f063a14", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(500, 9)\n", + "Index(['Serial No.', 'GRE Score', 'TOEFL Score', 'University Rating', 'SOP',\n", + " 'LOR ', 'CGPA', 'Research', 'Admit'],\n", + " dtype='object')\n", + "Serial No. int64\n", + "GRE Score int64\n", + "TOEFL Score int64\n", + "University Rating int64\n", + "SOP float64\n", + "LOR float64\n", + "CGPA float64\n", + "Research int64\n", + "Admit int64\n", + "dtype: object\n" + ] + } + ], + "source": [ + "print(df.shape)\n", + "print(df.columns)\n", + "print(df.dtypes)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e4bf7dcd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Admit\n", + "1 463\n", + "0 37\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Admit'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "1743c9c6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GRE ScoreTOEFL ScoreUniversity RatingSOPLORCGPAResearchAdmit
033411644.03.59.5411
131410844.54.09.0411
231510522.02.57.6500
331210933.03.08.6901
432611233.53.09.0511
\n", + "
" + ], + "text/plain": [ + " GRE Score TOEFL Score University Rating SOP LOR CGPA Research Admit\n", + "0 334 116 4 4.0 3.5 9.54 1 1\n", + "1 314 108 4 4.5 4.0 9.04 1 1\n", + "2 315 105 2 2.0 2.5 7.65 0 0\n", + "3 312 109 3 3.0 3.0 8.69 0 1\n", + "4 326 112 3 3.5 3.0 9.05 1 1" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = df.drop('Serial No.', axis=1)\n", + "categorical_attr = ['Admit']\n", + "\n", + "le = LabelEncoder()\n", + "df[categorical_attr] = df[categorical_attr].apply(le.fit_transform, axis=0)\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "93002df5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GRE ScoreTOEFL ScoreUniversity RatingSOPLORCGPAResearchAdmit
count500.000000500.000000500.000000500.000000500.00000500.000000500.000000500.000000
mean316.472000107.1920003.1140003.3740003.484008.5764400.5600000.926000
std11.2951486.0818681.1435120.9910040.925450.6048130.4968840.262033
min290.00000092.0000001.0000001.0000001.000006.8000000.0000000.000000
25%308.000000103.0000002.0000002.5000003.000008.1275000.0000001.000000
50%317.000000107.0000003.0000003.5000003.500008.5600001.0000001.000000
75%325.000000112.0000004.0000004.0000004.000009.0400001.0000001.000000
max340.000000120.0000005.0000005.0000005.000009.9200001.0000001.000000
\n", + "
" + ], + "text/plain": [ + " GRE Score TOEFL Score University Rating SOP LOR \\\n", + "count 500.000000 500.000000 500.000000 500.000000 500.00000 \n", + "mean 316.472000 107.192000 3.114000 3.374000 3.48400 \n", + "std 11.295148 6.081868 1.143512 0.991004 0.92545 \n", + "min 290.000000 92.000000 1.000000 1.000000 1.00000 \n", + "25% 308.000000 103.000000 2.000000 2.500000 3.00000 \n", + "50% 317.000000 107.000000 3.000000 3.500000 3.50000 \n", + "75% 325.000000 112.000000 4.000000 4.000000 4.00000 \n", + "max 340.000000 120.000000 5.000000 5.000000 5.00000 \n", + "\n", + " CGPA Research Admit \n", + "count 500.000000 500.000000 500.000000 \n", + "mean 8.576440 0.560000 0.926000 \n", + "std 0.604813 0.496884 0.262033 \n", + "min 6.800000 0.000000 0.000000 \n", + "25% 8.127500 0.000000 1.000000 \n", + "50% 8.560000 1.000000 1.000000 \n", + "75% 9.040000 1.000000 1.000000 \n", + "max 9.920000 1.000000 1.000000 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# summarize data\n", + "df.describe() " + ] + }, + { + "cell_type": "markdown", + "id": "7ebceb4d", + "metadata": {}, + "source": [ + "Print the histogram chart of data" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "834eb664", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA',\n", + " 'Research', 'Admit'],\n", + " dtype='object')\n" + ] + } + ], + "source": [ + "print(df.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "39faae37", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8YAAAKyCAYAAACnjLQgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD7S0lEQVR4nOzdfVxUZf7/8feg4+AdGJYgicqqhalpiTekm6YImZkm3diyhTebbXmTUpnueq+Fum2ShppuX8zSTLdyK2/JSjdD8ybb7MayJe0ObCskIccJzu8Pf0xOMMjNgTOMr+fj4aPmnDMXn+tzzpmLOR/OuWyGYRgCAAAAAAAAAAAAAMBPBVgdAAAAAAAAAAAAAAAA1YnCOAAAAAAAAAAAAADAr1EYBwAAAAAAAAAAAAD4NQrjAAAAAAAAAAAAAAC/RmEcAAAAAAAAAAAAAODXKIwDAAAAAAAAAAAAAPwahXEAAAAAAAAAAAAAgF+jMA4AAAAAAAAAAAAA8GsUxgEAAAAAAAAAAAAAfo3COAAAAAAAAPzWiBEj1Lp1a6vD8Oqtt96SzWbTW2+9ZXUopvriiy9ks9m0atUqq0MBAAAAJFEYByyXlZWlcePG6bLLLlODBg3UoEEDXXHFFRo7dqz+85//eGw7a9Ys2Ww29z+73a7WrVtrwoQJys3NLdF269atPbY/99/1119/3ti++OILjRw5Um3atFFgYKDCwsJ07bXXaubMmWZ1HwAAn+Nt7Pztv3MvXn///fd66KGHdPnllyswMFAhISGKj4/Xa6+9VqL94ovE3v7Nnz/fvW3fvn29bvfJJ59I+vVi+j//+c8K97WoqEirV69Wjx49FBISosaNG+uyyy7TXXfdpT179lQ8eQAAVFLx993//e9/pa7v2LGj+vbtW7NBWWjt2rVKTU01vd3f/j4RFBSkPn36aNOmTZVus7piBQDAV3zwwQe65ZZb1KpVKwUGBurSSy/VgAEDtGTJEo/tXC6XFi9erG7duqlx48Zq1KiRunXrpsWLF8vlcpVo97fX75s1a6bf//73evnll2uqa8AFp67VAQAXstdee02333676tatq8TERHXu3FkBAQH65JNP9NJLL2nZsmXKyspSq1atPN63bNkyNWrUSPn5+dqxY4eWLFmigwcP6u233y7xM7p06aIHHnigxPLw8PAyYzt69Ki6deum+vXra9SoUWrdurW+/fZbHTx4UAsWLNDs2bOr1nkAAHzUs88+6/F69erVysjIKLG8ffv2kqQjR46of//++u677zRy5EhFR0crNzdXa9as0eDBg/Xggw/qb3/7W4mfc8cdd+iGG24osfyqq67yeN2iRQulpKSU2O58Y3l5TJgwQWlpaRoyZIgSExNVt25dHTlyRFu2bNHvfvc79ezZs8o/AwAAq61cuVJFRUVWh+HVtddeq59//ln16tVzL1u7dq0OHz6siRMnmv7zBgwYoLvuukuGYejYsWNatmyZBg8erC1btig+Pr7C7XmLtVWrVvr5559lt9tNihwAgJr3zjvv6LrrrlPLli119913KywsTF9++aX27NmjJ554QuPHj5ck5efna9CgQdq5c6duvPFGjRgxQgEBAdq6davuv/9+vfTSS9q0aZMaNmzo0f651++/+eYbPfXUUxo2bJiWLVumP//5zzXeX8DfURgHLPL5559r+PDhatWqlXbs2KHmzZt7rF+wYIGWLl2qgICSD3a45ZZbdPHFF0uS7rnnHg0fPlwvvPCC3n33XXXv3t1j20svvVR//OMfKxzfokWLdOrUKR06dKhEYf7EiRMVbq8q8vPzS/zCAABAdfntuLlnzx5lZGSUOp66XC7dcsst+vHHH7Vr1y716NHDvW7SpElKTEzUY489pujoaN1+++0e77366qvLNUYHBwdXaiw/n5ycHC1dulR33323VqxY4bEuNTVV3333nek/05tffvlFRUVFHgUBAADMYkVhtqioSGfOnFFgYOB5tw0ICCjXdma57LLLPH63SEhI0BVXXKEnnniiUoVxb2w2W432CwCA6vDII48oODhY+/btU5MmTTzWnXudPDk5WTt37tSSJUs0btw49/J7771XaWlpGjdunB588EEtW7bMo43fXr+/66671LZtWy1atIjCOFANeJQ6YJGFCxcqPz9f6enpJYriklS3bl1NmDBBERER523r97//vaSzxXazfP7552rRokWJorgkNWvWrMSyLVu2qE+fPmrcuLGCgoLUrVs3rV271mObDRs2qGvXrqpfv74uvvhi/fGPf9TXX3/tsc2IESPUqFEjff7557rhhhvUuHFjJSYmSjp7YSE1NVUdOnRQYGCgQkNDdc899+jHH380rd8AAFTEiy++qMOHD2vKlCkeRXFJqlOnjp566ik1adJEs2bNsibAMmRlZckwDPXq1avEuuJHuJ0rNzdXkyZNUuvWreVwONSiRQvdddddHo+8PXHihEaPHq3Q0FAFBgaqc+fOeuaZZzzaKX6U/GOPPabU1FS1adNGDodDH330kSTpk08+0S233KKQkBAFBgYqOjpar7zySjVkAABQmxVPJbJ+/Xo98sgjatGihQIDA9W/f38dPXrUY9tz5xh3uVwKCQnRyJEjS7SZl5enwMBAPfjgg+5lTqdTM2fOVNu2beVwOBQREaHJkyfL6XR6vNdms2ncuHFas2aNOnToIIfDoa1bt0qS1q1bp65du7q/L3fq1ElPPPFEib4UT9PSt29fbdq0SceOHXM/WrV169Y6deqUGjZsqPvvv79E7F999ZXq1KlT6lNmzqd9+/a6+OKLS1xT+Ne//qVBgwYpPDxcDodDbdq00dy5c1VYWOjexlusUulzjBd/5//66681dOhQNWrUSJdccokefPBBj3als1PV3HnnnQoKClKTJk2UlJSk999/n3nLAQA16vPPP1eHDh1KFMWlX6+Tf/XVV3r66afVr18/j6J4sbFjx+q6667TP/7xD3311Vdl/rywsDC1b99eWVlZpsQPwBN3jAMWee2119S2bdsSF9Er44svvpAkXXTRRSXWuVyuUudoa9iwoerXr++1zVatWun111/XG2+8oX79+pX581etWqVRo0apQ4cOmjp1qpo0aaL33ntPW7du1R/+8Af3NiNHjlS3bt2UkpKinJwcPfHEE9q9e7fee+89j18sfvnlF8XHx6t379567LHH1KBBA0ln744vbmfChAnKysrSk08+qffee0+7d+/m8WwAgBr36quvSjr7F92lCQ4O1pAhQ/TMM8/o6NGjatu2rXtdQUFBqWN0kyZNVLfur7+mFxYWltguMDBQjRo1qlLsxX/8tmHDBt16663u8bY0p06d0u9//3t9/PHHGjVqlK6++mr973//0yuvvKKvvvpKF198sX7++Wf17dtXR48e1bhx4xQZGakNGzZoxIgRys3NLXERPz09XadPn9aYMWPkcDgUEhKiDz/8UL169dKll16qKVOmqGHDhlq/fr2GDh2qF198UTfffHOV+gwA8D/z589XQECAHnzwQZ08eVILFy5UYmKi9u7dW+r2drtdN998s1566SU99dRTHk8r2bhxo5xOp4YPHy7p7B9n33TTTXr77bc1ZswYtW/fXh988IEWLVqkTz/9VBs3bvRo+4033tD69es1btw4XXzxxWrdurUyMjJ0xx13qH///lqwYIEk6eOPP9bu3btLLXBL0l//+ledPHlSX331lRYtWiRJatSokRo1aqSbb75ZL7zwgh5//HHVqVPH/Z7nn39ehmG4/7C8Ik6ePKkff/xRbdq08Vi+atUqNWrUSMnJyWrUqJHeeOMNzZgxQ3l5ee5pYrzFWpbCwkLFx8erR48eeuyxx/T666/r73//u9q0aaN7771X0tncDx48WO+++67uvfdeRUVF6V//+peSkpIq3D8AAKqiVatWyszM1OHDh9WxY8dSt9myZYsKCwu9XhuQzl43ePPNN7V161b96U9/8rqdy+XSl19+qaZNm1Y5dgClMADUuJMnTxqSjKFDh5ZY9+OPPxrfffed+19BQYF73cyZMw1JxpEjR4zvvvvO+OKLL4z/+7//M+rXr29ccsklRn5+vkdbrVq1MiSV+i8lJaXMGA8fPmzUr1/fkGR06dLFuP/++42NGzeW+Bm5ublG48aNjR49ehg///yzx7qioiLDMAzjzJkzRrNmzYyOHTt6bPPaa68ZkowZM2a4lyUlJRmSjClTpni09e9//9uQZKxZs8Zj+datW0tdDgCAWcaOHWt4+7W5S5cuRnBwcJnvf/zxxw1JxiuvvGIYhmFkZWV5HZ8lGZmZme739unTp9RtkpKS3Nu8+eabhiRjw4YNFe7bXXfdZUgyLrroIuPmm282HnvsMePjjz8usd2MGTMMScZLL71UYl3xeJ+ammpIMp577jn3ujNnzhgxMTFGo0aNjLy8PI/+BwUFGSdOnPBoq3///kanTp2M06dPe7R/zTXXGO3atatw/wAAtUfx993vvvuu1PUdOnQw+vTp435dPP61b9/ecDqd7uVPPPGEIcn44IMP3MuSkpKMVq1auV9v27bNkGS8+uqrHj/jhhtuMH73u9+5Xz/77LNGQECA8e9//9tju+XLlxuSjN27d7uXSTICAgKMDz/80GPb+++/3wgKCjJ++eUXr30v7subb77pXjZo0CCPmH8b+5YtWzyWX3nllR758UaSMXr0aOO7774zTpw4Yezfv9+4/vrrDUnG3/72N49tz70eUeyee+4xGjRo4DFWe4u1eMxPT093Lyv+zj9nzhyPba+66iqja9eu7tcvvviiIclITU11LyssLDT69etXok0AAKrT9u3bjTp16hh16tQxYmJijMmTJxvbtm0zzpw5495m4sSJhiTjvffe89rOwYMHDUlGcnKye1mrVq2MuLg4dy3g/fffN4YPH25IMsaPH1+d3QIuWDxKHbBAXl6epNL/irpv37665JJL3P/S0tJKbHP55ZfrkksuUevWrTVq1Ci1bdtWW7ZsKfVOrx49eigjI6PEvzvuuKPMGDt06KBDhw7pj3/8o7744gs98cQTGjp0qEJDQ7Vy5Ur3dhkZGfrpp580ZcqUEnOH2Ww2SdL+/ft14sQJ3XfffR7bDBo0SFFRUdq0aVOJn1/8V+LFNmzYoODgYA0YMED/+9//3P+6du2qRo0a6c033yyzPwAAVIeffvpJjRs3LnOb4vXF43+xMWPGlDpGX3HFFR7bFd9tdu6/yZMnmxJ/enq6nnzySUVGRurll1/Wgw8+qPbt26t///4e0528+OKL6ty5c6l3bBeP95s3b1ZYWJjH7xh2u10TJkzQqVOntHPnTo/3JSQk6JJLLnG//uGHH/TGG2/otttu008//eQe67///nvFx8frs88+KzEFCwAAI0eO9Ljru3iqsf/+979e39OvXz9dfPHFeuGFF9zLfvzxR2VkZOj22293L9uwYYPat2+vqKgoj++hxU9V++330D59+pQYx5s0aaL8/HxlZGRUvpPniI2NVXh4uNasWeNedvjwYf3nP//xmJ+0LE8//bQuueQSNWvWTNHR0dqxY4cmT56s5ORkj+3Ofcpc8dj8+9//XgUFBfrkk0+q1I/fzpn6+9//3mOfbd26VXa7XXfffbd7WUBAgMaOHVulnwsAQEUNGDBAmZmZuummm/T+++9r4cKFio+P16WXXuqe9uunn36SpDKvD3i7NrB9+3Z3LaBz587asGGD7rzzTveTZgCYi0epAxYoHgRPnTpVYt1TTz2ln376STk5OV6/1L744osKCgrSd999p8WLFysrK8vrY9EvvvhixcbGVirOyy67TM8++6wKCwv10Ucf6bXXXtPChQs1ZswYRUZGKjY21j0HmbfHyEjSsWPHJJ0t6P9WVFSU3n77bY9ldevWVYsWLTyWffbZZzp58mSp85tLZ+c0BQCgpjVu3LjUx6Gfy9sX5Hbt2pVrjG7YsGGlx/LzKb7APHbsWH3//ffavXu3li9fri1btmj48OH697//LensnGoJCQlltnXs2DG1a9dOAQGef3vbvn179/pzRUZGerw+evSoDMPQ9OnTNX369FJ/xokTJ3TppZdWqI8AAP9R/MdY52rZsqXH6+Ipxn788Uev7dStW1cJCQlau3atnE6nHA6HXnrpJblcLo/C+GeffaaPP/7Y4w+5zvXb76G/Hdsk6b777tP69es1cOBAXXrppYqLi9Ntt92m66+/3ntHyxAQEKDExEQtW7ZMBQUFatCggdasWaPAwEDdeuut5WpjyJAhGjdunM6cOaN9+/bp0UcfVUFBQYkx/MMPP9S0adP0xhtvlLiIf/LkyUrFL52dEua3Ob3ooos89tmxY8fUvHnzEjcAnDstDQAANaVbt2566aWXdObMGb3//vt6+eWXtWjRIt1yyy06dOiQ+/t+8ff/0ni7NtCjRw/NmzdPNptNDRo0UPv27UudzxyAOSiMAxYIDg5W8+bNdfjw4RLriuccL543vDTXXnutLr74YknS4MGD1alTJyUmJurAgQMlvsiaoU6dOurUqZM6deqkmJgYXXfddVqzZk21XaR3OBwl+lFUVKRmzZp5/FX8ubxdqAAAoDq1b99ehw4d0vHjx0tcmC/2n//8R5JK3EHma5o2baqbbrpJN910k/r27audO3fq2LFj7rnIzfbbP+orKiqSJD344IOKj48v9T1cDAcA/1X8dLGff/651PUFBQUlnlImyWOe7XMZhlHmzxs+fLieeuopbdmyRUOHDtX69esVFRWlzp07u7cpKipSp06d9Pjjj5faRkREhMfr0v5gvVmzZjp06JC2bdumLVu2aMuWLUpPT9ddd92lZ555pswYvbnrrrv0t7/9TRs3btQdd9yhtWvX6sYbb1RwcHC53t+iRQv39/kbbrhBF198scaNG6frrrtOw4YNkyTl5uaqT58+CgoK0pw5c9SmTRsFBgbq4MGDevjhh93jdmV422cAAPi6evXqqVu3burWrZsuu+wyjRw50v2EGens9/8uXbqU+l5v1waqcmMbgIqjMA5YZNCgQfrHP/6hd999V927d690O40aNdLMmTM1cuRIrV+/XsOHDzcxypKio6MlSd9++60kqU2bNpLOPrrN28Xq4gvqR44ccT9yrtiRI0fKdcG9TZs2ev3119WrVy+vd8cDAFDTbrzxRj3//PNavXq1pk2bVmJ9Xl6e/vWvfykqKqpWFXWjo6O1c+dOffvtt2rVqpXatGlT6h/0natVq1b6z3/+o6KiIo8/cCt+1Or5xvvf/e53ks4+fp2LAgBw4Tn3e+NvC84FBQX68ssvFRcXZ9rPu/baa9W8eXO98MIL6t27t9544w399a9/9dimTZs2ev/999W/f/9S71Yvr3r16mnw4MEaPHiwioqKdN999+mpp57S9OnTvf5+UNbP69ixo6666iqtWbNGLVq00PHjx7VkyZJKx3fPPfdo0aJFmjZtmm6++WbZbDa99dZb+v777/XSSy/p2muvdW+blZVVoVgrq1WrVnrzzTfdd8UXO3r0qOk/CwCAyjj3OvmoUaNUp04dPfvss7rrrrtK3X716tWqW7dupZ8aA8AczDEOWGTy5Mlq0KCBRo0apZycnBLrz/fX7edKTExUixYtTJ135N///rdcLleJ5Zs3b5b062PR4+Li1LhxY6WkpOj06dMe2xb3ITo6Ws2aNdPy5cvldDrd67ds2aKPP/5YgwYNOm88t912mwoLCzV37twS63755Rfl5uaWu28AAJjllltu0RVXXKH58+dr//79HuuKiop077336scff9TMmTMtitC77OxsffTRRyWWnzlzRjt27FBAQID7Yn1CQoL7cXG/VTze33DDDcrOzvaYr/WXX37RkiVL1KhRI/Xp06fMeJo1a6a+ffvqqaeecv8B3rm+++67CvUPAFC79O/fX/Xq1dOyZctK3I28YsUK/fLLLxo4cKBpPy8gIEC33HKLXn31VT377LP65ZdfPB6jLp39Hvr1119r5cqVJd7/888/Kz8//7w/5/vvvy/xc6+88kpJ8vh+/FsNGzYs83Hld955p7Zv367U1FQ1bdq0SrmpW7euHnjgAX388cf617/+JenXu7rPvTZx5swZLV26tMKxVkZ8fLxcLpdH7ouKipSWlmbqzwEA4HzefPPNUq/Vn3udPCIiQiNHjtTrr7+uZcuWldh2+fLleuONNzR69OgSU4gCqFncMQ5YpF27dlq7dq3uuOMOXX755UpMTFTnzp1lGIaysrK0du1aBQQElGugtNvtuv/++/XQQw9p69atHn919vXXX+u5554r8Z5GjRpp6NChXttcsGCBDhw4oGHDhrm/tB88eFCrV69WSEiIJk6cKEkKCgrSokWL9Kc//UndunXTH/7wB1100UV6//33VVBQoGeeeUZ2u10LFizQyJEj1adPH91xxx3KycnRE088odatW2vSpEnn7WOfPn10zz33KCUlRYcOHVJcXJzsdrs+++wzbdiwQU888YRuueWW87YDAICZ6tWrp3/+85/q37+/evfurZEjRyo6Olq5ublau3atDh48qAceeKDUJ7ocPHiw1DG6TZs2iomJqXAsL774ovvu7HMlJSWVuPNOkr766it1795d/fr1U//+/RUWFqYTJ07o+eef1/vvv6+JEye6p2556KGH9M9//lO33nqrRo0apa5du+qHH37QK6+8ouXLl6tz584aM2aMnnrqKY0YMUIHDhxQ69at9c9//lO7d+9WampqiXnUSpOWlqbevXurU6dOuvvuu/W73/1OOTk5yszM1FdffaX333+/wnkBANQOzZo104wZMzRt2jRde+21uummm9SgQQO98847ev755xUXF6fBgweb+jNvv/12LVmyRDNnzlSnTp3cj0Etduedd2r9+vX685//rDfffFO9evVSYWGhPvnkE61fv17btm1z3y3mzZ/+9Cf98MMP6tevn1q0aKFjx45pyZIl6tKlS4mfd66uXbvqhRdeUHJysrp166ZGjRp59P8Pf/iDJk+erJdffln33nuv7HZ7lXIxYsQIzZgxQwsWLNDQoUN1zTXX6KKLLlJSUpImTJggm82mZ599ttTCwPlirYyhQ4eqe/fueuCBB3T06FFFRUXplVde0Q8//CCpeu5SBwCgNOPHj1dBQYFuvvlmRUVF6cyZM3rnnXf0wgsvqHXr1ho5cqQkadGiRfrkk0903333eVyj37Ztm/71r3+pT58++vvf/25lVwBIkgHAUkePHjXuvfdeo23btkZgYKBRv359Iyoqyvjzn/9sHDp0yGPbmTNnGpKM7777rkQ7J0+eNIKDg40+ffq4l7Vq1cqQVOq/Vq1alRnX7t27jbFjxxodO3Y0goODDbvdbrRs2dIYMWKE8fnnn5fY/pVXXjGuueYao379+kZQUJDRvXt34/nnn/fY5oUXXjCuuuoqw+FwGCEhIUZiYqLx1VdfeWyTlJRkNGzY0GtcK1asMLp27WrUr1/faNy4sdGpUydj8uTJxjfffFNmfwAAqKyxY8ca5/u1+cSJE0ZycrLRtm1bw+FwGE2aNDFiY2ONV155pcS2WVlZXsdnSUZSUpJ72z59+hgdOnQo82e/+eabZbb373//u9T35eXlGU888YQRHx9vtGjRwrDb7Ubjxo2NmJgYY+XKlUZRUZHH9t9//70xbtw449JLLzXq1atntGjRwkhKSjL+97//ubfJyckxRo4caVx88cVGvXr1jE6dOhnp6eml9v9vf/tbqXF9/vnnxl133WWEhYUZdrvduPTSS40bb7zR+Oc//1lmHgAA/uG5554zevbsaTRs2NBwOBxGVFSUMXv2bOP06dMe2xWPfxs2bPBYXjzOnDv+JCUllfoduKioyIiIiDAkGfPmzSs1njNnzhgLFiwwOnToYDgcDuOiiy4yunbtasyePds4efKkeztJxtixY0u8/5///KcRFxdnNGvWzKhXr57RsmVL45577jG+/fbbEn1588033ctOnTpl/OEPfzCaNGni9Tv8DTfcYEgy3nnnnVJjL423OA3DMGbNmuURx+7du42ePXsa9evXN8LDw43Jkycb27ZtK3es3vZFad/5i693nOu7774z/vCHPxiNGzc2goODjREjRhi7d+82JBnr1q0rd58BAKiKLVu2GKNGjTKioqKMRo0aGfXq1TPatm1rjB8/3sjJyfHY1ul0GosWLTK6du1qNGzY0GjQoIFx9dVXG6mpqcaZM2dKtN2qVStj0KBBNdUVAIZh2AyjAs9rBgAAAAAAAGC5m2++WR988MEFNe/2xo0bdfPNN+vtt99Wr169rA4HAAAAtQxzjAMAAAAAAAC1yLfffqtNmzbpzjvvtDqUavPzzz97vC4sLNSSJUsUFBSkq6++2qKoAAAAUJsxxzgAAAAAAABQC2RlZWn37t36xz/+IbvdrnvuucfqkKrN+PHj9fPPPysmJkZOp1MvvfSS3nnnHT366KOqX7++1eEBAACgFqIwDgAAAAAAANQCO3fu1MiRI9WyZUs988wzCgsLszqkatOvXz/9/e9/12uvvabTp0+rbdu2WrJkicaNG2d1aAAAAKilmGMcAAAAAAAAAAAAAODXmGMcAAAAAAAAAAAAAODXKIwDAAAAAAAAAAAAAPxarZxjvKioSN98840aN24sm81mdTgAAFSZYRj66aefFB4eroAA//67NcZxAIA/YiwHAKD2YhwHAKD2qsg4XisL4998840iIiKsDgMAANN9+eWXatGihdVhVCvGcQCAP2MsBwCg9mIcBwCg9irPOF4rC+ONGzeWdLaDQUFBVW7P5XJp+/btiouLk91ur3J7FxryVzXkr2rIX+WRu6oxO395eXmKiIhwj3H+zOxxvDbhvPOO3JSN/HhHbrwjN2VjLK88vpOX5A99kOiHr6EfvoV++BbG8cpjHC8d/fAd/tAHiX74GvrhW6wcx2tlYbz4ES9BQUGmDd4NGjRQUFBQrT6QrEL+qob8VQ35qzxyVzXVlb8L4TFmZo/jtQnnnXfkpmzkxzty4x25KRtjeeXxnbwkf+iDRD98Df3wLfTDtzCOVx7jeOnoh+/whz5I9MPX0A/fYuU47t8TpgAAAAAAAAAAAAAALngUxgEAAAAAAAAAAAAAfo3COAAAAAAAAAAAAADAr1EYBwAAAAAAAAAAAAD4NQrjAAAAAAAAAAAAAAC/RmEcAAAAAAAAAAAAAODXKIwDAAAAAAAAAAAAAPwahXEAAAAAAAAAAAAAgF+jMA4AAAAAAAAAAAAA8GsUxgEAAAAAAAAAAAAAfo3COAAAAAAAtcCuXbs0ePBghYeHy2azaePGjSW2+fjjj3XTTTcpODhYDRs2VLdu3XT8+HH3+tOnT2vs2LFq2rSpGjVqpISEBOXk5NRgLwAAAAAAsEZdqwMAADN0nLVNzkKb1WGU6ov5g6wOAQAAn9V6yqYqvd9Rx9DC7tX3uwDjOHxJfn6+OnfurFGjRmnYsGEl1n/++efq3bu3Ro8erdmzZysoKEgffvihAgMD3dtMmjRJmzZt0oYNGxQcHKxx48Zp2LBh2r17d012BUAF8H0XAABciKp6veBc1XHtgN+DaicK4wAAAAAA1AIDBw7UwIEDva7/61//qhtuuEELFy50L2vTpo37/0+ePKmnn35aa9euVb9+/SRJ6enpat++vfbs2aOePXtWX/AAAAAAAFiMwjgAAAAAALVcUVGRNm3apMmTJys+Pl7vvfeeIiMjNXXqVA0dOlSSdODAAblcLsXGxrrfFxUVpZYtWyozM9NrYdzpdMrpdLpf5+XlSZJcLpdcLleVYy9uw4y2rOIPfZDoh68pjt8RYFgciXflybG/7Q/64RvM7kdtzwcAACgfCuMAAAAAANRyJ06c0KlTpzR//nzNmzdPCxYs0NatWzVs2DC9+eab6tOnj7Kzs1WvXj01adLE472hoaHKzs722nZKSopmz55dYvn27dvVoEED0/qQkZFhWltW8Yc+SPTD18yNLrI6BK82b95c7m39ZX/QD99iVj8KCgpMaQcAapPyPKq8uqcvA2oahXEAAAAAAGq5oqKzhbMhQ4Zo0qRJkqQuXbronXfe0fLly9WnT59Ktz116lQlJye7X+fl5SkiIkJxcXEKCgqqWuA6e5deRkaGBgwYILvdXuX2rOAPfZDoh68p7sf0/QFyFvnmhejDs+LPu42/7Q/64RvM7kfx01AAAIB/ozAOAADcCgsLNWvWLD333HPKzs5WeHi4RowYoWnTpslmO3sxzjAMzZw5UytXrlRubq569eqlZcuWqV27dhZHDwDAheviiy9W3bp1dcUVV3gsb9++vd5++21JUlhYmM6cOaPc3FyPu8ZzcnIUFhbmtW2HwyGHw1Fiud1uN7WoYnZ7VvCHPkj0w9c4i2w+e4dWRfLrL/uDfvgWs/rhD7kAAADnF2B1AAAAwHcsWLBAy5Yt05NPPqmPP/5YCxYs0MKFC7VkyRL3NgsXLtTixYu1fPly7d27Vw0bNlR8fLxOnz5tYeQAAFzY6tWrp27duunIkSMeyz/99FO1atVKktS1a1fZ7Xbt2LHDvf7IkSM6fvy4YmJiajReAAAAAABqGneMAwAAt3feeUdDhgzRoEGDJEmtW7fW888/r3fffVfS2bvFU1NTNW3aNA0ZMkSStHr1aoWGhmrjxo0aPny4ZbEDAODvTp06paNHj7pfZ2Vl6dChQwoJCVHLli310EMP6fbbb9e1116r6667Tlu3btWrr76qt956S5IUHBys0aNHKzk5WSEhIQoKCtL48eMVExOjnj17WtQrAAAAAABqBoVxAADgds0112jFihX69NNPddlll+n999/X22+/rccff1zS2Qvw2dnZio2Ndb8nODhYPXr0UGZmZqmFcafTKafT6X5dPHeby+WSy+Wq5h75luL+Xmj9Lg9yUzZ/zo+jjlG19wcYHv81W23OuT8fN2YwOz81kef9+/fruuuuc78unvc7KSlJq1at0s0336zly5crJSVFEyZM0OWXX64XX3xRvXv3dr9n0aJFCggIUEJCgpxOp+Lj47V06dJqjx0AAAAAAKtRGAcAAG5TpkxRXl6eoqKiVKdOHRUWFuqRRx5RYmKiJCk7O1uSFBoa6vG+0NBQ97rfSklJ0ezZs0ss3759uxo0aGByD2qHjIwMq0PwWeSmbP6Yn4XdzWlnbnSROQ39xubNm6ul3Zrkj8eNmczKT0FBgSntlKVv374yjLL/CGTUqFEaNWqU1/WBgYFKS0tTWlqa2eEBAAAAAODTKIwDAAC39evXa82aNVq7dq06dOigQ4cOaeLEiQoPD1dSUlKl2pw6dar7jjbp7B3jERERiouLU1BQkFmh1woul0sZGRkaMGCA7Ha71eH4FHJTNn/OT8dZ26r0fkeAobnRRZq+P0DOIptJUf3q8Kx409usKf583JjB7PwUPxEFAAAAAAD4JgrjAADA7aGHHtKUKVPcj0Tv1KmTjh07ppSUFCUlJSksLEySlJOTo+bNm7vfl5OToy5dupTapsPhkMPhKLHcbrdfsIWaC7nv50NuyuaP+XEWmlPMdhbZTGvrXP6Qb388bsxkVn7IMQAAAAAAvi3A6gAAAIDvKCgoUECA568HderUUVHR2UcUR0ZGKiwsTDt27HCvz8vL0969exUTE1OjsQIAAAAAAAAAUF7cMQ4AANwGDx6sRx55RC1btlSHDh303nvv6fHHH3fPVWqz2TRx4kTNmzdP7dq1U2RkpKZPn67w8HANHTrU2uABAAAAAAAAAPDC9DvGCwsLNX36dEVGRqp+/fpq06aN5s6dK8Mw3NsYhqEZM2aoefPmql+/vmJjY/XZZ5+ZHQoAAKigJUuW6JZbbtF9992n9u3b68EHH9Q999yjuXPnureZPHmyxo8frzFjxqhbt246deqUtm7dqsDAQAsjBwAAAAAAAADAO9PvGF+wYIGWLVumZ555Rh06dND+/fs1cuRIBQcHa8KECZKkhQsXavHixXrmmWfcd5rFx8fro48+4qI6AAAWaty4sVJTU5Wamup1G5vNpjlz5mjOnDk1FxgAAAAAAAAAAFVgemH8nXfe0ZAhQzRo0CBJUuvWrfX888/r3XfflXT2bvHU1FRNmzZNQ4YMkSStXr1aoaGh2rhxo4YPH252SAAAAAAAAAAAAACAC5jphfFrrrlGK1as0KeffqrLLrtM77//vt5++209/vjjkqSsrCxlZ2crNjbW/Z7g4GD16NFDmZmZpRbGnU6nnE6n+3VeXp4kyeVyyeVyVTnm4jbMaOtCRP6qhvxVTXHeHAHGeba0jq/uW469qjE7f+wHAAAAAAAAAACqj+mF8SlTpigvL09RUVGqU6eOCgsL9cgjjygxMVGSlJ2dLUkKDQ31eF9oaKh73W+lpKRo9uzZJZZv375dDRo0MC32jIwM09q6EJG/qiF/VTM3usjqELzavHmz1SGUiWOvaszKX0FBgSntAAAAAAAAAACAkkwvjK9fv15r1qzR2rVr1aFDBx06dEgTJ05UeHi4kpKSKtXm1KlTlZyc7H6dl5eniIgIxcXFKSgoqMoxu1wuZWRkaMCAAbLb7VVu70JD/qqG/FVNcf6m7w+Qs8hmdTilOjwr3uoQSsWxVzVm56/4aSgAAAAAAAAAAMB8phfGH3roIU2ZMsX9SPROnTrp2LFjSklJUVJSksLCwiRJOTk5at68uft9OTk56tKlS6ltOhwOORyOEsvtdrupxRyz27vQkL+qIX9V4yyyyVnom4VxX9+vHHtVY1b+2AcAAAAAAAAAAFSfALMbLCgoUECAZ7N16tRRUdHZxxxHRkYqLCxMO3bscK/Py8vT3r17FRMTY3Y4AAAAAAAAAAAAAIALnOl3jA8ePFiPPPKIWrZsqQ4dOui9997T448/rlGjRkmSbDabJk6cqHnz5qldu3aKjIzU9OnTFR4erqFDh5odDlBrdJy1zWfveP5i/iCrQwAAAAAAAAD8VmFhoWbNmqXnnntO2dnZCg8P14gRIzRt2jTZbGevGRqGoZkzZ2rlypXKzc1Vr169tGzZMrVr187i6AEAqB1ML4wvWbJE06dP13333acTJ04oPDxc99xzj2bMmOHeZvLkycrPz9eYMWOUm5ur3r17a+vWrQoMDDQ7HAAAAAAAAAAAfNqCBQu0bNkyPfPMM+rQoYP279+vkSNHKjg4WBMmTJAkLVy4UIsXL9YzzzzjvuEsPj5eH330EdfWAQAoB9ML440bN1ZqaqpSU1O9bmOz2TRnzhzNmTPH7B8PAAAAAAAAAECt8s4772jIkCEaNOjskxtbt26t559/Xu+++66ks3eLp6amatq0aRoyZIgkafXq1QoNDdXGjRs1fPhwy2IHAKC2MH2OcQAAAAAAAAAAUH7XXHONduzYoU8//VSS9P777+vtt9/WwIEDJUlZWVnKzs5WbGys+z3BwcHq0aOHMjMzLYkZAIDaxvQ7xgEAAAD4jtZTNlkdAgAAAIDzmDJlivLy8hQVFaU6deqosLBQjzzyiBITEyVJ2dnZkqTQ0FCP94WGhrrXlcbpdMrpdLpf5+XlSZJcLpdcLleV4y5uw4y2rEQ/fIc/9EGqHf1w1DHOv02A4fHf2qo6+mHFvq0Nx1V5mN2PirRDYRwAAAAAAAAAAAutX79ea9as0dq1a9WhQwcdOnRIEydOVHh4uJKSkirdbkpKimbPnl1i+fbt29WgQYOqhOwhIyPDtLasRD98hz/0QfLtfizsXv5t50YXVV8gNcjMfmzevNm0tirKl4+rijCrHwUFBeXelsI4AAAAAAAAAAAWeuihhzRlyhT3XOGdOnXSsWPHlJKSoqSkJIWFhUmScnJy1Lx5c/f7cnJy1KVLF6/tTp06VcnJye7XeXl5ioiIUFxcnIKCgqoct8vlUkZGhgYMGCC73V7l9qxCP3yHP/RB+rUf0/cHyFlkszqcSnMEGJobXUQ/SnF4Vrwp7VSEv50fZvWj+Gko5UFhHAAAAAAAAAAACxUUFCggIMBjWZ06dVRUdPbuxsjISIWFhWnHjh3uQnheXp727t2re++912u7DodDDoejxHK73W5qUcXs9qxCP3yHP/RBkpxFNjkLa29BuRj9KMnK49Nfzg+z+lGRNiiMAwAAAAAAAABgocGDB+uRRx5Ry5Yt1aFDB7333nt6/PHHNWrUKEmSzWbTxIkTNW/ePLVr106RkZGaPn26wsPDNXToUGuDBwCglqAwDgAAAAAAAACAhZYsWaLp06frvvvu04kTJxQeHq577rlHM2bMcG8zefJk5efna8yYMcrNzVXv3r21detWBQYGWhg5AAC1R8D5NwEAAAAAAFbbtWuXBg8erPDwcNlsNm3cuNHrtn/+859ls9mUmprqsfyHH35QYmKigoKC1KRJE40ePVqnTp2q3sABAMB5NW7cWKmpqTp27Jh+/vlnff7555o3b57q1avn3sZms2nOnDnKzs7W6dOn9frrr+uyyy6zMGoAAGoXCuMAAAAAANQC+fn56ty5s9LS0src7uWXX9aePXsUHh5eYl1iYqI+/PBDZWRk6LXXXtOuXbs0ZsyY6goZAAAAAACfwaPUAQAAAACoBQYOHKiBAweWuc3XX3+t8ePHa9u2bRo0aJDHuo8//lhbt27Vvn37FB0dLensY1tvuOEGPfbYY6UW0gEAAAAA8BcUxgEAAAAA8ANFRUW688479dBDD6lDhw4l1mdmZqpJkybuorgkxcbGKiAgQHv37tXNN99cartOp1NOp9P9Oi8vT5LkcrnkcrmqHHdxG2a0ZRV/6INEP3xNcfyOAMPiSLwrT479bX/QD99gdj9qez4AAED5UBgHAAAAAMAPLFiwQHXr1tWECRNKXZ+dna1mzZp5LKtbt65CQkKUnZ3ttd2UlBTNnj27xPLt27erQYMGVQv6HBkZGaa1ZRV/6INEP3zN3Ogiq0PwavPmzeXe1l/2B/3wLWb1o6CgwJR2AACAb6MwDgAA3Fq3bq1jx46VWH7fffcpLS1Np0+f1gMPPKB169bJ6XQqPj5eS5cuVWhoqAXRAgCAYgcOHNATTzyhgwcPymazmdr21KlTlZyc7H6dl5eniIgIxcXFKSgoqMrtu1wuZWRkaMCAAbLb7VVuzwr+0AeJfvia4n5M3x8gZ5G557VZDs+KP+82/rY/6IdvMLsfxU9DAQAA/o3COAAAcNu3b58KCwvdrw8fPqwBAwbo1ltvlSRNmjRJmzZt0oYNGxQcHKxx48Zp2LBh2r17t1UhAwAASf/+97914sQJtWzZ0r2ssLBQDzzwgFJTU/XFF18oLCxMJ06c8HjfL7/8oh9++EFhYWFe23Y4HHI4HCWW2+12U4sqZrdnBX/og0Q/fI2zyCZnoW8WxiuSX3/ZH/TDt5jVD3/IBQAAOD8K4wAAwO2SSy7xeD1//ny1adNGffr00cmTJ/X0009r7dq16tevnyQpPT1d7du31549e9SzZ08rQgYAAJLuvPNOxcbGeiyLj4/XnXfeqZEjR0qSYmJilJubqwMHDqhr166SpDfeeENFRUXq0aNHjccMAAAAAEBNojAOAABKdebMGT333HNKTk6WzWbTgQMH5HK5PC66R0VFqWXLlsrMzKQwDgBANTt16pSOHj3qfp2VlaVDhw4pJCRELVu2VNOmTT22t9vtCgsL0+WXXy5Jat++va6//nrdfffdWr58uVwul8aNG6fhw4crPDy8RvsCAAAAAEBNozAOAABKtXHjRuXm5mrEiBGSpOzsbNWrV09NmjTx2C40NFTZ2dle23E6nXI6ne7XxXO3uVwuuVwu0+P2ZcX9vdD6XR7kpmxVyY+jjmF2OD7FEWB4/NdstfmY5Lwqm9n5qYk879+/X9ddd537dfG830lJSVq1alW52lizZo3GjRun/v37KyAgQAkJCVq8eHF1hAsAAAAAgE+hMA4AAEr19NNPa+DAgVW+gywlJUWzZ88usXz79u1q0KBBldqurTIyMqwOwWeRm7JVJj8Lu1dDID5obnRRtbS7efPmamm3JnFelc2s/BQUFJjSTln69u0rwyj/H4F88cUXJZaFhIRo7dq1JkYFAAAAAEDtQGEcAACUcOzYMb3++ut66aWX3MvCwsJ05swZ5ebmetw1npOTo7CwMK9tTZ061X1Hm3T2jvGIiAjFxcUpKCioWuL3VS6XSxkZGRowYIDsdrvV4fgUclO2quSn46xt1RSVb3AEGJobXaTp+wPkLLKZ3v7hWfGmt1lTOK/KZnZ+ip+IAgAAAAAAfBOFcQAAUEJ6erqaNWumQYMGuZd17dpVdrtdO3bsUEJCgiTpyJEjOn78uGJiYry25XA45HA4Siy32+0XbKHmQu77+ZCbslUmP85C84vFvshZZKuWvvrD8ch5VTaz8kOOAQAAAADwbRTGAQCAh6KiIqWnpyspKUl16/76q0JwcLBGjx6t5ORkhYSEKCgoSOPHj1dMTIx69uxpYcTwd62nbLI6hDJ9MX/Q+TcCAAAAAAAAYCkK4wAAwMPrr7+u48ePa9SoUSXWLVq0SAEBAUpISJDT6VR8fLyWLl1qQZQAAAAAAAAAAJQfhXEAAOAhLi5OhmGUui4wMFBpaWlKS0ur4agAAAAAAAAAAKi8AKsDAAAAAAAAAAAAAACgOlEYBwAAAAAAAAAAAAD4NR6lDuC8Wk/ZZHUIXjnqGFrY3eooAAAAAAAAAAAA4Mu4YxwAAAAAAAAAAAAA4NcojAMAAAAAAAAAAAAA/BqFcQAAAAAAAAAAAACAX6MwDgAAAAAAAAAAAADwa3WtDgAAAACozVpP2VTtP8NRx9DC7lLHWdvkLLRV+88DAAAAAAAA/A13jAMAAAAAAAAAAAAA/BqFcQAAAAAAAAAAAACAX+NR6gAAAADgRU08Kr8qvpg/yOoQAAAAAAAAagUK4wAAAAAAALWUmX/A46hjaGF3qeOsbXIW2kxpkz/gAQAAAOAreJQ6AAAAAAAAAAAAAMCvURgHAAAAAAAAAAAAAPg1CuMAAAAAAAAAAAAAAL9GYRwAAAAAAAAAAAAA4NcojAMAAAAAAAAAAAAA/BqFcQAAAAAAaoFdu3Zp8ODBCg8Pl81m08aNG93rXC6XHn74YXXq1EkNGzZUeHi47rrrLn3zzTcebfzwww9KTExUUFCQmjRpotGjR+vUqVM13BMAAAAAAGoehXEAAAAAAGqB/Px8de7cWWlpaSXWFRQU6ODBg5o+fboOHjyol156SUeOHNFNN93ksV1iYqI+/PBDZWRk6LXXXtOuXbs0ZsyYmuoCAAAAAACWqWt1AAAAAAAA4PwGDhyogQMHlrouODhYGRkZHsuefPJJde/eXcePH1fLli318ccfa+vWrdq3b5+io6MlSUuWLNENN9ygxx57TOHh4dXeBwAAAAAArEJhHAAAAAAAP3Ty5EnZbDY1adJEkpSZmakmTZq4i+KSFBsbq4CAAO3du1c333xzqe04nU45nU7367y8PElnH9/ucrmqHGdxG2a0ZRUr++CoY5jXVoDh8V8zWJETfzimpF/jN3N/mK08Ofa3/UE/fIPZ/ajt+QAAAOVDYRwAAAAAAD9z+vRpPfzww7rjjjsUFBQkScrOzlazZs08tqtbt65CQkKUnZ3tta2UlBTNnj27xPLt27erQYMGpsX82zveayMr+rCwu/ltzo0uMq2tzZs3m9ZWRfnDMSWZuz/MVpH96y/7g374FrP6UVBQYEo7AADAt1EYBwAAHr7++ms9/PDD2rJliwoKCtS2bVulp6e77y4zDEMzZ87UypUrlZubq169emnZsmVq166dxZEDAADp7F1vt912mwzD0LJly6rc3tSpU5WcnOx+nZeXp4iICMXFxbmL7lXhcrmUkZGhAQMGyG63V7k9K1jZh46ztpnWliPA0NzoIk3fHyBnkc2UNg/PijelnYrwh2NK+rUfZu4Ps5Vn//rb/qAfvsHsfhQ/DQUAAPg3CuMAUM1aT9lkdQilctQxquXuEtRuP/74o3r16qXrrrtOW7Zs0SWXXKLPPvtMF110kXubhQsXavHixXrmmWcUGRmp6dOnKz4+Xh999JECAwMtjB4AABQXxY8dO6Y33njDo3AdFhamEydOeGz/yy+/6IcfflBYWJjXNh0OhxwOR4nldrvd1KKK2e1ZwYo+OAvNL5g6i2ymtWvlPvWHY0oyd3+YrSL59Zf9QT98i1n98IdcAACA86MwDgAA3BYsWKCIiAilp6e7l0VGRrr/3zAMpaamatq0aRoyZIgkafXq1QoNDdXGjRs1fPjwGo8ZAACcVVwU/+yzz/Tmm2+qadOmHutjYmKUm5urAwcOqGvXrpKkN954Q0VFRerRo4cVIQMAAAAAUGMojAMAALdXXnlF8fHxuvXWW7Vz505deumluu+++3T33XdLkrKyspSdna3Y2Fj3e4KDg9WjRw9lZmaWWhh3Op1yOp3u18WPqHO5XHK5XNXcI99S3N8Lrd/lUVZuHHWMmg7H5zgCDI//4lcXem7K+jzhM6dsZuenJvJ86tQpHT161P06KytLhw4dUkhIiJo3b65bbrlFBw8e1GuvvabCwkL3vOEhISGqV6+e2rdvr+uvv1533323li9fLpfLpXHjxmn48OEKDw+v9vgBAAAAALAShXEAAOD23//+V8uWLVNycrL+8pe/aN++fZowYYLq1aunpKQk9wX20NBQj/eFhoa61/1WSkqKZs+eXWL59u3b1aBBA/M7UQtkZGRYHYLPKi03TPvwq7nRRVaH4LMu1Nxs3rz5vNvwmVM2s/JTUFBgSjtl2b9/v6677jr36+J5v5OSkjRr1iy98sorkqQuXbp4vO/NN99U3759JUlr1qzRuHHj1L9/fwUEBCghIUGLFy+u9tgBAAAAALAahXEAAOBWVFSk6OhoPfroo5Kkq666SocPH9by5cuVlJRUqTanTp3qvnAvnb1jPCIiQnFxcR7znl4IXC6XMjIyNGDAAOaw+42yctNx1jaLovIdjgBDc6OLNH1/gJxFvjnHqFUu9NwcnhXvdR2fOWUzOz/FT0SpTn379pVheH86QlnrioWEhGjt2rVmhgUAAAA/1nrKphr9eY46hhZ2P3stwFlY9ne8L+YPqqGoAPiLaimMf/3113r44Ye1ZcsWFRQUqG3btkpPT1d0dLSks1/WZ86cqZUrVyo3N1e9evXSsmXL1K5du+oIBwAAlFPz5s11xRVXeCxr3769XnzxRUlSWFiYJCknJ0fNmzd3b5OTk1Pi7rRiDodDDoejxHK73X7BFmou5L6fT2m5Od8X4QuJs8hGPry4UHNTns8SPnPKZlZ+yDEAAAAAAL4twOwGf/zxR/Xq1Ut2u11btmzRRx99pL///e+66KKL3NssXLhQixcv1vLly7V37141bNhQ8fHxOn36tNnhAACACujVq5eOHDnisezTTz9Vq1atJEmRkZEKCwvTjh073Ovz8vK0d+9excTE1GisAAAAAAAAAACUl+l3jC9YsEARERFKT093L4uMjHT/v2EYSk1N1bRp0zRkyBBJ0urVqxUaGqqNGzdq+PDhZocEAADKadKkSbrmmmv06KOP6rbbbtO7776rFStWaMWKFZIkm82miRMnat68eWrXrp0iIyM1ffp0hYeHa+jQodYGDwAAAAAAAAA1oKanGZCYasAMpt8x/sorryg6Olq33nqrmjVrpquuukorV650r8/KylJ2drZiY2Pdy4KDg9WjRw9lZmaaHQ4AAKiAbt266eWXX9bzzz+vjh07au7cuUpNTVViYqJ7m8mTJ2v8+PEaM2aMunXrplOnTmnr1q0KDAy0MHIAAAAAAAAAALwz/Y7x//73v1q2bJmSk5P1l7/8Rfv27dOECRNUr149JSUlKTs7W5IUGhrq8b7Q0FD3ut9yOp1yOp3u13l5eZIkl8sll8tV5ZiL2zCjrQsR+aua4rw5AgyLI6mdivNG/iquOGecu5Vj9mefL+2HG2+8UTfeeKPX9TabTXPmzNGcOXNqMCoAAAAAAAAAACrP9MJ4UVGRoqOj9eijj0qSrrrqKh0+fFjLly9XUlJSpdpMSUnR7NmzSyzfvn27GjRoUKV4z5WRkWFaWxci8lc1c6OLrA6hViN/lce5WzVm5a+goMCUdgAAAAAAAAAAQEmmF8abN2+uK664wmNZ+/bt9eKLL0qSwsLCJEk5OTlq3ry5e5ucnBx16dKl1DanTp2q5ORk9+u8vDxFREQoLi5OQUFBVY7Z5XIpIyNDAwYMkN1ur3J7FxryVzXF+Zu+P0DOorLnhEBJjgBDc6OLyF8lFOeOc7dyzP7sK34aCgAAAAAAAAAAMJ/phfFevXrpyJEjHss+/fRTtWrVSpIUGRmpsLAw7dixw10Iz8vL0969e3XvvfeW2qbD4ZDD4Six3G63m1rMMbu9Cw35qxpnkU3OQgq7lUX+Ko9zt2rMyh/7AAAAAACAC9vXX3+thx9+WFu2bFFBQYHatm2r9PR0RUdHS5IMw9DMmTO1cuVK5ebmqlevXlq2bJnatWtnceQAANQOphfGJ02apGuuuUaPPvqobrvtNr377rtasWKFVqxYIensvKQTJ07UvHnz1K5dO0VGRmr69OkKDw/X0KFDzQ4HAAAA59F6yiarQ5CjjqGF3aWOs7bxh04AAAAALjg//vijevXqpeuuu05btmzRJZdcos8++0wXXXSRe5uFCxdq8eLFeuaZZ9zX1ePj4/XRRx8pMDDQwugBAKgdTC+Md+vWTS+//LKmTp2qOXPmKDIyUqmpqUpMTHRvM3nyZOXn52vMmDHKzc1V7969tXXrVgZvAAAAAAAAAMAFZ8GCBYqIiFB6erp7WWRkpPv/DcNQamqqpk2bpiFDhkiSVq9erdDQUG3cuFHDhw+v8ZgBAKhtTC+MS9KNN96oG2+80et6m82mOXPmaM6cOdXx4wEAAAAAAAAAqDVeeeUVxcfH69Zbb9XOnTt16aWX6r777tPdd98tScrKylJ2drZiY2Pd7wkODlaPHj2UmZnptTDudDrldDrdr/Py8iRJLpdLLperynEXt2FGW1aiH9456himtVWunxdgePy3LL68v4pjK08/fFlF9ocvuxD7URvOD7NirEg71VIYBwAAAAAAAAAA5fPf//5Xy5YtU3Jysv7yl79o3759mjBhgurVq6ekpCRlZ2dLkkJDQz3eFxoa6l5XmpSUFM2ePbvE8u3bt6tBgwamxZ+RkWFaW1aiHyUt7G5aUxUyN7rovNts3ry5BiKpmvL0ozagH77FX84Psz6rCgoKyr0thXEAAAAAAAAAACxUVFSk6OhoPfroo5Kkq666SocPH9by5cuVlJRU6XanTp2q5ORk9+u8vDxFREQoLi5OQUFBVY7b5XIpIyNDAwYMkN1ur3J7VqEf3nWctc2UdsrLEWBobnSRpu8PkLPIVua2h2fF11BUFVe8L8rTD19Wkf3hyy7EftSG88Osz6rip6GUB4VxAAAAAAAAAAAs1Lx5c11xxRUey9q3b68XX3xRkhQWFiZJysnJUfPmzd3b5OTkqEuXLl7bdTgccjgcJZbb7XZTC8Bmt2cV+lGSs9CaIqKzyHben10b9lV5+lEb0A/f4i/nh1mfVRVpI6DKPw0AAAAAAAAAAFRar169dOTIEY9ln376qVq1aiVJioyMVFhYmHbs2OFen5eXp7179yomJqZGYwUAoLbijnEAAAAAAAAAACw0adIkXXPNNXr00Ud122236d1339WKFSu0YsUKSZLNZtPEiRM1b948tWvXTpGRkZo+fbrCw8M1dOhQa4MHAKCWoDAOAAAAAAAAAICFunXrppdffllTp07VnDlzFBkZqdTUVCUmJrq3mTx5svLz8zVmzBjl5uaqd+/e2rp1qwIDAy2MHACA2oPCOAAAAAAAAAAAFrvxxht14403el1vs9k0Z84czZkzpwajAgDAf1AYBwAAAAAAAOB3Wk/ZZFpbjjqGFnaXOs7aJmehzZQ2v5g/yJR2AAAAUD4BVgcAAAAAAAAAAAAAAEB1ojAOAAAAAAAAAAAAAPBrFMYBAAAAAAAAAAAAAH6NwjgAAAAAALXArl27NHjwYIWHh8tms2njxo0e6w3D0IwZM9S8eXPVr19fsbGx+uyzzzy2+eGHH5SYmKigoCA1adJEo0eP1qlTp2qwFwAAAAAAWIPCOAAAAAAAtUB+fr46d+6stLS0UtcvXLhQixcv1vLly7V37141bNhQ8fHxOn36tHubxMREffjhh8rIyNBrr72mXbt2acyYMTXVBQAAAAAALFPX6gAAAAAAAMD5DRw4UAMHDix1nWEYSk1N1bRp0zRkyBBJ0urVqxUaGqqNGzdq+PDh+vjjj7V161bt27dP0dHRkqQlS5bohhtu0GOPPabw8PAa6wsAAAAAADWNwjgAAAAAALVcVlaWsrOzFRsb614WHBysHj16KDMzU8OHD1dmZqaaNGniLopLUmxsrAICArR3717dfPPNpbbtdDrldDrdr/Py8iRJLpdLLperyrEXt2FGW1axsg+OOoZ5bQUYHv81gxU58YdjSvo1fjP3h9nKk2POD+84PyrP7H7U9nwAAIDyoTAOAADcZs2apdmzZ3ssu/zyy/XJJ59Ikk6fPq0HHnhA69atk9PpVHx8vJYuXarQ0FArwgUAAP9fdna2JJUYk0NDQ93rsrOz1axZM4/1devWVUhIiHub0qSkpJT4/UCStm/frgYNGlQ1dLeMjAzT2rKKFX1Y2N38NudGF5nW1ubNm01rq6L84ZiSzN0fZqvI/uX8KInzo+rM6kdBQYEp7QAAAN9GYRwAAHjo0KGDXn/9dffrunV//XVh0qRJ2rRpkzZs2KDg4GCNGzdOw4YN0+7du60IFQAA1ICpU6cqOTnZ/TovL08RERGKi4tTUFBQldt3uVzKyMjQgAEDZLfbq9yeFazsQ8dZ20xryxFgaG50kabvD5CzyGZKm4dnxZvSTkX4wzEl/doPM/eH2cqzfzk/vOP8qDyz+1H8NBQAAODfKIwDAAAPdevWVVhYWInlJ0+e1NNPP621a9eqX79+kqT09HS1b99ee/bsUc+ePWs6VAAA8P8Vj905OTlq3ry5e3lOTo66dOni3ubEiRMe7/vll1/0ww8/lDr2F3M4HHI4HCWW2+12U4sqZrdnBSv64Cw0v2DqLLKZ1q6V+9QfjinJ3P1htorkl/OjJM6PqjOrH/6QCwAAcH4UxgEAgIfPPvtM4eHhCgwMVExMjFJSUtSyZUsdOHBALpfLY+7SqKgotWzZUpmZmV4L49U9L2lt4qvz+Zk592KlY6iGORv9Cfnx7kLPTVmfJ776meMr/G1u0sjISIWFhWnHjh3uQnheXp727t2re++9V5IUExOj3NxcHThwQF27dpUkvfHGGyoqKlKPHj2sCh0AAAAAgBpBYRwAALj16NFDq1at0uWXX65vv/1Ws2fP1u9//3sdPnxY2dnZqlevnpo0aeLxnnPnLi1NTc1LWpv42nx+1TH3YmX58hyavoD8eHeh5qY8c5P62meOr6lNc5OeOnVKR48edb/OysrSoUOHFBISopYtW2rixImaN2+e2rVrp8jISE2fPl3h4eEaOnSoJKl9+/a6/vrrdffdd2v58uVyuVwaN26chg8frvDw8GqPHwAAAAAAK1EYBwAAbgMHDnT//5VXXqkePXqoVatWWr9+verXr1+pNqt7XtLaxFfn8zNz7sXKqo45G/0J+fHuQs9NWXOT+upnjq+ojXOT7t+/X9ddd537dfH4mpSUpFWrVmny5MnKz8/XmDFjlJubq969e2vr1q0KDAx0v2fNmjUaN26c+vfvr4CAACUkJGjx4sXVHjsAAAAAAFajMA4AALxq0qSJLrvsMh09elQDBgzQmTNnlJub63HXeE5Ojk/MS1qb+FrffWnOSl+eQ9MXkB/vLtTclOezxNc+c3xNbZqbtG/fvjIM79MG2Gw2zZkzR3PmzPG6TUhIiNauXVsd4QEAAAAA4NMCrA4AAAD4rlOnTunzzz9X8+bN1bVrV9ntdu3YscO9/siRIzp+/LhiYmIsjBIAAAAAAAAAgLJxxzgAAHB78MEHNXjwYLVq1UrffPONZs6cqTp16uiOO+5QcHCwRo8ereTkZIWEhCgoKEjjx49XTEyMevbsaXXoAAAAAAAAAAB4RWEcAAC4ffXVV7rjjjv0/fff65JLLlHv3r21Z88eXXLJJZKkRYsWuecjdTqdio+P19KlSy2OGgAAAAAAAACAslEYxwWh9ZRNVofglaOOoYXdrY4CAM5at25dmesDAwOVlpamtLS0GooIAAAAAAAAAICqY45xAAAAAAAAAAAAAIBfozAOAAAAAAAAAAAAAPBrFMYBAAAAAAAAAAAAAH6NwjgAAAAAAAAAAAAAwK9RGAcAAAAAAAAAAAAA+DUK4wAAAAAAAAAAAAAAv0ZhHAAAAAAAAAAAAADg1yiMAwAAAAAAAAAAAAD8Wl2rA4D/6Dhrm5yFNqvDAAAAAAAAAAAAAAAP3DEOAAAAAAAAAAAAAPBrFMYBAAAAAAAAAAAAAH6NwjgAAAAAAAAAAAAAwK9RGAcAAAAAAAAAAAAA+DUK4wAAAAAAAAAAAAAAv0ZhHAAAAAAAAAAAAADg1yiMAwAAAAAAAAAAAAD8GoVxAAAAAAAAAAAAAIBfozAOAAAAAAAAAAAAAPBrFMYBAAAAAPADhYWFmj59uiIjI1W/fn21adNGc+fOlWEY7m0Mw9CMGTPUvHlz1a9fX7Gxsfrss88sjBoAAAAAgJpBYRwAAAAAAD+wYMECLVu2TE8++aQ+/vhjLViwQAsXLtSSJUvc2yxcuFCLFy/W8uXLtXfvXjVs2FDx8fE6ffq0hZEDAAAAAFD96lodAAAAAAAAqLp33nlHQ4YM0aBBgyRJrVu31vPPP693331X0tm7xVNTUzVt2jQNGTJEkrR69WqFhoZq48aNGj58uGWxAwAAAABQ3SiMAwAAr+bPn6+pU6fq/vvvV2pqqiTp9OnTeuCBB7Ru3To5nU7Fx8dr6dKlCg0NtTZYAAAucNdcc41WrFihTz/9VJdddpnef/99vf3223r88cclSVlZWcrOzlZsbKz7PcHBwerRo4cyMzO9FsadTqecTqf7dV5eniTJ5XLJ5XJVOe7iNsxoyypW9sFRxzj/RuVtK8Dw+K8ZrMiJPxxT0q/xm7k/zFaeHHN+eMf5UXlm96O25wMAAJQPhXEAAFCqffv26amnntKVV17psXzSpEnatGmTNmzYoODgYI0bN07Dhg3T7t27LYoUAABI0pQpU5SXl6eoqCjVqVNHhYWFeuSRR5SYmChJys7OlqQSf8wWGhrqXlealJQUzZ49u8Ty7du3q0GDBqbFn5GRYVpbVrGiDwu7m9/m3Ogi09ravHmzaW1VlD8cU5K5+8NsFdm/nB8lcX5UnVn9KCgoMKUdAADg2yiMAwCAEk6dOqXExEStXLlS8+bNcy8/efKknn76aa1du1b9+vWTJKWnp6t9+/bas2ePevbsaVXIAABc8NavX681a9Zo7dq16tChgw4dOqSJEycqPDxcSUlJlW536tSpSk5Odr/Oy8tTRESE4uLiFBQUVOW4XS6XMjIyNGDAANnt9iq3ZwUr+9Bx1jbT2nIEGJobXaTp+wPkLLKZ0ubhWfGmtFMR/nBMSb/2w8z9Ybby7F/OD+84PyrP7H4UPw0FAAD4NwrjAACghLFjx2rQoEGKjY31KIwfOHBALpfL4xGsUVFRatmypTIzMymMAwBgoYceekhTpkxxPxK9U6dOOnbsmFJSUpSUlKSwsDBJUk5Ojpo3b+5+X05Ojrp06eK1XYfDIYfDUWK53W43tahidntWsKIPzkLzC6bOIptp7Vq5T/3hmJLM3R9mq0h+OT9K4vyoOrP64Q+5AAAA50dhHAAAeFi3bp0OHjyoffv2lViXnZ2tevXqqUmTJh7Ly3oEa3XPS1qb+Op8fmbOvVjpGKphzkZ/Qn68u9BzU9bnia9+5vgKf5ybtKCgQAEBAR7L6tSpo6Kis4/9jYyMVFhYmHbs2OEuhOfl5Wnv3r269957azpcAAAASGo9ZZNpbTnqGFrY/ewTM3z1j6oAwErVXhifP3++pk6dqvvvv1+pqamSpNOnT+uBBx7QunXr5HQ6FR8fr6VLl5aY5wwAANSsL7/8Uvfff78yMjIUGBhoSps1NS9pbeJr8/lVx9yLleXLc2j6AvLj3YWam/LMTeprnzm+xp/mJh08eLAeeeQRtWzZUh06dNB7772nxx9/XKNGjZIk2Ww2TZw4UfPmzVO7du0UGRmp6dOnKzw8XEOHDrU2eAAAAAAAqlm1Fsb37dunp556SldeeaXH8kmTJmnTpk3asGGDgoODNW7cOA0bNky7d++uznAAAMB5HDhwQCdOnNDVV1/tXlZYWKhdu3bpySef1LZt23TmzBnl5uZ63DWek5Pjfjzrb1X3vKS1ia/O52fm3IuVVR1zNvoT8uPdhZ6bsuYm9dXPHF/hj3OTLlmyRNOnT9d9992nEydOKDw8XPfcc49mzJjh3mby5MnKz8/XmDFjlJubq969e2vr1q2m/UEcAAAAAAC+qtoK46dOnVJiYqJWrlzpMTfpyZMn9fTTT2vt2rXq16+fJCk9PV3t27fXnj17mJsUAAAL9e/fXx988IHHspEjRyoqKkoPP/ywIiIiZLfbtWPHDiUkJEiSjhw5ouPHjysmJqbUNmtqXtLaxNf67kuPV/PlOTR9Afnx7kLNTXk+S3ztM8fX+NPcpI0bN1Zqaqr7aW2lsdlsmjNnjubMmVNzgQEAAAAAapSZ0zSYrXjaBytUW2F87NixGjRokGJjYz0K4wcOHJDL5VJsbKx7WVRUlFq2bKnMzMxSC+PVPTcpc+9VTXHeLtR5HavqQp8Xs6rIX+UV54zPvsrxx3lJpbMX1Dt27OixrGHDhmratKl7+ejRo5WcnKyQkBAFBQVp/PjxiomJ4Y/bAAAAAAAAAAA+q1oK4+vWrdPBgwe1b9++Euuys7NVr149j8evSlJoaKiys7NLba+m5iZl7r2quVDndTQL+asa8ld5fPZVjT/NS1peixYtUkBAgBISEuR0OhUfH6+lS5daHRYAAAAAAH5j/vz5mjp1qu6//37302BOnz6tBx54QOvWrfP4Ph4aGmptsAAA1BKmF8a//PJL3X///crIyDBtjrLqnpuUufeqpjh/F+q8jlV1oc+LWVXkr/KKc8dnX+X447yk3rz11lserwMDA5WWlqa0tDRrAgIAAAAAwI/t27dPTz31lK688kqP5ZMmTdKmTZu0YcMGBQcHa9y4cRo2bJh2795tUaQAANQuphfGDxw4oBMnTujqq692LyssLNSuXbv05JNPatu2bTpz5oxyc3M97hrPyclRWFhYqW3W1NykzL1XNRfqvI5mIX9VQ/4qj8++qvGneUkBAAAAAIC1Tp06pcTERK1cudJjitKTJ0/q6aef1tq1a9WvXz9JUnp6utq3b689e/YwvRkAAOVgemG8f//++uCDDzyWjRw5UlFRUXr44YcVEREhu92uHTt2KCEhQZJ05MgRHT9+XDExMWaHAwAAAAAAAABArTB27FgNGjRIsbGxHoXxAwcOyOVyKTY21r0sKipKLVu2VGZmptfCuNPplNPpdL8ufmKdy+WSy+WqcrzFbZjRlpWs7IejjmFeWwGGx39ro4r0wZePu+LYavO+kPzjmJLoh68pjt+sc7gi7ZheGG/cuLE6duzosaxhw4Zq2rSpe/no0aOVnJyskJAQBQUFafz48YqJieGv2gAAAAAAAADAB7SessnqELxy1DG0sLvVUZhv3bp1OnjwoPbt21diXXZ2turVq+fxFFZJCg0NVXZ2ttc2U1JSNHv27BLLt2/frgYNGlQ55mIZGRmmtWUlK/pRHcfy3Ogi8xutYeXpw+bNm2sgkqrxh30h0Q9f4y/9MOszt6CgoNzbml4YL49FixYpICBACQkJcjqdio+P19KlS60IBQAAAAAAAAAAS3355Ze6//77lZGRocDAQNPanTp1qpKTk92v8/LyFBERobi4OAUFBVW5fZfLpYyMDA0YMKBWTxNnZT86ztpmWluOAENzo4s0fX+AnEW1c9rJivTh8Kz4Goqq4oqPqdq8LyT/OKYk+uFrivth1mdu8dNQyqNGCuNvvfWWx+vAwEClpaUpLS2tJn48AAAAAAAAAAA+68CBAzpx4oSuvvpq97LCwkLt2rVLTz75pLZt26YzZ84oNzfX467xnJwchYWFeW3X4XDI4XCUWG63200tAJvdnlWs6Iez0PzilrPIVi3t1qTy9KE2HHP+sC8k+uFr/KUfZn3mVqQNS+4YBwAAAAAAAAAAZ/Xv318ffPCBx7KRI0cqKipKDz/8sCIiImS327Vjxw4lJCRIko4cOaLjx48rJibGipABAKh1KIwDAAAAAAAAAGChxo0bq2PHjh7LGjZsqKZNm7qXjx49WsnJyQoJCVFQUJDGjx+vmJgY9ezZ04qQAQCodSiMA8AFruOsbT772JUv5g+yOgQAAAAAAACfsGjRIgUEBCghIUFOp1Px8fFaunSp1WEBAFBrUBgHAAAAAAAAAMDHvPXWWx6vAwMDlZaWprS0NGsCAgCglguwOgAAAAAAAAAAAAAAAKoTd4wDAAAAQC3Vesomr+scdQwt7G7ttClMiwIAAAAAAHwFhfFaoqwLXlYrvuAGAAAAAAAAAAAAAL6IR6kDAAAAAAAAAAAAAPwahXEAAAAAAAAAAAAAgF+jMA4AAAAAAAAAAAAA8GsUxgEAAAAAAAAAAAAAfo3COAAAAAAAAAAAAADAr1EYBwAAAAAAAAAAAAD4NQrjAAAAAAAAAAAAAAC/RmEcAAAAAAA/8fXXX+uPf/yjmjZtqvr166tTp07av3+/e71hGJoxY4aaN2+u+vXrKzY2Vp999pmFEQMAAAAAUDMojAMAAAAA4Ad+/PFH9erVS3a7XVu2bNFHH32kv//977rooovc2yxcuFCLFy/W8uXLtXfvXjVs2FDx8fE6ffq0hZEDAAAAAFD9KIwDAAC3ZcuW6corr1RQUJCCgoIUExOjLVu2uNefPn1aY8eOVdOmTdWoUSMlJCQoJyfHwogBAECxBQsWKCIiQunp6erevbsiIyMVFxenNm3aSDp7t3hqaqqmTZumIUOG6Morr9Tq1av1zTffaOPGjdYGDwAAAABANaMwDgAA3Fq0aKH58+frwIED2r9/v/r166chQ4boww8/lCRNmjRJr776qjZs2KCdO3fqm2++0bBhwyyOGgAASNIrr7yi6Oho3XrrrWrWrJmuuuoqrVy50r0+KytL2dnZio2NdS8LDg5Wjx49lJmZaUXIAAAAAADUmLpWBwAAAHzH4MGDPV4/8sgjWrZsmfbs2aMWLVro6aef1tq1a9WvXz9JUnp6utq3b689e/aoZ8+eVoQMAAD+v//+979atmyZkpOT9Ze//EX79u3ThAkTVK9ePSUlJSk7O1uSFBoa6vG+0NBQ97rSOJ1OOZ1O9+u8vDxJksvlksvlqnLcxW2Y0ZZVrOyDo45hXlsBhsd/zWBFTvzhmJJ+jd/M/WG28uSY88M7Xz8/zMyf2Yr3g1k5rO2fFwAAoHwojAMAgFIVFhZqw4YNys/PV0xMjA4cOCCXy+Vxl1lUVJRatmypzMxMCuMAAFisqKhI0dHRevTRRyVJV111lQ4fPqzly5crKSmp0u2mpKRo9uzZJZZv375dDRo0qHS7v5WRkWFaW1axog8Lu5vf5tzoItPa2rx5s2ltVZQ/HFOSufvDbBXZv5wfJfn6+VEd+TObWcdVQUGBKe0AAADfRmEcAAB4+OCDDxQTE6PTp0+rUaNGevnll3XFFVfo0KFDqlevnpo0aeKxvdV3mdUmvnr3ki/cCVIdd+D4E/LjHbnxzhdy42ufd+cy+zPZF/ravHlzXXHFFR7L2rdvrxdffFGSFBYWJknKyclR8+bN3dvk5OSoS5cuXtudOnWqkpOT3a/z8vIUERGhuLg4BQUFVTlul8uljIwMDRgwQHa7vcrtWcHKPnSctc20thwBhuZGF2n6/gA5i2ymtHl4Vrwp7VSEPxxT0q/9MHN/mK08+5fzwztfPz/MzJ/ZiveHWcdV8fdUAADg3yiMAwAAD5dffrkOHTqkkydP6p///KeSkpK0c+fOSrdXU3eZ1Sa+dveSL90J4st3RPkC8uMdufHOytxYeSdcefnTnWa9evXSkSNHPJZ9+umnatWqlSQpMjJSYWFh2rFjh7sQnpeXp7179+ree+/12q7D4ZDD4Six3G63m1rkMrs9K1jRB2eh+QVTZ5HNtHat3Kf+cExJ5u4Ps1Ukv5wfJfn6+eGrx925zDqu/OGzAgAAnB+FcQAA4KFevXpq27atJKlr167at2+fnnjiCd1+++06c+aMcnNzPe4az8nJcd+BVprqvsusNvHVu5d84U6Q6rgDx5+QH+/IjXe+kBsr7oQrL7M/k33hTrNJkybpmmuu0aOPPqrbbrtN7777rlasWKEVK1ZIkmw2myZOnKh58+apXbt2ioyM1PTp0xUeHq6hQ4daGzwAAAAAANWMwjgAAChTUVGRnE6nunbtKrvdrh07dighIUGSdOTIER0/flwxMTFe319Td5nVJr7Wd1+6E8SX74jyBeTHO3LjnZW58aXPOm/86U6zbt266eWXX9bUqVM1Z84cRUZGKjU1VYmJie5tJk+erPz8fI0ZM0a5ubnq3bu3tm7dqsDAQAsjBwAAAACg+lEYBwAAblOnTtXAgQPVsmVL/fTTT1q7dq3eeustbdu2TcHBwRo9erSSk5MVEhKioKAgjR8/XjExMerZs6fVoQMAfFDrKZusDsErRx3Dp6aSMMuNN96oG2+80et6m82mOXPmaM6cOTUYFQAAAAAA1qMwDgAA3E6cOKG77rpL3377rYKDg3XllVdq27ZtGjBggCRp0aJFCggIUEJCgpxOp+Lj47V06VKLowYAAAAAAAAAoGwUxgEAgNvTTz9d5vrAwEClpaUpLS2thiICAAAAAAAAAKDqAqwOAAAAAAAAAAAAAACA6kRhHAAAAAAAAAAAAADg1yiMAwAAAAAAAAAAAAD8GoVxAAAAAAAAAAAAAIBfozAOAAAAAAAAAAAAAPBrFMYBAAAAAAAAAAAAAH6NwjgAAAAAAAAAAAAAwK/VtToAAAC8aT1lk9UheOWoY2hhd6ujAAAAAAAAAAAA5cEd4wAAAAAAAAAAAAAAv0ZhHAAAAAAAAAAAAADg1yiMAwAAAAAAAAAAAAD8GoVxAAAAAAAAAAAAAIBfozAOAAAAAAAAAAAAAPBrFMYBAAAAAAAAAAAAAH6NwjgAAAAAAAAAAAAAwK/VtToAAAAAAAAAAACA6tB6yqbzbuOoY2hhd6njrG1yFtpqICoAgBW4YxwAAAAAAAAAAAAA4NcojAMAAAAAAAAAAAAA/BqFcQAAAAAAAAAAAACAX6MwDgAAAAAAAAAAAADwaxTGAQAAAADwQ/Pnz5fNZtPEiRPdy06fPq2xY8eqadOmatSokRISEpSTk2NdkAAAAAAA1BAK4wAAAAAA+Jl9+/bpqaee0pVXXumxfNKkSXr11Ve1YcMG7dy5U998842GDRtmUZQAAAAAANQcCuMAAMAtJSVF3bp1U+PGjdWsWTMNHTpUR44c8diGO80AAPBtp06dUmJiolauXKmLLrrIvfzkyZN6+umn9fjjj6tfv37q2rWr0tPT9c4772jPnj0WRgwAAAAAQPWjMA4AANx27typsWPHas+ePcrIyJDL5VJcXJzy8/Pd23CnGQAAvm3s2LEaNGiQYmNjPZYfOHBALpfLY3lUVJRatmypzMzMmg4TAAAAAIAaVdfsBlNSUvTSSy/pk08+Uf369XXNNddowYIFuvzyy93bnD59Wg888IDWrVsnp9Op+Ph4LV26VKGhoWaHAwAAKmDr1q0er1etWqVmzZrpwIEDuvbaa913mq1du1b9+vWTJKWnp6t9+/bas2ePevbsaUXYAADg/1u3bp0OHjyoffv2lViXnZ2tevXqqUmTJh7LQ0NDlZ2d7bVNp9Mpp9Ppfp2XlydJcrlccrlcVY65uA0z2rKKlX1w1DHMayvA8PivGazIiT8cU9Kv8Zu5P8xWnhxzfnjn6+eHmfkzW/F+MCuHtf3zAgAAlI/phfHiO826deumX375RX/5y18UFxenjz76SA0bNpR09k6zTZs2acOGDQoODta4ceM0bNgw7d692+xwAABAFZw8eVKSFBISIun8d5qVVhiv7ovptYmvXqT1hQte1XGh0Z+QH+/IjXfkpmz+eEH9yy+/1P3336+MjAwFBgaa1m5KSopmz55dYvn27dvVoEED035ORkaGaW1ZxYo+LOxufptzo4tMa2vz5s2mtVVR/nBMSebuD7NVZP9yfpTk6+dHdeTPbGYdVwUFBaa0AwAAfJvphXHuNAMAwD8UFRVp4sSJ6tWrlzp27Cipcnea1dTF9NrE1y7S+tIFL1++8OsLyI935MY7clM2f7qgfuDAAZ04cUJXX321e1lhYaF27dqlJ598Utu2bdOZM2eUm5vrMZbn5OQoLCzMa7tTp05VcnKy+3VeXp4iIiIUFxenoKCgKsftcrmUkZGhAQMGyG63V7k9K1jZh46ztpnWliPA0NzoIk3fHyBnkc2UNg/PijelnYrwh2NK+rUfZu4Ps5Vn/3J+eOfr54eZ+TNb8f4w67gq/gNuq/E0VgAAqpfphfHfqg13mvnq3Vvn8oU7ubzhTpSqIX9VQ/4qj9xVjT/eZfZbY8eO1eHDh/X2229XqZ3qvphem/jqRVpfuOBVHRca/Qn58Y7ceEduyuaPF9T79++vDz74wGPZyJEjFRUVpYcfflgRERGy2+3asWOHEhISJElHjhzR8ePHFRMT47Vdh8Mhh8NRYrndbjd1PDO7PStY0Qdnofnnt7PIZlq7Vu5TfzimJHP3h9kqkl/Oj5J8/fzw1ePuXGYdV77yWcHTWAEAqF7VWhivbXea+drdW+fypTu5vOFOlKohf1VD/iqP3FWNP91ldq5x48bptdde065du9SiRQv38rCwsArfaVZTF9NrE1/ruy9d8PLlC7++gPx4R268Izdl86cL6o0bN3Z/9y7WsGFDNW3a1L189OjRSk5OVkhIiIKCgjR+/HjFxMTw9DYAAHwAT2MFAKB6VWthvLbcaeard2+dyxfu5PKGO1GqhvxVDfmrPHJXNf54l5kkGYah8ePH6+WXX9Zbb72lyMhIj/Vdu3at1J1mAADANyxatEgBAQFKSEjwePwqAADwPWY8jRUAAPyq2grjtfFOM1+7e+tcteEOD+5EqRryVzXkr/LIXdX4011m0tk/alu7dq3+9a9/qXHjxu6nuQQHB6t+/foKDg7mTjMAAGqRt956y+N1YGCg0tLSlJaWZk1AAACgXMx6GivTlJZvmlJ/mXLQH/pRkT748nFXHFtt3heSfxxTEv3wNVZOU2p6YZw7zQAAqL2WLVsmSerbt6/H8vT0dI0YMUISd5oBAAAAAFDdzHoaK9OUVmyaUn+ZctAf+lGePmzevLkGIqkaf9gXEv3wNf7SDyumKTW9MM6dZgAA1F6Gcf6/NuROMwAAAAAAqo+ZT2NlmtLyTVPqL1MO+kM/KtKHw7Piayiqiis+N2rzvpD845iS6IevsXKaUtML49xpBgAAAAAAAABAxVTH01iZprRi05T6y5SD/tCP8vTBV4+5c/nDvpDoh6/xl35YMU1ptTxK/Xy40wwAAAAAAAAAgF/xNFYAAKqX6YVxAAAAAACAiuo4a5tP3vXwxfxBVocAALhA8DRWAACqF4VxAAAAAAAAAAAsxtNYAQCoXgFWBwAAAAAAAAAAAAAAQHWiMA4AAAAAAAAAAAAA8Gs8Sh0AAKCatZ6ySZLkqGNoYXffnUMVAAAAAAAAAPwVd4wDAAAAAAAAAAAAAPwahXEAAAAAAAAAAAAAgF+jMA4AAAAAAAAAAAAA8GsUxgEAAAAAAAAAAAAAfo3COAAAAAAAAAAAAADAr1EYBwAAAAAAAAAAAAD4NQrjAAAAAAAAAAAAAAC/RmEcAAAAAAAAAAAAAODXKIwDAAAAAAAAAAAAAPwahXEAAAAAAAAAAAAAgF+jMA4AAAAAAAAAAAAA8GsUxgEAAAAAAAAAAAAAfo3COAAAAAAAAAAAAADAr1EYBwAAAADAD6SkpKhbt25q3LixmjVrpqFDh+rIkSMe25w+fVpjx45V06ZN1ahRIyUkJCgnJ8eiiAEAAAAAqDkUxgEAgIddu3Zp8ODBCg8Pl81m08aNGz3WG4ahGTNmqHnz5qpfv75iY2P12WefWRMsAABw27lzp8aOHas9e/YoIyNDLpdLcXFxys/Pd28zadIkvfrqq9qwYYN27typb775RsOGDbMwagAAAAAAagaFcQAA4CE/P1+dO3dWWlpaqesXLlyoxYsXa/ny5dq7d68aNmyo+Ph4nT59uoYjBQAA59q6datGjBihDh06qHPnzlq1apWOHz+uAwcOSJJOnjypp59+Wo8//rj69eunrl27Kj09Xe+884727NljcfQAAAAAAFSvulYHAAAAfMvAgQM1cODAUtcZhqHU1FRNmzZNQ4YMkSStXr1aoaGh2rhxo4YPH16ToQIAgDKcPHlSkhQSEiJJOnDggFwul2JjY93bREVFqWXLlsrMzFTPnj0tiRMAAAAAgJpAYRwAAJRbVlaWsrOzPS6oBwcHq0ePHsrMzCy1MO50OuV0Ot2v8/LyJEkul0sul6v6g/YBjjrG2f8GeP4XvyI3ZSM/3pEb78hN2YrzYtZY5GtjWlFRkSZOnKhevXqpY8eOkqTs7GzVq1dPTZo08dg2NDRU2dnZXtuq7rG8uA1fPVbL08fibaw4Dop/zzClrWr43LAiJ1buDzP5+rkhcX5Ula+fH2bmz2z+Po4DAIDqQWEcAACUW/FF89DQUI/lZV1QT0lJ0ezZs0ss3759uxo0aGB+kD5oYXfP13Oji6wJpBYgN2UjP96RG+/ITdkyMjJMaaegoMCUdswyduxYHT58WG+//XaV26qpsdxXj9XNmzeXe1uzjqeK+O3vGWYwc19UJH9ms2J/VAdfPTckzo+q8vXzozryZzZ/HccBAED1oDAOAACq1dSpU5WcnOx+nZeXp4iICMXFxSkoKMjCyGpOx1nbJJ29q2FudJGm7w+Qs8hmcVS+hdyUjfx4R268IzdlK87PgAEDZLfbq9xe8V3UvmDcuHF67bXXtGvXLrVo0cK9PCwsTGfOnFFubq7HXeM5OTkKCwvz2l51j+Uul0sZGRk+e6wenhV/3m2K+2DW8VQRxb9nmKE6PjfKkz+zWbk/zOTr54bE+VFVvn5+mJk/s/nzOA4AAKoPhXEAAFBuxRfNc3Jy1Lx5c/fynJwcdenSpdT3OBwOORyOEsvtdnutvlBZEc5CzwtnziJbiWU4i9yUjfx4R268IzdlM2s88oUxzTAMjR8/Xi+//LLeeustRUZGeqzv2rWr7Ha7duzYoYSEBEnSkSNHdPz4ccXExHhtt6bGcl89VivSRyt+v6mOnJm5L6w8N/zl901fPTckzo+q8vXzw1ePu3P50zgOAACqX4DVAQAAgNojMjJSYWFh2rFjh3tZXl6e9u7dW+YFdQAAUP3Gjh2r5557TmvXrlXjxo2VnZ2t7Oxs/fzzz5Kk4OBgjR49WsnJyXrzzTd14MABjRw5UjExMerZs6fF0QMAAAAAUL24YxwAAHg4deqUjh496n6dlZWlQ4cOKSQkRC1bttTEiRM1b948tWvXTpGRkZo+fbrCw8M1dOhQ64IGAABatmyZJKlv374ey9PT0zVixAhJ0qJFixQQEKCEhAQ5nU7Fx8dr6dKlNRwpAAAAAAA1j8I4AADwsH//fl133XXu18VziiYlJWnVqlWaPHmy8vPzNWbMGOXm5qp3797aunWrAgMDrQoZAADo7KPUzycwMFBpaWlKS0urgYgAAAAAAPAdFMYBAICHvn37lnlh3Wazac6cOZozZ04NRgUAAAAAAAAAQOUxxzgAAAAAAAAAAAAAwK9RGAcAAAAAAAAAAAAA+DUK4wAAAAAAAAAAAAAAv0ZhHAAAAAAAAAAAAADg1yiMAwAAAAAAAAAAAAD8GoVxAAAAAAAAAAAAAIBfozAOAAAAAAAAAAAAAPBrFMYBAAAAAAAAAAAAAH6trtUBAAAAAAAAAACA2qvjrG1yFtqsDgMAgDJxxzgAAAAAAAAAAAAAwK9xx/g5+Ks2AABqp9ZTNlkdAgAAAAAAAADAh3HHOAAAAAAAAAAAAADAr1EYBwAAAAAAAAAAAAD4NQrjAAAAAAAAAAAAAAC/RmEcAAAAAAAAAAAAAODXKIwDAAAAAAAAAAAAAPwahXEAAAAAAAAAAAAAgF+jMA4AAAAAAAAAAAAA8GsUxgEAAAAAAAAAAAAAfo3COAAAAAAAAAAAAADAr1EYBwAAAAAAAAAAAAD4NcsK42lpaWrdurUCAwPVo0cPvfvuu1aFAgAAKoGxHACA2otxHACA2otxHACAyrGkMP7CCy8oOTlZM2fO1MGDB9W5c2fFx8frxIkTVoQDAAAqiLEcAIDai3EcAIDai3EcAIDKs6Qw/vjjj+vuu+/WyJEjdcUVV2j58uVq0KCB/u///s+KcAAAQAUxlgMAUHsxjgMAUHsxjgMAUHk1Xhg/c+aMDhw4oNjY2F+DCAhQbGysMjMzazocAABQQYzlAADUXozjAADUXozjAABUTd2a/oH/+9//VFhYqNDQUI/loaGh+uSTT0p9j9PplNPpdL8+efKkJOmHH36Qy+Wqckwul0sFBQWq6wpQYZGtyu1daOoWGSooKCJ/lUT+qob8VR65q5ri/H3//fey2+1Vbu+nn36SJBmGUeW2qltFx/LqHsclqe4v+aa0U90477wjN2UjP96RG+/ITdku1LGc7+QV9/333593m+I+mHU8VYSZvwdVx+dGefJnNiv3h5l8/dyQOD+qytfPD1/+nsU4zjhuNn/53dkf+lGRPljxOVpenBu+hX74FivH8RovjFdGSkqKZs+eXWJ5ZGSkBdGgNH+wOoBajvxVDfmrPHJXNdWRv59++knBwcHV0LJ1GMc9cd55R27KRn68IzfekZuyMZaXz4U+ll/8d6sjqFlmnxcXWv4uNBfa/uX88C2M4+VzoY/jFeEvvzv7Qz/K2wc+R2uGPxxTEv3wNVaN4zVeGL/44otVp04d5eTkeCzPyclRWFhYqe+ZOnWqkpOT3a+Lior0ww8/qGnTprLZqv4XEXl5eYqIiNCXX36poKCgKrd3oSF/VUP+qob8VR65qxqz82cYhn766SeFh4ebEF31quhYXt3jeG3CeecduSkb+fGO3HhHbsp2oY7lfCevHv7QB4l++Br64Vvoh29hHGccNxv98B3+0AeJfvga+uFbrBzHa7wwXq9ePXXt2lU7duzQ0KFDJZ0djHfs2KFx48aV+h6HwyGHw+GxrEmTJqbHFhQUVKsPJKuRv6ohf1VD/iqP3FWNmfmrLX+VXtGxvKbG8dqE8847clM28uMdufGO3JTtQhvL+U5evfyhDxL98DX0w7fQD9/COM44bjb64Tv8oQ8S/fA19MO3WDGOW/Io9eTkZCUlJSk6Olrdu3dXamqq8vPzNXLkSCvCAQAAFcRYDgBA7cU4DgBA7cU4DgBA5VlSGL/99tv13XffacaMGcrOzlaXLl20detWhYaGWhEOAACoIMZyAABqL8ZxAABqL8ZxAAAqz5LCuCSNGzfO6+NdaprD4dDMmTNLPFIG5UP+qob8VQ35qzxyVzXkz7fG8tqC48Y7clM28uMdufGO3JTtQs+PL43j/rAv/KEPEv3wNfTDt9AP3+Iv/agsxnHz0Q/f4Q99kOiHr6EfvsXKftgMwzBq/KcCAAAAAAAAAAAAAFBDAqwOAAAAAAAAAAAAAACA6kRhHAAAAAAAAAAAAADg1yiMAwAAAAAAAAAAAAD8mt8WxlNSUtStWzc1btxYzZo109ChQ3XkyBGPbT7//HPdfPPNuuSSSxQUFKTbbrtNOTk5Htv88MMPSkxMVFBQkJo0aaLRo0fr1KlTNdkVSyxbtkxXXnmlgoKCFBQUpJiYGG3ZssW9/vTp0xo7dqyaNm2qRo0aKSEhoUTujh8/rkGDBqlBgwZq1qyZHnroIf3yyy813RVLnC9/K1asUN++fRUUFCSbzabc3NwSbVyox55Udv5++OEHjR8/Xpdffrnq16+vli1basKECTp58qRHGxfq8Xe+Y++ee+5RmzZtVL9+fV1yySUaMmSIPvnkE482LtTcSefPXzHDMDRw4EDZbDZt3LjRY92FnD/86qefftLEiRPVqlUr1a9fX9dcc4327dvnXj9ixAjZbDaPf9dff72FEVefXbt2afDgwQoPDy/1nDEMQzNmzFDz5s1Vv359xcbG6rPPPvPYxl/HRDNy07p16xLH0vz582uwF9XjfLl56aWXFBcXp6ZNm8pms+nQoUMl2ijP76u1lRn56du3b4lj589//nPNdKAalZUbl8ulhx9+WJ06dVLDhg0VHh6uu+66S998841HG/76mWOV8x2vpXnrrbd09dVXy+FwqG3btlq1alW1x3k+Fe3HW2+9VeIcs9lsys7OrpmAS1Ge6ySl2bBhg6KiohQYGKhOnTpp8+bNNRCtd5Xpx6pVq0rsi8DAwBqKuHTl/e5xLl/bF1LF++GL+6I08+fPl81m08SJE8vczhf3ybnK0w9f3CezZs0qEVNUVFSZ7/H1fVFbMY77zjguMZb72meVP4zljOO+tT9+i3G8evhtYXznzp0aO3as9uzZo4yMDLlcLsXFxSk/P1+SlJ+fr7i4ONlsNr3xxhvavXu3zpw5o8GDB6uoqMjdTmJioj788ENlZGTotdde065duzRmzBirulVjWrRoofnz5+vAgQPav3+/+vXrpyFDhujDDz+UJE2aNEmvvvqqNmzYoJ07d+qbb77RsGHD3O8vLCzUoEGDdObMGb3zzjt65plntGrVKs2YMcOqLtWo8+WvoKBA119/vf7yl794beNCPfaksvP3zTff6JtvvtFjjz2mw4cPa9WqVdq6datGjx7tfv+FfPyd79jr2rWr0tPT9fHHH2vbtm0yDENxcXEqLCyUdGHnTjp//oqlpqbKZrOVeP+Fnj/86k9/+pMyMjL07LPP6oMPPlBcXJxiY2P19ddfu7e5/vrr9e2337r/Pf/88xZGXH3y8/PVuXNnpaWllbp+4cKFWrx4sZYvX669e/eqYcOGio+P1+nTp93b+OuYaEZuJGnOnDkex9L48eNrIvxqdb7c5Ofnq3fv3lqwYIHXNs73+2ptZkZ+JOnuu+/2OHYWLlxYHeHWqLJyU1BQoIMHD2r69Ok6ePCgXnrpJR05ckQ33XSTx3b++pljlfMdr7+VlZWlQYMG6brrrtOhQ4c0ceJE/elPf9K2bduqOdKyVbQfxY4cOeJxnjVr1qyaIjy/810nKc0777yjO+64Q6NHj9Z7772noUOHaujQoTp8+HANRu6pMv2QpKCgII99cezYsRqKuHTl/e5RzBf3hVTxfki+ty9+a9++fXrqqad05ZVXlrmdr+6TYuXth+Sb+6RDhw4eMb399ttet/X1fVGbMY77zjguMZb72meVP4zljOO+tT/OxThejfvCuECcOHHCkGTs3LnTMAzD2LZtmxEQEGCcPHnSvU1ubq5hs9mMjIwMwzAM46OPPjIkGfv27XNvs2XLFsNmsxlff/11zXbAB1x00UXGP/7xDyM3N9ew2+3Ghg0b3Os+/vhjQ5KRmZlpGIZhbN682QgICDCys7Pd2yxbtswICgoynE5njcfuC4rzd64333zTkGT8+OOPHss59koqLX/F1q9fb9SrV89wuVyGYXD8/VZZuXv//fcNScbRo0cNwyB3pflt/t577z3j0ksvNb799ltDkvHyyy+715E/GIZhFBQUGHXq1DFee+01j+VXX3218de//tUwDMNISkoyhgwZYkF01vrtOVNUVGSEhYUZf/vb39zLcnNzDYfDYTz//POGYVw4Y2JlcmMYhtGqVStj0aJFNRhpzfttbs6VlZVlSDLee+89j+Xl+X3VX1QmP4ZhGH369DHuv//+ao3NamXlpti7775rSDKOHTtmGMaF85ljlfLsk8mTJxsdOnTwWHb77bcb8fHx1RhZxZSnH96+6/mS314nKc1tt91mDBo0yGNZjx49jHvuuae6wyu38vQjPT3dCA4OrrmgKqms7261YV8UK6sfvr4vfvrpJ6Ndu3ZGRkbGecdKX94nFemHL+6TmTNnGp07dy739r68L/wJ47jvYSz3Pf4wljOOW78/GMerd1/47R3jv1X8mOWQkBBJktPplM1mk8PhcG8TGBiogIAA918uZGZmqkmTJoqOjnZvExsbq4CAAO3du7cGo7dWYWGh1q1bp/z8fMXExOjAgQNyuVyKjY11bxMVFaWWLVsqMzNT0tncderUSaGhoe5t4uPjlZeXV+ZfG/mj3+avPDj2flWe/J08eVJBQUGqW7euJI6/YufLXX5+vtLT0xUZGamIiAhJ5O5cpeWvoKBAf/jDH5SWlqawsLAS7yF/kKRffvlFhYWFJR5bVL9+fY+/jnzrrbfUrFkzXX755br33nv1/fff13SolsvKylJ2drbH7xTBwcHq0aOHx+8UF+KYWJ7cFJs/f76aNm2qq666Sn/729+YvkEq1++rkNasWaOLL75YHTt21NSpU1VQUGB1SDXu5MmTstlsatKkiaQL9zPHl2RmZnqcu9LZ36dq67nbpUsXNW/eXAMGDNDu3butDsfDb6+TlKY27I/y9EOSTp06pVatWikiIuK8d0LVtPJ8760N+6K81z98eV+MHTtWgwYNKpHr0vjyPqlIP/T/2Lvz8Kbq9P//r7a0KQXaWqCbbAWRRUA2LQVUlNKKiDAyoyijdRlRLAxQRcAB2dQq44I6CC4MuMAw4kdQAYECAl+0IFQ6sigCVnGUFhWhLBJC+/79wa8ZQ1u6JM3W5+O6uDTnnLxz3/dJ8k5655wj79wn+/btU3x8vFq2bKlhw4bp4MGD5W7rzfuitvG3feHN87jEXO4N71Ul/GEuZx73nv3BPF6z+6JOjYzqZYqLizVmzBj16tVLHTp0kCT16NFD9erV0/jx4/Xkk0/KGKMJEyaoqKhIhw4dkiTl5+eXOj1KnTp1FBUV5fHribjDzp07lZSUpNOnT6t+/fpaunSp2rdvr9zcXIWEhNj/eFQiJibGXpf8/HyHxlDJ+pJ1tUF59auM2v7ckypfv59//lkzZsxwOL1lbX/+VVS7l19+WY888ohOnjypNm3aKCsrSyEhIZKonXTh+o0dO1Y9e/bUoEGDyrwv9YMkNWjQQElJSZoxY4batWunmJgY/etf/1J2drYuueQSSedOo37zzTcrISFBBw4c0KOPPqr+/fsrOztbQUFBHs7AfUpeF2W9bn7/maI2zomVqY0k/fWvf1XXrl0VFRWlTz/9VBMnTtShQ4f03HPPuTVeb5Ofn1/h59Xa7vbbb1fz5s0VHx+vL774QuPHj9fevXv13nvveTo0tzl9+rTGjx+v2267TeHh4ZJq73uONynv81RhYaF+++031a1b10ORVU1cXJzmzp2r7t27y2q16vXXX1efPn20detWde3a1dPhlfl3krKUtz+85fVQ2TzatGmjf/7zn+rUqZOOHTumZ555Rj179tTu3bvVpEkTN0bsqCp/N/DmfVGVPLx1X0jS4sWL9fnnn2vbtm2V2t5b90lV8/DGfZKYmKgFCxaoTZs2OnTokKZNm6arrrpKu3btUoMGDUpt7637ojZiHncf5nLPv1dJ/jGXM4//jzfsD+bxc2pyX9SKxnh6erp27drlcJRW48aNtWTJEo0YMUIvvviiAgMDddttt6lr164KDKw1B9JfUJs2bZSbm6tjx47p3XffVVpamjZu3OjpsHxGefWrbHO8tqtM/QoLCzVgwAC1b99eU6dO9VywXqai2g0bNkz9+vXToUOH9Mwzz+iWW27RJ598Uuro1tqqvPrt379f69ev144dOzwdInzAW2+9pXvuuUcXX3yxgoKC1LVrV912223KycmRJA0dOtS+bceOHdWpUye1atVKGzZsUN++fT0VNnxQRkaG/f87deqkkJAQ3X///crMzHQ4MxJwvt//qLBjx46Ki4tT3759deDAAbVq1cqDkbmHzWbTLbfcImOM5syZ4+lw4IfatGmjNm3a2G/37NlTBw4c0PPPP6+33nrLg5GdU9bfSXxRZfNISkpyOPKpZ8+eateunV555RXNmDGjpsMsl7/83aAqeXjrvvj+++81evRoZWVl+fR34+rk4Y37pH///vb/79SpkxITE9W8eXO98847uvfeez0SE2oXb5/HJeZyb3ivkvxjLmce9x7M4+7h9x3gkSNHavny5fr4449L/ToiJSVFBw4c0OHDh/Xzzz/rrbfe0g8//KCWLVtKkmJjY3X48GGH+5w9e1ZHjhwp8xS6/iYkJESXXHKJunXrpszMTF1++eV64YUXFBsbqzNnzujo0aMO2xcUFNjrEhsbq4KCglLrS9bVBuXVrzJq+3NPqrh+x48f1/XXX68GDRpo6dKlCg4Otq+r7c+/imoXERGh1q1b6+qrr9a7776rr776SkuXLpVE7aTy67d+/XodOHBAkZGRqlOnjv3U/UOGDFGfPn0kUT/8T6tWrbRx40adOHFC33//vT777DPZbDb7Z4zztWzZUo0aNdL+/fvdHKlnlbwuynrd/P4zRW2cEytTm7IkJibq7Nmz+vbbb2syPK9Xmc+rcJSYmChJteJ9qKQp/t133ykrK8t+tLhUe99zvEl5n6fCw8N95iiz8lx55ZVe8Rq70N9Jzlfe/vCG10NV8jhfcHCwunTp4vH9UZW/G3jzvnDm7x/esi9ycnJ0+PBhde3a1f59b+PGjXrxxRdVp04dFRUVlbqPN+6T6uRxPm/ZJ78XGRmpSy+9tNyYvHFf1FbM4+7BXO4971X+MJczj/+Pp/cH8/j/1OS+8NvGuDFGI0eO1NKlS7V+/XolJCSUu22jRo0UGRmp9evX6/Dhw7rpppsknfulxdGjR+1Hd0nS+vXrVVxcbP/DUW1SXFwsq9Wqbt26KTg4WOvWrbOv27t3rw4ePGj/ZUpSUpJ27tzp8Eelkj86+dKvpVyppH6VwXOvtN/Xr7CwUCkpKQoJCdEHH3xQ6tdTPP8cXei5Z4yRMca+ntqVVlK/CRMm6IsvvlBubq79nyQ9//zzmj9/viTqh9Lq1aunuLg4/frrr1q9enW5p+H/73//q19++UVxcXFujtCzEhISFBsb6/CZorCwUFu3bnX4TFEb58TK1KYsubm5CgwMLHUq6NqmMp9X4ahkXvP396GSpvi+ffu0du1aNWzY0GF9bX3P8SZJSUkOr13p3Ocpf3jt5ubmevQ1VpW/k5Twxv1RnTzOV1RUpJ07d3rde96Fvrt5474oT1X+/uEt+6Jv377auXOnw/e97t27a9iwYcrNzS3zckfeuE+qk8f5vGWf/N6JEyd04MCBcmPyxn1RW/nzvvD0PC4xl/+eN75XSf4xlzOPM4+7mtfN48ZPjRgxwkRERJgNGzaYQ4cO2f+dOnXKvs0///lPk52dbfbv32/eeustExUVZTIyMhzGuf76602XLl3M1q1bzebNm03r1q3Nbbfd5u503G7ChAlm48aNJi8vz3zxxRdmwoQJJiAgwKxZs8YYY8wDDzxgmjVrZtavX2+2b99ukpKSTFJSkv3+Z8+eNR06dDApKSkmNzfXrFq1yjRu3NhMnDjRUym5VUX1O3TokNmxY4d57bXXjCSzadMms2PHDvPLL7/Yx6itzz1jLly/Y8eOmcTERNOxY0ezf/9+h9f32bNnjTG1+/l3ododOHDAPPnkk2b79u3mu+++M5988okZOHCgiYqKMgUFBcaY2l07Yyp+7Z5Pklm6dKn9dm2vH/5n1apV5qOPPjLffPONWbNmjbn88stNYmKiOXPmjDl+/Lh5+OGHTXZ2tsnLyzNr1641Xbt2Na1btzanT5/2dOgud/z4cbNjxw6zY8cOI8k899xzZseOHea7774zxhjz1FNPmcjISPP++++bL774wgwaNMgkJCSY3377zT6Gv86Jztbm008/Nc8//7zJzc01Bw4cMG+//bZp3LixufPOOz2ZlktUVJtffvnF7Nixw6xYscJIMosXLzY7duwwhw4dso9R0edVX+Zsffbv32+mT59utm/fbvLy8sz7779vWrZsaa6++mpPpuUSF6rNmTNnzE033WSaNGlicnNzHT5HWq1W+xj++p7jKRU9XydMmGDuuOMO+/bffPONCQsLM+PGjTNffvmlmT17tgkKCjKrVq3yVArGmKrn8fzzz5tly5aZffv2mZ07d5rRo0ebwMBAs3btWk+lUKm/k9xxxx1mwoQJ9tuffPKJqVOnjnnmmWfMl19+aaZMmWKCg4PNzp07PZGCMaZ6eUybNs2sXr3aHDhwwOTk5JihQ4ea0NBQs3v3bk+kYIyp+LuHL+wLY6qehzfui/Jcc801ZvTo0fbbvrJPzldRHt64Tx566CGzYcMGk5eXZz755BOTnJxsGjVqZA4fPmyM8d194YuYx71nHjeGudzb3qv8YS5nHveu/VEW5nHX89vGuKQy/82fP9++zfjx401MTIwJDg42rVu3Ns8++6wpLi52GOeXX34xt912m6lfv74JDw83d999tzl+/Libs3G/e+65xzRv3tyEhISYxo0bm759+zo0hn777Tfz4IMPmosuusiEhYWZP/zhDw5/iDTGmG+//db079/f1K1b1zRq1Mg89NBDxmazuTsVj6ioflOmTKnw+Vlbn3vGXLh+H3/8cbmv77y8PPsYtfX5d6Ha/fDDD6Z///4mOjraBAcHmyZNmpjbb7/dfPXVVw5j1NbaGVPxa/d85zfGjand9cP//Pvf/zYtW7Y0ISEhJjY21qSnp5ujR48aY4w5deqUSUlJMY0bNzbBwcGmefPm5r777jP5+fkejrpmlPe+nZaWZowxpri42EyePNnExMQYi8Vi+vbta/bu3eswhr/Oic7WJicnxyQmJpqIiAgTGhpq2rVrZ5588km/+IFFRbWZP39+meunTJliH6Myn1d9lbP1OXjwoLn66qtNVFSUsVgs5pJLLjHjxo0zx44d81xSLnKh2uTl5ZX7OfLjjz+2j+Gv7zmeUtHzNS0tzVxzzTWl7tO5c2cTEhJiWrZs6fA9yVOqmsfTTz9tWrVqZUJDQ01UVJTp06ePWb9+vWeC//9V5u8k11xzjT2nEu+884659NJLTUhIiLnsssvMihUr3Bv4eaqTx5gxY0yzZs1MSEiIiYmJMTfccIP5/PPP3R/871T03cMX9oUxVc/DG/dFec7/Q7Sv7JPzVZSHN+6TW2+91cTFxZmQkBBz8cUXm1tvvdXs37/fvt5X94UvYh73nnncGOZyb3uv8oe5nHncu/ZHWZjHXS/AGGMEAAAAAAAAAAAAAICf8ttrjAMAAAAAAAAAAAAAINEYBwAAAAAAAAAAAAD4ORrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPwajXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPwajXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAACBJuuuuu1S/fn1PhwEAgE9YsGCBAgIC9O2337pszKlTpyogIMBl4wH4HxrjgJ8qmZC3b99+we2MMXrrrbd09dVXKzIyUmFhYerYsaOmT5+ukydPltq+T58+CggIsP+rW7euOnXqpFmzZqm4uLim0gEAoFY5cOCA7r//frVs2VKhoaEKDw9Xr1699MILL+i3336zb1dcXKw333xT/fr1U6NGjRQcHKzo6GilpKTo1VdfldVqdRj393N4YGCg4uPjlZKSog0bNpSKoaioSPHx8QoICNBHH31U0ykDAOAVSr5Ll/yrU6eOLr74Yt1111364YcfPB0eAACoQS+//LICAgKUmJjo6VBKefLJJ7Vs2TJPhwH4vDqeDgCA5xQVFen222/XO++8o6uuukpTp05VWFiY/t//+3+aNm2alixZorVr1yomJsbhfk2aNFFmZqYk6eeff9aiRYs0duxY/fTTT3riiSc8kQoAAH5jxYoV+tOf/iSLxaI777xTHTp00JkzZ7R582aNGzdOu3fv1quvvqrffvtNf/jDH7R69Wr17NlTDz/8sGJiYnTkyBFt3LhRDz74oLZu3ap58+Y5jN+vXz/deeedMsYoLy9PL7/8sq677jqtWLFC/fv3t2+3fv16HTp0SC1atNDChQsd1gEA4O+mT5+uhIQEnT59Wlu2bNGCBQu0efNm7dq1S6GhoZ4ODwAA1ICFCxeqRYsW+uyzz7R//35dcsklHolj0qRJmjBhgsOyJ598Un/84x81ePBgj8QE+Asa40AtNnPmTL3zzjt6+OGH9fe//92+fPjw4brllls0ePBg3XXXXaWOEouIiNCf//xn++0HHnhAbdu21UsvvaTp06crKCjIbTkAAOBP8vLyNHToUDVv3lzr169XXFycfV16err279+vFStWSJLGjh2r1atXa9asWRo9erTDOA899JD27dunrKysUo9x6aWXOszjf/jDH+xnf/l98/vtt99W165dlZaWpkcffVQnT55UvXr1XJ0yAABeqX///urevbsk6S9/+YsaNWqkp59+Wh988IFuueUWD0dXdadPn1ZISIgCAzl5JAAAZcnLy9Onn36q9957T/fff78WLlyoKVOmeCSWOnXqqE4d2ndATeDTMFBL/fbbb/r73/+uSy+91H709+8NHDhQaWlpWrVqlbZs2XLBsUJDQ3XFFVfo+PHjOnz4cE2FDACA35s5c6ZOnDihefPmOTTFS1xyySUaPXq0vv/+e73++uu6/vrrSzXFS7Ru3VoPPvhghY/ZsWNHNWrUSHl5efZlv/32m5YuXaqhQ4fqlltu0W+//ab333+/+okBAODjrrrqKknnLndS4quvvtIf//hHRUVFKTQ0VN27d9cHH3zgcD+bzaZp06apdevWCg0NVcOGDdW7d+9SP16rzFhHjhzRww8/rI4dO6p+/foKDw9X//799Z///Mdhuw0bNiggIECLFy/WpEmTdPHFFyssLEyFhYWSpK1bt+qGG27QRRddpHr16qlTp0564YUXSuX8ww8/aPDgwapfv74aN26shx9+WEVFRdUvIgAAXmzhwoW66KKLNGDAAP3xj3/UwoULS22ze/duXXfddapbt66aNGmixx9/vMzLi7Zo0UI33nijNmzYoO7du6tu3brq2LGj/TJm7733njp27KjQ0FB169ZNO3bscLj/+dcYDwgI0MmTJ/XGG2/YL/dy1113uTR/oLagMQ7UUps3b9avv/6q22+/vdxfn915552SpOXLl1c43rfffquAgABFRka6MkwAAGqVDz/8UC1btlTPnj0vuN1HH32koqIihyO/q+vXX3/Vr7/+qoYNG9qXffDBBzpx4oSGDh2q2NhY9enTp8w/CgAAUFt8++23kqSLLrpI0rk/jPfo0UNffvmlJkyYoGeffVb16tXT4MGDtXTpUvv9pk6dqmnTpunaa6/VP/7xD/3tb39Ts2bN9Pnnn9u3qexY33zzjZYtW6Ybb7xRzz33nMaNG6edO3fqmmuu0Y8//lgq5hkzZmjFihV6+OGH9eSTTyokJERZWVm6+uqrtWfPHo0ePVrPPvusrr322lLf+4uKipSamqqGDRvqmWee0TXXXKNnn31Wr776qivLCgCA11i4cKFuvvlmhYSE6LbbbtO+ffu0bds2+/r8/Hxde+21ys3N1YQJEzRmzBi9+eabZf64TJL279+v22+/XQMHDlRmZqZ+/fVXDRw4UAsXLtTYsWP15z//WdOmTdOBAwd0yy23lNlgL/HWW2/JYrHoqquu0ltvvaW33npL999/v8trANQGnIsBqKX27NkjSbr88svL3aZk3ZdffumwvKioSD///LMk6ZdfftG8efO0fft2DRgwQHXr1q2hiAEA8G+FhYX64YcfNGjQoAq3/eqrryRJHTp0cFh+5swZ+9Fg0rlflf++4S2dO5Xqzz//bL/G+KOPPqqioiL96U9/sm/z9ttvq2fPnmratKkkaejQoXrwwQf1008/qXHjxtXOEQAAX3Hs2DH9/PPPOn36tLZu3app06bJYrHoxhtvlCSNHj1azZo107Zt22SxWCRJDz74oHr37q3x48frD3/4gyRpxYoVuuGGGy7YUK7sWB07dtTXX3/tcDr0O+64Q23bttW8efM0efJkh3FPnz6t7du327+nFxUV6f7771dcXJxyc3MdfthujCl131tvvdU+5gMPPKCuXbtq3rx5GjFiRJXrCQCAN8vJydFXX32ll156SZLUu3dvNWnSRAsXLtQVV1whSXr66af1008/aevWrbryyislSWlpaWrdunWZY+7du1effvqpkpKSJEnt27dXamqq7rvvPn311Vdq1qyZpHM/urv//vu1adMm9enTp8yx/vznP+uBBx5Qy5YtXfIDeaA244hxoJY6fvy4JKlBgwblblOy7vd/YJfO/TG+cePGaty4sdq2bau///3vuummm7RgwYIaixcAAH9XMt9eaG4+f9v69es7LF+5cqV9jm7cuLGaN29e6r7z5s1T48aNFR0drcTERH3yySfKyMjQmDFjJJ370dvq1at122232e8zZMgQBQQE6J133qluegAA+JTk5GQ1btxYTZs21R//+EfVq1dPH3zwgZo0aaIjR45o/fr1uuWWW3T8+HH9/PPP+vnnn/XLL78oNTVV+/bt0w8//CBJioyM1O7du7Vv374yH6cqY1ksFntTvKioSL/88ovq16+vNm3aOByBXiItLc3hx+s7duxQXl6exowZU+psb78/XWuJBx54wOH2VVddpW+++abyRQQAwEcsXLhQMTExuvbaayWdmxdvvfVWLV682H4ZkZUrV6pHjx72prgkNW7cWMOGDStzzPbt29ub4pKUmJgoSbruuuvsTfHfL2eOBdyDxjhQS5X80b2kQV6W8prnLVq0UFZWllavXq2XX35ZF198sX766SeFhobWXMAAAPi58PBwSReem0uUzM0nTpxwWN6rVy9lZWUpKytLKSkpZd530KBBysrK0tq1a7V161b9/PPPevbZZ+1/aP/3v/8tm82mLl26aP/+/dq/f7+OHDmixMRETqcOAKg1Zs+eraysLL377ru64YYb9PPPP9uP5t6/f7+MMZo8ebLDD9IaN26sKVOmSJIOHz4sSZo+fbqOHj2qSy+9VB07dtS4ceP0xRdf2B+nKmMVFxfr+eefV+vWrWWxWNSoUSM1btxYX3zxhY4dO1Yqh4SEBIfbJddHP/+MM2UJDQ0tdZaYiy66SL/++mul6gcAgK8oKirS4sWLde211yovL8/+PTgxMVEFBQVat26dJOm7774r8+jwNm3alDnu75vfkhQRESFJ9jOznb+cORZwD06lDtRS7dq1kyR98cUXGjx4cJnblHxZb9++vcPyevXqKTk52X67V69e6tq1qx599FG9+OKLNRMwAAB+Ljw8XPHx8dq1a1eF27Zt21aStGvXLofLojRu3Ng+R7/99ttl3rdJkyYO8/j5SprfvXr1KnP9N998o5YtW1YYIwAAvuzKK69U9+7dJUmDBw9W7969dfvtt2vv3r32a4A+/PDDSk1NLfP+l1xyiSTp6quv1oEDB/T+++9rzZo1ev311/X8889r7ty5+stf/lKlsZ588klNnjxZ99xzj2bMmKGoqCgFBgZqzJgxZV6X1JlLnQUFBVX7vgAA+JL169fr0KFDWrx4sRYvXlxq/cKFC8v94fmFlDeXlrf8/MuaAKgZNMaBWqp3796KjIzUokWL9Le//a3MCfnNN9+UJPs11MrTqVMn/fnPf9Yrr7yihx9+uNSv4QAAQOXceOONevXVV5Wdne1wyrXz9e/fX0FBQVq4cGG5p22rjry8PH366acaOXKkrrnmGod1xcXFuuOOO7Ro0SJNmjTJZY8JAIC3CwoKUmZmpq699lr94x//0D333CNJCg4OvuCPzUpERUXp7rvv1t13360TJ07o6quv1tSpU/WXv/zF/mOzyoz17rvv6tprr9W8efMclh89elSNGjWqMI5WrVpJOvfDusrEDQBAbbBw4UJFR0dr9uzZpda99957Wrp0qebOnavmzZuXeWmUvXv3uiPMMi97AqDqOJU6UEuFhYXp4Ycf1t69e/W3v/2t1PoVK1ZowYIFSk1NVY8ePSoc75FHHpHNZtNzzz1XE+ECAFArPPLII6pXr57+8pe/qKCgoNT6AwcO6IUXXlCzZs10zz336KOPPtI//vGPMseqzq/NS44Wf+SRR/THP/7R4d8tt9yia665htOpAwBqpT59+ujKK6/UrFmzFB4erj59+uiVV17RoUOHSm37008/2f//l19+cVhXv359XXLJJbJarZKk6OjoSo8VFBRUan5fsmSJ/RrkFenatasSEhI0a9YsHT161GEdR6kBAGqj3377Te+9955uvPHGUt+B//jHP2rkyJE6fvy4PvjgA91www3asmWLPvvsM/v9f/rpJ7d9R65Xr16p+RtA1XHEOODn/vnPf2rVqlWllo8ePVoTJkzQjh079PTTTys7O1tDhgxR3bp1tXnzZr399ttq166d3njjjUo9Tvv27XXDDTfo9ddf1+TJk9WwYUNXpwIAgN9r1aqVFi1apFtvvVXt2rXTnXfeqQ4dOujMmTP69NNPtWTJEt11112SpFmzZikvL0+jRo3S4sWLNXDgQEVHR+vnn3/WJ598og8//LDca52VZ+HChercuXOpa56VuOmmmzRq1Ch9/vnn6tq1q7PpAgDgU8aNG6c//elPWrBggWbPnq3evXurY8eOuu+++9SyZUsVFBQoOztb//3vf/Wf//xH0rnvyn369FG3bt0UFRWl7du3691339XIkSPt41Z2rBtvvFHTp0/X3XffrZ49e2rnzp1auHBhpS9xEhgYqDlz5mjgwIHq3Lmz7r77bsXFxemrr77S7t27tXr1atcXDQAAL/bBBx/o+PHjuummm8pc36NHDzVu3FgLFy7UK6+8orfeekvXX3+9Ro8erXr16unVV19V8+bN7ZckrUndunXT2rVr9dxzzyk+Pl4JCQlKTEys8ccF/A2NccDPzZkzp8zld911lxo0aKB33nlHb775pr2hfebMGbVq1UpTpkzRQw89pHr16lX6scaNG6cVK1bopZde0tSpU12UAQAAtctNN92kL774Qn//+9/1/vvva86cObJYLOrUqZOeffZZ3XfffZLOnf1l1apVeuutt/TWW29p5syZKiwsVGRkpC6//HK9/PLLSktLq/Tjfv755/rqq680efLkcrcZOHCgRo0apbfffpvGOACg1rn55pvVqlUrPfPMM7rvvvu0fft2TZs2TQsWLNAvv/yi6OhodenSRY899pj9Pn/961/1wQcfaM2aNbJarWrevLkef/xxjRs3zr5N+/btKzXWo48+qpMnT2rRokX697//ra5du2rFihWaMGFCpXNITU3Vxx9/rGnTpunZZ59VcXGxWrVqZf98AQBAbbJw4UKFhoaqX79+Za4PDAzUgAEDtHDhQoWEhOjjjz/WqFGj9NRTT6lhw4Z64IEHFB8fr3vvvbfGY33uuec0fPhwTZo0Sb/99pvS0tJojAPVEGA4VxIAAAAAAAAAAAAAwI9xjXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODX6ng6gOooLi7Wjz/+qAYNGiggIMDT4QAA4DRjjI4fP674+HgFBvr379aYxwEA/oi5HAAA38U8DgCA76rKPO6TjfEff/xRTZs29XQYAAC43Pfff68mTZp4OowaxTwOAPBnzOUAAPgu5nEAAHxXZeZxn2yMN2jQQNK5BMPDw50ez2azac2aNUpJSVFwcLDT43kKeXgX8vAu5OE9/CEHyfV5FBYWqmnTpvY5zp+5eh53F3957lYX+ZM/+ZM/+V84f+by6qvtzzFnUDvnUD/nUD/nUD/n8J28+pjHvQv1qz5q5xzq5xzq5xxPzuM+2RgvOcVLeHi4yybvsLAwhYeH+/QTmDy8C3l4F/LwHv6Qg1RzedSG05i5eh53F3957lYX+ZM/+ZM/+Vcuf+byqqvtzzFnUDvnUD/nUD/nUD/n8J28+pjHvQv1qz5q5xzq5xzq5xxPzuP+fcEUAAAAAAAAAAAAAECtR2McAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPxalRvjmzZt0sCBAxUfH6+AgAAtW7bMYb0xRo899pji4uJUt25dJScna9++fQ7bHDlyRMOGDVN4eLgiIyN177336sSJE04lAgAAAAAAAAAAAABAWarcGD958qQuv/xyzZ49u8z1M2fO1Isvvqi5c+dq69atqlevnlJTU3X69Gn7NsOGDdPu3buVlZWl5cuXa9OmTRo+fHj1swAAAAAAAAAAAAAAoBx1qnqH/v37q3///mWuM8Zo1qxZmjRpkgYNGiRJevPNNxUTE6Nly5Zp6NCh+vLLL7Vq1Spt27ZN3bt3lyS99NJLuuGGG/TMM88oPj7eiXQAAAAAAAAAAAAAAHDk0muM5+XlKT8/X8nJyfZlERERSkxMVHZ2tiQpOztbkZGR9qa4JCUnJyswMFBbt251ZTgAAAAAAAAAAAAAAFT9iPELyc/PlyTFxMQ4LI+JibGvy8/PV3R0tGMQdeooKirKvs35rFarrFar/XZhYaEkyWazyWazOR13yRiuGMuTyMO7kId3IQ/v4Q85SK7Pw9frAQAAAAAAAACAN3NpY7ymZGZmatq0aaWWr1mzRmFhYS57nKysLJeN5Unk4V3Iw7uQh/fwhxwk1+Vx6tQpl4wDAAAAAAAAAABKc2ljPDY2VpJUUFCguLg4+/KCggJ17tzZvs3hw4cd7nf27FkdOXLEfv/zTZw4URkZGfbbhYWFatq0qVJSUhQeHu503DabTVlZWerXr5+Cg4OdHs9TyMO7kId3IQ/v4Q85SK7Po+RsKAAAAAAAAAAAwPVc2hhPSEhQbGys1q1bZ2+EFxYWauvWrRoxYoQkKSkpSUePHlVOTo66desmSVq/fr2Ki4uVmJhY5rgWi0UWi6XU8uDgYJc2VVw9nqeQh3fxlzy6PLFe1qIAT4dRpm+fGlDpbf1lf/hDHv6Qg+S6PPyhFgC8U4sJK5wewxJkNPNKqcPU1S7/PFCVeRwAAADu44rPkTWl5PMpAAAoG/N42arcGD9x4oT2799vv52Xl6fc3FxFRUWpWbNmGjNmjB5//HG1bt1aCQkJmjx5suLj4zV48GBJUrt27XT99dfrvvvu09y5c2Wz2TRy5EgNHTpU8fHxLksMAAAAAAAAAAAAAACpGo3x7du369prr7XfLjnFeVpamhYsWKBHHnlEJ0+e1PDhw3X06FH17t1bq1atUmhoqP0+Cxcu1MiRI9W3b18FBgZqyJAhevHFF12QDgAAAAAAAAAAAAAAjqrcGO/Tp4+MMeWuDwgI0PTp0zV9+vRyt4mKitKiRYuq+tAAAAAAAAAAAAAAAFRZoKcDAAAAAAAAAAAAAACgJtEYBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPwajXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4tTqeDgAA/F2LCStcNpYlyGjmlVKHqatlLQpwerxvnxrggqgAAAAAAAAAAAC8G0eMAwAAAAAAAAAAAAD8Go1xAAAAAAAAAAAAAIBfozEOAAAAAAAAAAAAAPBrNMYBAAAAAAAAAAAAAH6NxjgAAAAAAAAAAAAAwK/RGAcAAAAAAAAAAAAA+DUa4wAAAAAAAAAAAAAAv0ZjHAAAAAAAAAAAAADg12iMAwAAAAAAAAAAAAD8Go1xAAAAAAB8QGZmpq644go1aNBA0dHRGjx4sPbu3euwTZ8+fRQQEODw74EHHnDY5uDBgxowYIDCwsIUHR2tcePG6ezZs+5MBQAAAAAAt6vj6QAAAAAAAEDFNm7cqPT0dF1xxRU6e/asHn30UaWkpGjPnj2qV6+efbv77rtP06dPt98OCwuz/39RUZEGDBig2NhYffrppzp06JDuvPNOBQcH68knn3RrPgAAAAAAuBONcQAAAAAAfMCqVascbi9YsEDR0dHKycnR1VdfbV8eFham2NjYMsdYs2aN9uzZo7Vr1yomJkadO3fWjBkzNH78eE2dOlUhISE1mgMAAAAAAJ7CqdQBAAAAAPBBx44dkyRFRUU5LF+4cKEaNWqkDh06aOLEiTp16pR9XXZ2tjp27KiYmBj7stTUVBUWFmr37t3uCRwAAAAAAA/giHEAAAAAAHxMcXGxxowZo169eqlDhw725bfffruaN2+u+Ph4ffHFFxo/frz27t2r9957T5KUn5/v0BSXZL+dn59f5mNZrVZZrVb77cLCQkmSzWaTzWZzOpeSMVwxVm1D7ZxD/ZxD/ZzjC/WzBBlPh1AuS+C52FxVP2/eDwAAwHVojAMAAAAA4GPS09O1a9cubd682WH58OHD7f/fsWNHxcXFqW/fvjpw4IBatWpVrcfKzMzUtGnTSi1fs2aNw/XLnZWVleWysWobaucc6ucc6uccb67fzCs9HUHFXFW/359dBQAA+C8a4wAAAAAA+JCRI0dq+fLl2rRpk5o0aXLBbRMTEyVJ+/fvV6tWrRQbG6vPPvvMYZuCggJJKve65BMnTlRGRob9dmFhoZo2baqUlBSFh4c7k4qkc0fpZWVlqV+/fgoODnZ6vNqE2jmH+jmH+jnHF+rXYepqT4dQLkug0YzuxS6rX8nZUAAAgH+jMQ4AAAAAgA8wxmjUqFFaunSpNmzYoISEhArvk5ubK0mKi4uTJCUlJemJJ57Q4cOHFR0dLenc0Xbh4eFq3759mWNYLBZZLJZSy4ODg13azHH1eLUJtXMO9XMO9XOON9fPWhTg6RAq5Kr6ees+AAAArhXo6QAAAAAAAEDF0tPT9fbbb2vRokVq0KCB8vPzlZ+fr99++02SdODAAc2YMUM5OTn69ttv9cEHH+jOO+/U1VdfrU6dOkmSUlJS1L59e91xxx36z3/+o9WrV2vSpElKT08vs/kNAABc76mnnlJAQIDGjBljX3b69Gmlp6erYcOGql+/voYMGWI/q0uJgwcPasCAAQoLC1N0dLTGjRuns2fPujl6AAB8F41xAAAAAAB8wJw5c3Ts2DH16dNHcXFx9n///ve/JUkhISFau3atUlJS1LZtWz300EMaMmSIPvzwQ/sYQUFBWr58uYKCgpSUlKQ///nPuvPOOzV9+nRPpQUAQK2ybds2vfLKK/YfrZUYO3asPvzwQy1ZskQbN27Ujz/+qJtvvtm+vqioSAMGDNCZM2f06aef6o033tCCBQv02GOPuTsFAAB8FqdSBwAAAIBytJiwQpYgo5lXnrvOpredUvTbpwZ4OgS4kTHmguubNm2qjRs3VjhO8+bNtXLlSleFBQAAKunEiRMaNmyYXnvtNT3++OP25ceOHdO8efO0aNEiXXfddZKk+fPnq127dtqyZYt69OihNWvWaM+ePVq7dq1iYmLUuXNnzZgxQ+PHj9fUqVMVEhLiqbQAAPAZNMYB+LwWE1ZUuI03/0EbAAAAAAAA/i89PV0DBgxQcnKyQ2M8JydHNptNycnJ9mVt27ZVs2bNlJ2drR49eig7O1sdO3ZUTEyMfZvU1FSNGDFCu3fvVpcuXdyaCwAAvojGOAAAAAAAAAAANWjx4sX6/PPPtW3btlLr8vPzFRISosjISIflMTExys/Pt2/z+6Z4yfqSdeWxWq2yWq3224WFhZIkm80mm81WrVx+r2QMV4xVG1G/6qN2zqF+zvGF+lmCLnzGMU+yBJ6LzVX1q8o4NMYBAAAAAAAAAKgh33//vUaPHq2srCyFhoa69bEzMzM1bdq0UsvXrFmjsLAwlz1OVlaWy8aqjahf9VE751A/53hz/WZe6ekIKuaq+p06darS29IYBwAAdkVFRZo6darefvtt5efnKz4+XnfddZcmTZqkgIBzlyEwxmjKlCl67bXXdPToUfXq1Utz5sxR69atPRw9AAAAAADeJycnR4cPH1bXrl3ty4qKirRp0yb94x//0OrVq3XmzBkdPXrU4ajxgoICxcbGSpJiY2P12WefOYxbUFBgX1eeiRMnKiMjw367sLBQTZs2VUpKisLDw53OzWazKSsrS/369VNwcLDT49U21K/6qJ1zqJ9zfKF+Haau9nQI5bIEGs3oXuyy+pWcDaUyaIwDAAC7p59+WnPmzNEbb7yhyy67TNu3b9fdd9+tiIgI/fWvf5UkzZw5Uy+++KLeeOMNJSQkaPLkyUpNTdWePXvc/st3AAAAAAC8Xd++fbVz506HZXfffbfatm2r8ePHq2nTpgoODta6des0ZMgQSdLevXt18OBBJSUlSZKSkpL0xBNP6PDhw4qOjpZ07ki78PBwtW/fvtzHtlgsslgspZYHBwe7tJnj6vFqG+pXfdTOOdTPOd5cP2tRgKdDqJCr6leVMWiMAwAAu08//VSDBg3SgAEDJEktWrTQv/71L/uv0o0xmjVrliZNmqRBgwZJkt58803FxMRo2bJlGjp0qMdiBwAAAADAGzVo0EAdOnRwWFavXj01bNjQvvzee+9VRkaGoqKiFB4erlGjRikpKUk9evSQJKWkpKh9+/a64447NHPmTOXn52vSpElKT08vs/ENAABKC/R0AAAAwHv07NlT69at09dffy1J+s9//qPNmzerf//+kqS8vDzl5+crOTnZfp+IiAglJiYqOzvbIzEDAAAAAODrnn/+ed14440aMmSIrr76asXGxuq9996zrw8KCtLy5csVFBSkpKQk/fnPf9add96p6dOnezBqAAB8C0eMAwAAuwkTJqiwsFBt27ZVUFCQioqK9MQTT2jYsGGSpPz8fElSTEyMw/1iYmLs685ntVpltVrtt0uu+WKz2WSz2WoijRpREqsvxexK5O+7+VuCjPNjBBqH/7qSt9fUEmRqNH9nuaN+vvz8d4XK5l9b6wMAAKpnw4YNDrdDQ0M1e/ZszZ49u9z7NG/eXCtXrqzhyAAA8F80xgEAgN0777yjhQsXatGiRbrsssuUm5urMWPGKD4+XmlpadUaMzMzU9OmTSu1fM2aNQoLC3M2ZLfLysrydAgeRf6+l//MK1031ozuxa4b7P/n7X/Y+339aiJ/Z7mzfr74/HelivI/deqUmyIBAAAAAADVQWMcAADYjRs3ThMmTLBfK7xjx4767rvvlJmZqbS0NMXGxkqSCgoKFBcXZ79fQUGBOnfuXOaYEydOVEZGhv12YWGhmjZtqpSUFIWHh9dcMi5ms9mUlZWlfv36KTg42NPhuB35l59/h6mrPRSV+1gCjWZ0L9bk7YGyFge4dOxdU1NdOp6rdZi6ukbzd5Y76sfrv3L5l5wRBQAAAAAAeCca4wAAwO7UqVMKDAx0WBYUFKTi4nNHSSYkJCg2Nlbr1q2zN8ILCwu1detWjRgxoswxLRaLLBZLqeXBwcE+2WDx1bhdhfxL528t8q5GaU2yFge4PF9vfz79Pt+ayN9Z7qwfr/8L51+bawMAAAAAgC+gMQ4AAOwGDhyoJ554Qs2aNdNll12mHTt26LnnntM999wjSQoICNCYMWP0+OOPq3Xr1kpISNDkyZMVHx+vwYMHezZ4AAAAAAAAAADKEVjxJlVTVFSkyZMnKyEhQXXr1lWrVq00Y8YMGWPs2xhj9NhjjykuLk5169ZVcnKy9u3b5+pQAABAFb300kv64x//qAcffFDt2rXTww8/rPvvv18zZsywb/PII49o1KhRGj58uK644gqdOHFCq1atUmhoqAcjBwAAAAAAAACgfC4/Yvzpp5/WnDlz9MYbb+iyyy7T9u3bdffddysiIkJ//etfJUkzZ87Uiy++qDfeeMN+pFlqaqr27NnDH9UBAPCgBg0aaNasWZo1a1a52wQEBGj69OmaPn26+wIDAAAAAAAAAMAJLm+Mf/rppxo0aJAGDBggSWrRooX+9a9/6bPPPpN07mjxWbNmadKkSRo0aJAk6c0331RMTIyWLVumoUOHujokAAAAAAAAAAAAAEAt5vJTqffs2VPr1q3T119/LUn6z3/+o82bN6t///6SpLy8POXn5ys5Odl+n4iICCUmJio7O9vV4QAAAAAAAAAAAAAAajmXHzE+YcIEFRYWqm3btgoKClJRUZGeeOIJDRs2TJKUn58vSYqJiXG4X0xMjH3d+axWq6xWq/12YWGhJMlms8lmszkdc8kYrhjLk8jDu/hbHpZA4+FInFMSP3k48sTz099eG67Kw9frAQAAAAAAAACAN3N5Y/ydd97RwoULtWjRIl122WXKzc3VmDFjFB8fr7S0tGqNmZmZqWnTppVavmbNGoWFhTkbsl1WVpbLxvIk8vAu/pLHjO7Fng7BJcjD0cqVK10yTnX4y2vDVXmcOnXKJeMAAAAAAAAAAIDSXN4YHzdunCZMmGC/VnjHjh313XffKTMzU2lpaYqNjZUkFRQUKC4uzn6/goICde7cucwxJ06cqIyMDPvtwsJCNW3aVCkpKQoPD3c6ZpvNpqysLPXr10/BwcFOj+cp5OFd/C2PydsDZS0O8HQ41WYJNJrRvZg8zrNraqoLoqoaf3ttuCqPkrOhAAAAAAAAAAAA13N5Y/zUqVMKDHS8dHlQUJCKi88d3ZiQkKDY2FitW7fO3ggvLCzU1q1bNWLEiDLHtFgsslgspZYHBwe7tKni6vE8hTy8i7/kYS0OkLXIdxvKJcjDkSefm/7y2nBVHv5QCwAAAAAAAAAAvJXLG+MDBw7UE088oWbNmumyyy7Tjh079Nxzz+mee+6RJAUEBGjMmDF6/PHH1bp1ayUkJGjy5MmKj4/X4MGDXR0OAAAAAAAAAAAAAKCWc3lj/KWXXtLkyZP14IMP6vDhw4qPj9f999+vxx57zL7NI488opMnT2r48OE6evSoevfurVWrVik0NNTV4QAAAAAAAAAAAAAAajmXN8YbNGigWbNmadasWeVuExAQoOnTp2v69OmufngAAAAAAAAAAAAAABy4vDEOAAAAAABQVR2mrpa1KMDTYZTy7VMDPB0CAAAAAMAFAj0dAAAAAAAAAAAAAAAANYnGOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4Na4xDgAAAMBjWkxY4ekQAAAAAAAAUAtwxDgAAAAAAAAAAAAAwK/RGAcAAAAAAAAAAAAA+DUa4wAAAAAAAAAAAAAAv0ZjHAAAAAAAAAAAAADg12iMAwAAAAAAAAAAAAD8Go1xAAAAAAAAAAAAAIBfozEOAAAAAAAAAAAAAPBrNMYBAAAAAAAAAAAAAH6NxjgAAAAAAAAAAAAAwK/RGAcAAAAAwAdkZmbqiiuuUIMGDRQdHa3Bgwdr7969DtucPn1a6enpatiwoerXr68hQ4aooKDAYZuDBw9qwIABCgsLU3R0tMaNG6ezZ8+6MxUAAAAAANyOxjgAAAAAAD5g48aNSk9P15YtW5SVlSWbzaaUlBSdPHnSvs3YsWP14YcfasmSJdq4caN+/PFH3Xzzzfb1RUVFGjBggM6cOaNPP/1Ub7zxhhYsWKDHHnvMEykBAAAAAOA2dTwdAAAAAAAAqNiqVascbi9YsEDR0dHKycnR1VdfrWPHjmnevHlatGiRrrvuOknS/Pnz1a5dO23ZskU9evTQmjVrtGfPHq1du1YxMTHq3LmzZsyYofHjx2vq1KkKCQnxRGoAAAAAANQ4jhgHAAAAAMAHHTt2TJIUFRUlScrJyZHNZlNycrJ9m7Zt26pZs2bKzs6WJGVnZ6tjx46KiYmxb5OamqrCwkLt3r3bjdEDAAAAAOBeHDEOAAAAAICPKS4u1pgxY9SrVy916NBBkpSfn6+QkBBFRkY6bBsTE6P8/Hz7Nr9vipesL1lXFqvVKqvVar9dWFgoSbLZbLLZbE7nUjKGJdA4PVZNcEWONaUkNm+O0ZtRP+dQP+f4Qv0sQd75viz9b85wVf28eT8AAADXoTEOAAAAAICPSU9P165du7R58+Yaf6zMzExNmzat1PI1a9YoLCzMZY8zo3uxy8ZypZUrV3o6hAplZWV5OgSfRv2cQ/2c4831m3mlpyOomKvqd+rUKZeMAwAAvBuNcQAAAAAAfMjIkSO1fPlybdq0SU2aNLEvj42N1ZkzZ3T06FGHo8YLCgoUGxtr3+azzz5zGK+goMC+riwTJ05URkaG/XZhYaGaNm2qlJQUhYeHO52PzWZTVlaWJm8PlLU4wOnxXG3X1FRPh1Cuktr169dPwcHBng7H51A/51A/5/hC/TpMXe3pEMplCTSa0b3YZfUrORsKAADwbzTGAQAAAADwAcYYjRo1SkuXLtWGDRuUkJDgsL5bt24KDg7WunXrNGTIEEnS3r17dfDgQSUlJUmSkpKS9MQTT+jw4cOKjo6WdO5ou/DwcLVv377Mx7VYLLJYLKWWBwcHu7SZYy0OkLXI+xrj3tqw+j1X74vahvo5h/o5x5vr543vyedzVf28dR8AAADXojEOAAAAAIAPSE9P16JFi/T++++rQYMG9muCR0REqG7duoqIiNC9996rjIwMRUVFKTw8XKNGjVJSUpJ69OghSUpJSVH79u11xx13aObMmcrPz9ekSZOUnp5eZvMbAAAAAAB/QWMcAAAAAAAfMGfOHElSnz59HJbPnz9fd911lyTp+eefV2BgoIYMGSKr1arU1FS9/PLL9m2DgoK0fPlyjRgxQklJSapXr57S0tI0ffp0d6UBAAAAAIBH0BgHAAAAAMAHGGMq3CY0NFSzZ8/W7Nmzy92mefPmWrlypStDAwAAAADA6wV6OgAAAAAAAAAAAAAAAGoSjXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAIAaNGfOHHXq1Enh4eEKDw9XUlKSPvroI/v606dPKz09XQ0bNlT9+vU1ZMgQFRQUOIxx8OBBDRgwQGFhYYqOjta4ceN09uxZd6cCAIDPojEOAAAAAAAAAEANatKkiZ566inl5ORo+/btuu666zRo0CDt3r1bkjR27Fh9+OGHWrJkiTZu3Kgff/xRN998s/3+RUVFGjBggM6cOaNPP/1Ub7zxhhYsWKDHHnvMUykBAOBz6ng6AAAAAAAAAAAA/NnAgQMdbj/xxBOaM2eOtmzZoiZNmmjevHlatGiRrrvuOknS/Pnz1a5dO23ZskU9evTQmjVrtGfPHq1du1YxMTHq3LmzZsyYofHjx2vq1KkKCQnxRFoAAPgUGuMAAADwai0mrPB0CLIEGc28UuowdbWsRQGeDgcAAACADysqKtKSJUt08uRJJSUlKScnRzabTcnJyfZt2rZtq2bNmik7O1s9evRQdna2OnbsqJiYGPs2qampGjFihHbv3q0uXbp4IhUAAHwKjXEAAODghx9+0Pjx4/XRRx/p1KlTuuSSSzR//nx1795dkmSM0ZQpU/Taa6/p6NGj6tWrl+bMmaPWrVt7OHIAAAAAALzXzp07lZSUpNOnT6t+/fpaunSp2rdvr9zcXIWEhCgyMtJh+5iYGOXn50uS8vPzHZriJetL1pXHarXKarXabxcWFkqSbDabbDab0zmVjOGKsWoj6ld91M451M85vlA/S5DxdAjlsgSei81V9avKODTGAQCA3a+//qpevXrp2muv1UcffaTGjRtr3759uuiii+zbzJw5Uy+++KLeeOMNJSQkaPLkyUpNTdWePXsUGhrqwegBAAAAAPBebdq0UW5uro4dO6Z3331XaWlp2rhxY40+ZmZmpqZNm1Zq+Zo1axQWFuayx8nKynLZWLUR9as+aucc6uccb67fzCs9HUHFXFW/U6dOVXpbGuMAAMDu6aefVtOmTTV//nz7soSEBPv/G2M0a9YsTZo0SYMGDZIkvfnmm4qJidGyZcs0dOhQt8cMAAAAAIAvCAkJ0SWXXCJJ6tatm7Zt26YXXnhBt956q86cOaOjR486HDVeUFCg2NhYSVJsbKw+++wzh/EKCgrs68ozceJEZWRk2G8XFhaqadOmSklJUXh4uNM52Ww2ZWVlqV+/fgoODnZ6vNqG+lUftXMO9XOOL9Svw9TVng6hXJZAoxndi11Wv5KzoVQGjXEAAGD3wQcfKDU1VX/605+0ceNGXXzxxXrwwQd13333SZLy8vKUn5/vcN2ziIgIJSYmKjs7m8Y4AAAAAACVVFxcLKvVqm7duik4OFjr1q3TkCFDJEl79+7VwYMHlZSUJElKSkrSE088ocOHDys6OlrSuSPtwsPD1b59+3Ifw2KxyGKxlFoeHBzs0maOq8erbahf9VE751A/53hz/axFAZ4OoUKuql9VxqAxDgC1WIsJK9z+mJYgo5lXnvvFWkWT87dPDXBTVCjxzTffaM6cOcrIyNCjjz6qbdu26a9//atCQkKUlpZmv25ZWdc1K++aZjV9PTN38YVrB9UkT+bvDddEKrn2Ucl/axvy99783fGa5P2vcvnX1voAAIDKmThxovr3769mzZrp+PHjWrRokTZs2KDVq1crIiJC9957rzIyMhQVFaXw8HCNGjVKSUlJ6tGjhyQpJSVF7du31x133KGZM2cqPz9fkyZNUnp6epmNbwAAUBqNcQAAYFdcXKzu3bvrySeflCR16dJFu3bt0ty5c5WWllatMd11PTN38eZrB7mDJ/L3pmsizehe7OkQPIr8vS//lStXuu2xeP+7cP5VuaYZAACofQ4fPqw777xThw4dUkREhDp16qTVq1erX79+kqTnn39egYGBGjJkiKxWq1JTU/Xyyy/b7x8UFKTly5drxIgRSkpKUr169ZSWlqbp06d7KiUAAHwOjXEAAGAXFxdX6hRs7dq10//93/9J+t91ywoKChQXF2ffpqCgQJ07dy5zzJq+npm7+MK1g2qSJ/P3hmsilVz7aPL2QFmLvf9UVK5G/t6b/66pqTX+GLz/VS7/qlzTDAAA1D7z5s274PrQ0FDNnj1bs2fPLneb5s2bu/WHkQAA+JsaaYz/8MMPGj9+vD766COdOnVKl1xyiebPn6/u3btLkowxmjJlil577TUdPXpUvXr10pw5c9S6deuaCAcAAFRSr169tHfvXodlX3/9tZo3by5JSkhIUGxsrNatW2dvhBcWFmrr1q0aMWJEmWO663pm7uKrcbuKJ/L3pmsiWYsDvCoedyN/78vfna9H3v8unH9trg0AAAAAAL4g0NUD/vrrr+rVq5eCg4P10Ucfac+ePXr22Wd10UUX2beZOXOmXnzxRc2dO1dbt25VvXr1lJqaqtOnT7s6HAAAUAVjx47Vli1b9OSTT2r//v1atGiRXn31VaWnp0uSAgICNGbMGD3++OP64IMPtHPnTt15552Kj4/X4MGDPRs8AAAAAAAAAADlcPkR408//bSaNm2q+fPn25clJCTY/98Yo1mzZmnSpEkaNGiQJOnNN99UTEyMli1bpqFDh7o6JAAAUElXXHGFli5dqokTJ2r69OlKSEjQrFmzNGzYMPs2jzzyiE6ePKnhw4fr6NGj6t27t1atWqXQ0FAPRg4AAAAAAAAAQPlcfsT4Bx98oO7du+tPf/qToqOj1aVLF7322mv29Xl5ecrPz1dycrJ9WUREhBITE5Wdne3qcAAAQBXdeOON2rlzp06fPq0vv/xS9913n8P6gIAATZ8+Xfn5+Tp9+rTWrl2rSy+91EPRAgAAAAAAAABQMZcfMf7NN99ozpw5ysjI0KOPPqpt27bpr3/9q0JCQpSWlqb8/HxJUkxMjMP9YmJi7OvOZ7VaZbVa7bcLCwslSTabTTabzemYS8ZwxVieRB7exd/ysAQaD0finJL4ycPzqpKDN79+XP0a9+ZcAQAAAAAAAADwdS5vjBcXF6t79+568sknJUldunTRrl27NHfuXKWlpVVrzMzMTE2bNq3U8jVr1igsLMypeH8vKyvLZWN5Enl4F3/JY0b3Yk+H4BLk4T0qk8PKlSvdEIlzXPUaP3XqlEvGAQAAAAAAAAAApbm8MR4XF6f27ds7LGvXrp3+7//+T5IUGxsrSSooKFBcXJx9m4KCAnXu3LnMMSdOnKiMjAz77cLCQjVt2lQpKSkKDw93OmabzaasrCz169dPwcHBTo/nKeThXfwtj8nbA2UtDvB0ONVmCTSa0b2YPLxAVXLYNTXVTVFVnatf4yVnQwEAAAAAAAAAAK7n8sZ4r169tHfvXodlX3/9tZo3by5JSkhIUGxsrNatW2dvhBcWFmrr1q0aMWJEmWNaLBZZLJZSy4ODg13acHT1eJ5CHt7FX/KwFgfIWuSbjdjfIw/vUZkcfOG146rXuC/kCgAAAAAAAACAr3J5Y3zs2LHq2bOnnnzySd1yyy367LPP9Oqrr+rVV1+VJAUEBGjMmDF6/PHH1bp1ayUkJGjy5MmKj4/X4MGDXR0OAAAAAAAAAAAAAKCWc3lj/IorrtDSpUs1ceJETZ8+XQkJCZo1a5aGDRtm3+aRRx7RyZMnNXz4cB09elS9e/fWqlWrFBoa6upwAAAAAAAAAAAAAAC1nMsb45J044036sYbbyx3fUBAgKZPn67p06fXxMMDAAAAAAAAAAAAAGAX6OkAAAAAAAAAAAAAAACoSTTGAQAAAAAAAAAAAAB+jcY4AAAAAAAAAAAAAMCv0RgHAAAAAAAAAAAAAPg1GuMAAAAAAAAAAAAAAL9GYxwAAAAAAAAAAAAA4NdojAMAAAAAAAAAAAAA/BqNcQAAAAAAAAAAAACAX6MxDgAAAACAD9i0aZMGDhyo+Ph4BQQEaNmyZQ7r77rrLgUEBDj8u/766x22OXLkiIYNG6bw8HBFRkbq3nvv1YkTJ9yYBQAAAAAAnkFjHAAAAAAAH3Dy5Eldfvnlmj17drnbXH/99Tp06JD937/+9S+H9cOGDdPu3buVlZWl5cuXa9OmTRo+fHhNhw4AAAAAgMfV8XQAAAAAAACgYv3791f//v0vuI3FYlFsbGyZ67788kutWrVK27ZtU/fu3SVJL730km644QY988wzio+Pd3nMAAAAAAB4C44YBwAAAADAT2zYsEHR0dFq06aNRowYoV9++cW+Ljs7W5GRkfamuCQlJycrMDBQW7du9US4AAAAAAC4DUeMAwAAAADgB66//nrdfPPNSkhI0IEDB/Too4+qf//+ys7OVlBQkPLz8xUdHe1wnzp16igqKkr5+fnljmu1WmW1Wu23CwsLJUk2m002m83puEvGsAQap8eqCa7IsaaUxObNMXoz6ucc6uccX6ifJcg735el/80ZrqqfN+8HAADgOjTGAQAAAADwA0OHDrX/f8eOHdWpUye1atVKGzZsUN++fas9bmZmpqZNm1Zq+Zo1axQWFlbtcc83o3uxy8ZypZUrV3o6hAplZWV5OgSfRv2cQ/2c4831m3mlpyOomKvqd+rUKZeMAwAAvBuNcQAAAAAA/FDLli3VqFEj7d+/X3379lVsbKwOHz7ssM3Zs2d15MiRcq9LLkkTJ05URkaG/XZhYaGaNm2qlJQUhYeHOx2nzWZTVlaWJm8PlLU4wOnxXG3X1FRPh1Cuktr169dPwcHBng7H51A/51A/5/hC/TpMXe3pEMplCTSa0b3YZfUrORsKAADwbzTGAQAAAADwQ//973/1yy+/KC4uTpKUlJSko0ePKicnR926dZMkrV+/XsXFxUpMTCx3HIvFIovFUmp5cHCwS5s51uIAWYu8rzHurQ2r33P1vqhtqJ9zqJ9zvLl+3viefD5X1c9b9wEAAHAtGuMAAAAAAPiAEydOaP/+/fbbeXl5ys3NVVRUlKKiojRt2jQNGTJEsbGxOnDggB555BFdcsklSk09d8Rzu3btdP311+u+++7T3LlzZbPZNHLkSA0dOlTx8fGeSgsAAAAAALcI9HQAAAAAAACgYtu3b1eXLl3UpUsXSVJGRoa6dOmixx57TEFBQfriiy9000036dJLL9W9996rbt266f/9v//ncLT3woUL1bZtW/Xt21c33HCDevfurVdffdVTKQEAAAAA4DYcMQ4AAAAAgA/o06ePjDHlrl+9uuJrwUZFRWnRokWuDAsAAAAAAJ/AEeMAAAAAAAAAAAAAAL9GYxwAAAAAAAAAAAAA4Nc4lTpqhRYTVrj9MS1BRjOvlDpMXS1rUcAFt/32qQFuigrwLZ547VZWyWscAAAAAAAAAAB4P44YBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPwajXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/VsfTAcA/tJiwwmVjWYKMZl4pdZi6WtaiAJeNCwAAAAAAAAAAAKB24ohxAAAAAAAAAAAAAIBfozEOAAAAAAAAAAAAAPBrNMYBAAAAAAAAAAAAAH6NxjgAAAAAAAAAADUoMzNTV1xxhRo0aKDo6GgNHjxYe/fuddjm9OnTSk9PV8OGDVW/fn0NGTJEBQUFDtscPHhQAwYMUFhYmKKjozVu3DidPXvWnakAAOCzaIwDAAAAAAAAAFCDNm7cqPT0dG3ZskVZWVmy2WxKSUnRyZMn7duMHTtWH374oZYsWaKNGzfqxx9/1M0332xfX1RUpAEDBujMmTP69NNP9cYbb2jBggV67LHHPJESAAA+p46nAwAAAAAAAAAAwJ+tWrXK4faCBQsUHR2tnJwcXX311Tp27JjmzZunRYsW6brrrpMkzZ8/X+3atdOWLVvUo0cPrVmzRnv27NHatWsVExOjzp07a8aMGRo/frymTp2qkJAQT6QGAIDPoDEOAADK9dRTT2nixIkaPXq0Zs2aJencqd0eeughLV68WFarVampqXr55ZcVExPj2WABAAAAAPARx44dkyRFRUVJknJycmSz2ZScnGzfpm3btmrWrJmys7PVo0cPZWdnq2PHjg7fv1NTUzVixAjt3r1bXbp0KfU4VqtVVqvVfruwsFCSZLPZZLPZnM6jZAxXjFUbUb/qo3bOoX7O8YX6WYKMp0MolyXwXGyuql9VxqExDgAAyrRt2za98sor6tSpk8PysWPHasWKFVqyZIkiIiI0cuRI3Xzzzfrkk088FCkAAAAAAL6juLhYY8aMUa9evdShQwdJUn5+vkJCQhQZGemwbUxMjPLz8+3bnP+j9JLbJducLzMzU9OmTSu1fM2aNQoLC3M2FbusrCyXjVUbUb/qo3bOoX7O8eb6zbzS0xFUzFX1O3XqVKW3pTEOAABKOXHihIYNG6bXXntNjz/+uH15ZU7tBgAAAAAAypeenq5du3Zp8+bNNf5YEydOVEZGhv12YWGhmjZtqpSUFIWHhzs9vs1mU1ZWlvr166fg4GCnx6ttqF/1UTvnUD/n+EL9Okxd7ekQymUJNJrRvdhl9Ss5G0pl0BgHAAClpKena8CAAUpOTnZojFfm1G7nq+nTtrmLL5wiqSZ5Mn9vOPVTySmeSv5b25C/9+bvjtck73+Vy7+21gcAAFTNyJEjtXz5cm3atElNmjSxL4+NjdWZM2d09OhRh6PGCwoKFBsba9/ms88+cxivoKDAvq4sFotFFoul1PLg4GCXNnNcPV5tQ/2qj9o5h/o5x5vrZy0K8HQIFXJV/aoyRo03xrk2KQAAvmXx4sX6/PPPtW3btlLrKnNqt/O567Rt7uLNp0hyB0/k702nfprRvdjTIXgU+Xtf/itXrnTbY/H+d+H8q3LqNgAAUPsYYzRq1CgtXbpUGzZsUEJCgsP6bt26KTg4WOvWrdOQIUMkSXv37tXBgweVlJQkSUpKStITTzyhw4cPKzo6WtK5zyjh4eFq3769exMCAMAH1WhjnGuTAgDgW77//nuNHj1aWVlZCg0NdcmYNX3aNnfxhVMk1SRP5u8Np34qOcXT5O2BshZ7/y9uXY38vTf/XVNTa/wxeP+rXP5VOXUbAACofdLT07Vo0SK9//77atCggf3H5REREapbt64iIiJ07733KiMjQ1FRUQoPD9eoUaOUlJRkPztbSkqK2rdvrzvuuEMzZ85Ufn6+Jk2apPT09DKPCgcAAI5qrDHOtUkBAPA9OTk5Onz4sLp27WpfVlRUpE2bNukf//iHVq9eXeGp3c7nrtO2uYuvxu0qnsjfm079ZC0O8Kp43I38vS9/d74eef+7cP61uTYAAKBic+bMkST16dPHYfn8+fN11113SZKef/55BQYGasiQIQ5nWi0RFBSk5cuXa8SIEUpKSlK9evWUlpam6dOnuysNAAB8Wo01xl15bVIAAOAeffv21c6dOx2W3X333Wrbtq3Gjx+vpk2bVnhqNwAAAAAA4MgYU+E2oaGhmj17tmbPnl3uNs2bN3fr5XQAAPAnNdIYd/W1Sa1Wq6xWq/12ySnqbDabbDab0/GWjOGKsTzJk3lYgir+YFfpsQKNw399VVXy8ObnXklstWl/eDN/yMMfcpD+F7+rXr/e8j7QoEEDdejQwWFZvXr11LBhQ/vyik7tBgAAAAAAAACAt3F5Y7wmrk2amZmpadOmlVq+Zs0ahYWFueQxJCkrK8tlY3mSJ/KYeaXrx5zRvdj1g3pAZfLwhV951qb94Qv8IQ9/yEFy3XvuqVOnXDKOO1R0ajcAAAAAAAAAALyNyxvjNXFt0okTJyojI8N+u7CwUE2bNlVKSorCw8OdjtlmsykrK0v9+vXz6evCeTKPDlNXu2wsS6DRjO7Fmrw9UNZi77qGY1VUJY9dU1PdFFXVlTyvatP+8Gb+kIc/5CD9Lw9XveeWnA3FG23YsMHhdmVO7QYAcI8WE1bU+GNYgoxmXnnuM39Vr7H+7VMDaigqAAAAAACAqnF5Y7wmrk1qsVhksVhKLQ8ODnZpA9jV43mKJ/Ko6h/IKjVmcUCNjOtulcnDF553tWl/+AJ/yMMfcpBc957rC+8DAAAAAAAAAAD4Kpc3xrk2KQAAAAAAAAAAAADAm7i8MV4ZXJsUAAAAAAAAAAAAAOAubmmMc21SAAAAAAAAAAAAAICnBHo6AAAAAAAAAAAAAAAAahKNcQAAAAAAAAAAAACAX6MxDgAAAACAD9i0aZMGDhyo+Ph4BQQEaNmyZQ7rjTF67LHHFBcXp7p16yo5OVn79u1z2ObIkSMaNmyYwsPDFRkZqXvvvVcnTpxwYxYAAAAAAHgGjXEAAAAAAHzAyZMndfnll2v27Nllrp85c6ZefPFFzZ07V1u3blW9evWUmpqq06dP27cZNmyYdu/eraysLC1fvlybNm3S8OHD3ZUCAAAAAAAeU8fTAQAAAAAAgIr1799f/fv3L3OdMUazZs3SpEmTNGjQIEnSm2++qZiYGC1btkxDhw7Vl19+qVWrVmnbtm3q3r27JOmll17SDTfcoGeeeUbx8fFuywUAAAAAAHfjiHEAAAAAAHxcXl6e8vPzlZycbF8WERGhxMREZWdnS5Kys7MVGRlpb4pLUnJysgIDA7V161a3xwwAAAAAgDtxxDgAAEAt12LCigq3sQQZzbxS6jB1taxFAW6ICgBQFfn5+ZKkmJgYh+UxMTH2dfn5+YqOjnZYX6dOHUVFRdm3KYvVapXVarXfLiwslCTZbDbZbDanYy8ZwxJonB6rJrgix5pSEps3x+jNqJ9zqJ9zfKF+liDvfF+W/jdnuKp+3rwfAACA69AYBwAAAAAA5crMzNS0adNKLV+zZo3CwsJc9jgzuhe7bCxXWrlypadDqFBWVpanQ/Bp1M851M853ly/mVd6OoKKuap+p06dcsk4AADAu9EYBwAAAADAx8XGxkqSCgoKFBcXZ19eUFCgzp0727c5fPiww/3Onj2rI0eO2O9flokTJyojI8N+u7CwUE2bNlVKSorCw8Odjt1msykrK0uTtwfKWux9ZyXZNTXV0yGUq6R2/fr1U3BwsKfD8TnUzznUzzm+UL8OU1d7OoRyWQKNZnQvdln9Ss6GAgAA/BuNcQAAAAAAfFxCQoJiY2O1bt06eyO8sLBQW7du1YgRIyRJSUlJOnr0qHJyctStWzdJ0vr161VcXKzExMRyx7ZYLLJYLKWWBwcHu7SZYy0O8MrLdXhrw+r3XL0vahvq5xzq5xxvrp83viefz1X189Z9AAAAXIvGOAAAAAAAPuDEiRPav3+//XZeXp5yc3MVFRWlZs2aacyYMXr88cfVunVrJSQkaPLkyYqPj9fgwYMlSe3atdP111+v++67T3PnzpXNZtPIkSM1dOhQxcfHeygrAAAAAADcg8Y4AAAAAAA+YPv27br22mvtt0tOb56WlqYFCxbokUce0cmTJzV8+HAdPXpUvXv31qpVqxQaGmq/z8KFCzVy5Ej17dtXgYGBGjJkiF588UW35wIAAAAAgLvRGAcAAAAAwAf06dNHxphy1wcEBGj69OmaPn16udtERUVp0aJFNREeAAAAAABeLdDTAQAAAAAAAAAAAAAAUJNojAMAAAAAAAAAAAAA/BqNcQAAAAAAAAAAAACAX6MxDgAAAAAAAAAAAADwazTGAQAAAAAAAAAAAAB+jcY4AAAAAAAAAAAAAMCv0RgHAAAAAAAAAAAAAPg1GuMAAAAAAAAAAAAAAL9GYxwAAAAAAAAAAAAA4NdojAMAAAAAAAAAAAAA/BqNcQAAAAAAAAAAAACAX6MxDgAAAAAAAAAAAADwazTGAQAAAAAAAAAAAAB+jcY4AAAAAAAAAAAAAMCv0RgHAAAAAAAAAAAAAPg1GuMAAAAAAAAAAAAAAL9GYxwAAAAAAAAAAAAA4NdojAMAAAAAAAAAAAAA/BqNcQAAAAAAAAAAAACAX6MxDgAAAAAAAAAAAADwazTGAQAAAAAAAAAAAAB+jcY4AAAAAAAAAAAAAMCv0RgHAAAAAAAAAAAAAPg1GuMAAAAAAAAAAAAAAL9Wx9MBAAAAAAD8U4sJKzwdwgV9+9QAT4cAAAAAAADchCPGAQAAAAAAAAAAAAB+jcY4AAAAAAAAAAAAAMCv0RgHAAAAAAAAAKAGbdq0SQMHDlR8fLwCAgK0bNkyh/XGGD322GOKi4tT3bp1lZycrH379jlsc+TIEQ0bNkzh4eGKjIzUvffeqxMnTrgxCwAAfBuNcQAAYJeZmakrrrhCDRo0UHR0tAYPHqy9e/c6bHP69Gmlp6erYcOGql+/voYMGaKCggIPRQwAAAAAgPc7efKkLr/8cs2ePbvM9TNnztSLL76ouXPnauvWrapXr55SU1N1+vRp+zbDhg3T7t27lZWVpeXLl2vTpk0aPny4u1IAAMDn0RgHAAB2GzduVHp6urZs2aKsrCzZbDalpKTo5MmT9m3Gjh2rDz/8UEuWLNHGjRv1448/6uabb/Zg1AAAAAAAeLf+/fvr8ccf1x/+8IdS64wxmjVrliZNmqRBgwapU6dOevPNN/Xjjz/ajyz/8ssvtWrVKr3++utKTExU79699dJLL2nx4sX68ccf3ZwNAAC+qY6nAwAAAN5j1apVDrcXLFig6Oho5eTk6Oqrr9axY8c0b948LVq0SNddd50kaf78+WrXrp22bNmiHj16eCJsAAAAAAB8Vl5envLz85WcnGxfFhERocTERGVnZ2vo0KHKzs5WZGSkunfvbt8mOTlZgYGB2rp1a5kNd0myWq2yWq3224WFhZIkm80mm83mdOwlY7hirNqI+lUftXMO9XOOL9TPEmQ8HUK5LIHnYnNV/aoyjssb45mZmXrvvff01VdfqW7duurZs6eefvpptWnTxr7N6dOn9dBDD2nx4sWyWq1KTU3Vyy+/rJiYGFeHAwAAnHDs2DFJUlRUlCQpJydHNpvN4ct627Zt1axZM2VnZ9MYBwAAAACgivLz8yWp1N/HY2Ji7Ovy8/MVHR3tsL5OnTqKioqyb1OWzMxMTZs2rdTyNWvWKCwszNnQ7bKyslw2Vm1E/aqP2jmH+jnHm+s380pPR1AxV9Xv1KlTld7W5Y3xklOwXnHFFTp79qweffRRpaSkaM+ePapXr56kc6dgXbFihZYsWaKIiAiNHDlSN998sz755BNXhwMAAKqpuLhYY8aMUa9evdShQwdJ576Ih4SEKDIy0mHb339ZP19N/zrdXXzhl6DVVZlfkJb8krPkv7UN+ZP/7/9b2/hz/pV5T6/s+78/zg8AAMD3TZw4URkZGfbbhYWFatq0qVJSUhQeHu70+DabTVlZWerXr5+Cg4OdHq+2oX7VR+2cQ/2c4wv16zB1tadDKJcl0GhG92KX1a/k782V4fLGOKdgBQDAP6Snp2vXrl3avHmzU+O469fp7uLNvwStrqr8gnRG9+KaC8QHkD/512b+mP/KlSsrvW1F7/9V+YU6AADA78XGxkqSCgoKFBcXZ19eUFCgzp0727c5fPiww/3Onj2rI0eO2O9fFovFIovFUmp5cHCwS5s5rh6vtqF+1UftnEP9nOPN9bMWBXg6hAq5qn5VGaPGrzHuilOwch2UyvFkHq68VoG/HJFSlTy8+blXEltt2h/ezB/y8IccJM9eB8UdRo4cqeXLl2vTpk1q0qSJfXlsbKzOnDmjo0ePOhw1XlBQUO4X8Zr+dbq7+MIvQaurMr8gLfkl5+TtgbIWe/8Ha1cjf/Inf//Mf9fU1Aq3qez7f1V+oQ4AAPB7CQkJio2N1bp16+yN8MLCQm3dulUjRoyQJCUlJeno0aPKyclRt27dJEnr169XcXGxEhMTPRU6AAA+pUYb4646BSvXQakaT+RRE9cq8JcjUiqTR1WOVPGU2rQ/fIE/5OEPOUieuQ5KTTLGaNSoUVq6dKk2bNighIQEh/XdunVTcHCw1q1bpyFDhkiS9u7dq4MHDyopKanMMd3163R38dW4L6QqvyC1Fgf4xC9Oawr5kz/5+1f+VXk/r+j939/mBgAA4FonTpzQ/v377bfz8vKUm5urqKgoNWvWTGPGjNHjjz+u1q1bKyEhQZMnT1Z8fLwGDx4sSWrXrp2uv/563XfffZo7d65sNptGjhypoUOHKj4+3kNZAQDgW2q0Me6qU7ByHZTK8WQerrxWgb8ckVKVPCpzpIqnlDyvatP+8Gb+kIc/5CB59jooNSk9PV2LFi3S+++/rwYNGth/tBYREaG6desqIiJC9957rzIyMhQVFaXw8HCNGjVKSUlJXA4FAAAAAIBybN++Xddee639dsnfu9PS0rRgwQI98sgjOnnypIYPH66jR4+qd+/eWrVqlUJDQ+33WbhwoUaOHKm+ffsqMDBQQ4YM0Ysvvuj2XAAA8FU11hh35SlYuQ5K1Xgij5o4csRfjkipTB6+8LyrTfvDF/hDHv6Qg+SZ66DUpDlz5kiS+vTp47B8/vz5uuuuuyRJzz//vP0LuNVqVWpqql5++WU3RwoAAM43derUUmdba9Omjb766itJ0unTp/XQQw9p8eLFDnN4TEyMJ8IFAKBW6dOnj4wp/7JyAQEBmj59uqZPn17uNlFRUVq0aFFNhAcAQK3g8sZ4TZyCFQAAuMeFvqSXCA0N1ezZszV79mw3RAQAAKrisssu09q1a+2369T539f+sWPHasWKFVqyZIkiIiI0cuRI3Xzzzfrkk088ESoAAAAAAG7l8sY4p2AFAAAAAMAz6tSpU+bZ2I4dO6Z58+Zp0aJFuu666ySdOyNMu3bttGXLFr6PAwAAAAD8nssb45yCFQAAAAAAz9i3b5/i4+MVGhqqpKQkZWZmqlmzZsrJyZHNZlNycrJ927Zt26pZs2bKzs6+YGPcarXKarXabxcWFkqSbDabbDab0zGXjGEJrPjMNZ7gihxrSkls3hyjN6N+zqF+zvGF+lmCvPN9WfrfnOGq+nnzfgAAAK5TI6dSrwinYAUAAAAAwLUSExO1YMECtWnTRocOHdK0adN01VVXadeuXcrPz1dISIgiIyMd7hMTE2M/01t5MjMzS127XJLWrFmjsLAwl8U/o3uxy8ZypZUrV3o6hAplZWV5OgSfRv2cQ/2c4831m3mlpyOomKvqd+rUKZeMAwAAvJvLG+MAAAAAAMD9+vfvb///Tp06KTExUc2bN9c777yjunXrVnvciRMnKiMjw367sLBQTZs2VUpKisLDw52KWTp3lF5WVpYmbw+UtTjA6fFcbdfUVE+HUK6S2vXr10/BwcGeDsfnUD/nUD/n+EL9Okxd7ekQymUJNJrRvdhl9Ss5GwoAAPBvNMYBAAAAAPBDkZGRuvTSS7V//37169dPZ86c0dGjRx2OGi8oKCjzmuS/Z7FYZLFYSi0PDg52aTPHWhwga5H3Nca9tWH1e67eF7UN9XMO9XOON9fPG9+Tz+eq+nnrPgAAAK4V6OkAAAAAAACA6504cUIHDhxQXFycunXrpuDgYK1bt86+fu/evTp48KCSkpI8GCUAAAAAAO7BEeMAAAAAAPiBhx9+WAMHDlTz5s31448/asqUKQoKCtJtt92miIgI3XvvvcrIyFBUVJTCw8M1atQoJSUlqUePHp4OHQAAAACAGkdjHAAAAAAAP/Df//5Xt912m3755Rc1btxYvXv31pYtW9S4cWNJ0vPPP6/AwEANGTJEVqtVqampevnllz0cNQAAAAAA7kFjHAAAAAAAP7B48eILrg8NDdXs2bM1e/ZsN0UEAAAAAID34BrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPwajXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODX6ng6AAAAAH/XYsIKT4cAAAAAAAAAALUajXEfUZk/qFuCjGZeKXWYulrWogA3RAUAAAAAAAAAAAAA3o9TqQMAAAAAAAAAAAAA/BqNcQAAAAAAAAAAAACAX6MxDgAAAAAAAAAAAADwazTGAQAAAAAAAAAAAAB+jcY4AAAAAAAAAAAAAMCv0RgHAAAAAAAAAAAAAPg1GuMAAAAAAAAAAAAAAL9GYxwAAAAAAAAAAAAA4NfqeDoAAAAAAAAAAADguzpMXS1rUYCnwyjTt08N8HQIAAAvwRHjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPwajXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPwajXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4NY81xmfPnq0WLVooNDRUiYmJ+uyzzzwVCgAAqAbmcgAAfBfzOAAAvot5HACA6qnjiQf997//rYyMDM2dO1eJiYmaNWuWUlNTtXfvXkVHR3siJAAAUAXeNpe3mLCixh/DEmQ080qpw9TVshYF1PjjAQBQU7xtHgcAAJXHPA4AQPV5pDH+3HPP6b777tPdd98tSZo7d65WrFihf/7zn5owYYInQpLEH7oBAKgsb53LAQBAxZjHAQDwXczjAABUn9sb42fOnFFOTo4mTpxoXxYYGKjk5GRlZ2eXeR+r1Sqr1Wq/fezYMUnSkSNHZLPZnI7JZrPp1KlTqmMLVFGx7zbG6xQbnTpVTB5eoip5/PLLL26Kqup4fXgXf8jDH3KQ/pfHL7/8ouDgYKfHO378uCTJGOP0WDWtqnN5Tc/jklTn7EmXjHPBx/CT5251kT/5kz/5+2P+lfkcXvJ5uKI531fmcr6TV50vfF9z1WfS2ob6OYf6OccX6ueO71nVVVu/kzOPVw9zuX+ids6hfs7xhfoxj5fz2E4/WhX9/PPPKioqUkxMjMPymJgYffXVV2XeJzMzU9OmTSu1PCEhoUZi9GW3ezoAF6lteTR6tkbDwP+vtj2vvJk/5CDVTB7Hjx9XREREDYzsOlWdy/1pHveX5251kX/tRv61m7/mXxOfw719Luc7edXxfQ0AvFNt/E7OPF49zOUA4H08NY975FTqVTVx4kRlZGTYbxcXF+vIkSNq2LChAgKc/xVaYWGhmjZtqu+//17h4eFOj+cp5OFdyMO7kIf38IccJNfnYYzR8ePHFR8f74LovEtNz+Pu4i/P3eoif/Inf/In/wvnz1xefbX9OeYMaucc6ucc6ucc6uccvpNXHvO4d6N+1UftnEP9nEP9nOPJedztjfFGjRopKChIBQUFDssLCgoUGxtb5n0sFossFovDssjISJfHFh4e7hdPYPLwLuThXcjDe/hDDpJr8/DmX6X/XlXncnfN4+7iL8/d6iJ/8id/8q+tKpO/L8zlfCf3T9TOOdTPOdTPOdTPObXtOznzuP+iftVH7ZxD/ZxD/ZzjiXk80CWPVgUhISHq1q2b1q1bZ19WXFysdevWKSkpyd3hAACAKmIuBwDAdzGPAwDgu5jHAQBwjkdOpZ6RkaG0tDR1795dV155pWbNmqWTJ0/q7rvv9kQ4AACgipjLAQDwXczjAAD4LuZxAACqzyON8VtvvVU//fSTHnvsMeXn56tz585atWqVYmJiPBGOLBaLpkyZUuqUMr6GPLwLeXgX8vAe/pCD5D95VJe3zeXuUNv3OfmTP/mTP/n7T/7eNo/7Y43dhdo5h/o5h/o5h/o5pzbXj3ncv1C/6qN2zqF+zqF+zvFk/QKMMcbtjwoAAAAAAAAAAAAAgJu4/RrjAAAAAAAAAAAAAAC4E41xAAAAAAAAAAAAAIBfozEOAAAAAAAAAAAAAPBrNMYBAAAAAAAAAAAAAH6tVjTGN23apIEDByo+Pl4BAQFatmxZhffZsGGDunbtKovFoksuuUQLFiyo8TgrUtU8NmzYoICAgFL/8vPz3RNwGTIzM3XFFVeoQYMGio6O1uDBg7V3794K77dkyRK1bdtWoaGh6tixo1auXOmGaMtXnTwWLFhQal+Ehoa6KeKyzZkzR506dVJ4eLjCw8OVlJSkjz766IL38bZ9IVU9D2/cF+d76qmnFBAQoDFjxlxwO2/cH79XmTy8cX9MnTq1VExt27a94H28fV/gwlq0aFHmnJmenl7uffxpn1c1f2983TqjqKhIkydPVkJCgurWratWrVppxowZMsZc8H7e+HmxOqqTvzd+znTG8ePHNWbMGDVv3lx169ZVz549tW3btgvex1/2v1T1/H15/1f0ncoYo8cee0xxcXGqW7eukpOTtW/fvgrHnT17tlq0aKHQ0FAlJibqs88+q6EMfFNV6+NPc6wrVKV+r732mq666ipddNFFuuiii5ScnFzrn4/VfX0uXrxYAQEBGjx4cM0G6OWqWr+jR48qPT1dcXFxslgsuvTSS2v1a7iq9Zs1a5batGmjunXrqmnTpho7dqxOnz7tpmi9h7/8LdefMJc7h7m8+pjHncM87hzm8erz6rnc1AIrV640f/vb38x7771nJJmlS5decPtvvvnGhIWFmYyMDLNnzx7z0ksvmaCgILNq1Sr3BFyOqubx8ccfG0lm79695tChQ/Z/RUVF7gm4DKmpqWb+/Plm165dJjc319xwww2mWbNm5sSJE+Xe55NPPjFBQUFm5syZZs+ePWbSpEkmODjY7Ny5042RO6pOHvPnzzfh4eEO+yI/P9+NUZf2wQcfmBUrVpivv/7a7N271zz66KMmODjY7Nq1q8ztvXFfGFP1PLxxX/zeZ599Zlq0aGE6depkRo8eXe523ro/SlQ2D2/cH1OmTDGXXXaZQ0w//fRTudt7+75AxQ4fPuywv7Oysowk8/HHH5e5vb/t86rm742vW2c88cQTpmHDhmb58uUmLy/PLFmyxNSvX9+88MIL5d7HWz8vVkd18vfGz5nOuOWWW0z79u3Nxo0bzb59+8yUKVNMeHi4+e9//1vm9v60/42pev6+vP8r+k711FNPmYiICLNs2TLzn//8x9x0000mISHB/Pbbb+WOuXjxYhMSEmL++c9/mt27d5v77rvPREZGmoKCghrOxjdUtT7+Nsc6q6r1u/32283s2bPNjh07zJdffmnuuusuExERUe7r2d9V9/WZl5dnLr74YnPVVVeZQYMGuSdYL1TV+lmtVtO9e3dzww03mM2bN5u8vDyzYcMGk5ub6+bIvUNV67dw4UJjsVjMwoULTV5enlm9erWJi4szY8eOdXPknucvf8v1F8zlzmEurz7mcecwjzuHedw53jyX14rG+O9VZgc88sgj5rLLLnNYduutt5rU1NQajKxqqtIY//XXX90SU3UcPnzYSDIbN24sd5tbbrnFDBgwwGFZYmKiuf/++2s6vEqrTB7z5883ERER7guqmi666CLz+uuvl7nOF/ZFiQvl4c374vjx46Z169YmKyvLXHPNNRdsKHvz/qhKHt64P6ZMmWIuv/zySm/vzfsC1TN69GjTqlUrU1xcXOZ6f9/nFeXvja9bZwwYMMDcc889DstuvvlmM2zYsHLv4wufFyurOvn7wufMyjp16pQJCgoyy5cvd1jetWtX87e//a3M+/jT/q9O/v6y/8//TlVcXGxiY2PN3//+d/uyo0ePGovFYv71r3+VO86VV15p0tPT7beLiopMfHy8yczMrJG4fU1V6+Pvc2xVOfv8Onv2rGnQoIF54403aipEr1ad+p09e9b07NnTvP766yYtLa1W/0G9qvWbM2eOadmypTlz5oy7QvRqVa1fenq6ue666xyWZWRkmF69etVonN7OX/6W68uYy53DXF59zOPOYR53DvO463jbXF4rTqVeVdnZ2UpOTnZYlpqaquzsbA9F5JzOnTsrLi5O/fr10yeffOLpcBwcO3ZMkhQVFVXuNr6wPyqThySdOHFCzZs3V9OmTTVo0CDt3r3bHeFVSlFRkRYvXqyTJ08qKSmpzG18YV9UJg/Je/dFenq6BgwYUKrOZfHm/VGVPCTv3B/79u1TfHy8WrZsqWHDhungwYPlbuvN+wJVd+bMGb399tu65557FBAQUOY2/rzPK5O/5J2v2+rq2bOn1q1bp6+//lqS9J///EebN29W//79y72PPz0HqpN/CW/+nFlZZ8+eVVFRUanLAdStW1ebN28u8z7+tP+rk38Jf9j/v5eXl6f8/HyHfRsREaHExMRy9+2ZM2eUk5PjcJ/AwEAlJyf75PPB1apTH396fTnLFc+vU6dOyWazVfhd1R9Vt37Tp09XdHS07r33XneE6bWqU78PPvhASUlJSk9PV0xMjDp06KAnn3xSRUVF7grba1Snfj179lROTo79NK3ffPONVq5cqRtuuMEtMfsy5o6aw1zuHOby6mMedw7zuHOYx93PnXNHHZeP6Afy8/MVExPjsCwmJkaFhYX67bffVLduXQ9FVjVxcXGaO3euunfvLqvVqtdff119+vTR1q1b1bVrV0+Hp+LiYo0ZM0a9evVShw4dyt2uvP3hLdcwrGwebdq00T//+U916tRJx44d0zPPPKOePXtq9+7datKkiRsjdrRz504lJSXp9OnTql+/vpYuXar27duXua0374uq5OGt+2Lx4sX6/PPPK7ymaQlv3R9VzcMb90diYqIWLFigNm3a6NChQ5o2bZquuuoq7dq1Sw0aNCi1vbfuC1TPsmXLdPToUd11113lbuPP+7wy+Xvj69YZEyZMUGFhodq2baugoCAVFRXpiSee0LBhw8q9j798XpSql7+3f86sigYNGigpKUkzZsxQu3btFBMTo3/961/Kzs7WJZdcUuZ9/Gn/Vyd/f9r/v1fyHl6V9/eff/5ZRUVFZd7nq6++qplAfUh16uPPc2xVueL5NX78eMXHx1f6B6v+pDr127x5s+bNm6fc3Fw3ROjdqlO/b775RuvXr9ewYcO0cuVK7d+/Xw8++KBsNpumTJnijrC9RnXqd/vtt+vnn39W7969ZYzR2bNn9cADD+jRRx91R8g+zZ8+m3kb5nLnMJdXH/O4c5jHncM87n7unMtpjPuxNm3aqE2bNvbbPXv21IEDB/T888/rrbfe8mBk56Snp2vXrl0VHoni7SqbR1JSksMRzD179lS7du30yiuvaMaMGTUdZrnatGmj3NxcHTt2TO+++67S0tK0cePGcpvK3qoqeXjjvvj+++81evRoZWVllTpiy5dUJw9v3B+/P0qyU6dOSkxMVPPmzfXOO+/U+l+c1gbz5s1T//79FR8f7+lQPKIy+Xvj69YZ77zzjhYuXKhFixbpsssuU25ursaMGaP4+HilpaV5OrwaV538vf1zZlW99dZbuueee3TxxRcrKChIXbt21W233aacnBxPh+YWVc3f3/Y/4K+eeuopLV68WBs2bPDp7xjucvz4cd1xxx167bXX1KhRI0+H45OKi4sVHR2tV199VUFBQerWrZt++OEH/f3vf691f1Cvjg0bNujJJ5/Uyy+/rMTERO3fv1+jR4/WjBkzNHnyZE+HB8ADmMsrj3nceczjzmEe9x00xssQGxurgoICh2UFBQUKDw/3+V8YXnnllV7RiB45cqSWL1+uTZs2VXhkWXn7IzY2tiZDrJSq5HG+4OBgdenSRfv376+h6ConJCTEfjRQt27dtG3bNr3wwgt65ZVXSm3rzfuiKnmczxv2RU5Ojg4fPuxwlFVRUZE2bdqkf/zjH7JarQoKCnK4jzfuj+rkcT5v2B/ni4yM1KWXXlpuTN64L1A93333ndauXav33nvvgtv56z6vbP7n88bXbVWMGzdOEyZM0NChQyVJHTt21HfffafMzMxyG8P+9HmxOvmXxVs+Z1ZHq1attHHjRp08eVKFhYWKi4vTrbfeqpYtW5a5vT/tf6nq+ZfFl/d/iZL38IKCAsXFxdmXFxQUqHPnzmXep1GjRgoKCvLLOcEVqlMff51jq8OZ59czzzyjp556SmvXrlWnTp1qMkyvVdX6HThwQN9++60GDhxoX1ZcXCxJqlOnjvbu3atWrVrVbNBepDrPv7i4OAUHBzt852vXrp3y8/N15swZhYSE1GjM3qQ69Zs8ebLuuOMO/eUvf5F07jPZyZMnNXz4cP3tb39TYCBXxCyPv3028ybM5c5hLq8+5nHnMI87h3nc/dw5l7MnypCUlKR169Y5LMvKyrrg9Yp9RW5ursMfedzNGKORI0dq6dKlWr9+vRISEiq8jzfuj+rkcb6ioiLt3LnTo/ujLMXFxbJarWWu88Z9UZ4L5XE+b9gXffv21c6dO5Wbm2v/1717dw0bNky5ubllNpO9cX9UJ4/zecP+ON+JEyd04MCBcmPyxn2B6pk/f76io6M1YMCAC27nr/u8svmfzxtft1Vx6tSpUl9QgoKC7F+iy+JPz4Hq5F8WT3/OdIV69eopLi5Ov/76q1avXq1BgwaVuZ0/7f/fq2z+ZfGH/Z+QkKDY2FiHfVtYWKitW7eWu29DQkLUrVs3h/sUFxdr3bp1Pv98cIXq1MdfX1/VUd3n18yZMzVjxgytWrVK3bt3d0eoXqmq9Wvbtm2p7zI33XSTrr32WuXm5qpp06buDN/jqvP869Wrl/bv3+/wGeLrr79WXFxcrfpjulS9+pX3mUw693colI+5o+YwlzuHubz6mMedwzzuHOZx93Pr3GFqgePHj5sdO3aYHTt2GEnmueeeMzt27DDfffedMcaYCRMmmDvuuMO+/TfffGPCwsLMuHHjzJdffmlmz55tgoKCzKpVqzyVgjGm6nk8//zzZtmyZWbfvn1m586dZvTo0SYwMNCsXbvWUymYESNGmIiICLNhwwZz6NAh+79Tp07Zt7njjjvMhAkT7Lc/+eQTU6dOHfPMM8+YL7/80kyZMsUEBwebnTt3eiIFY0z18pg2bZpZvXq1OXDggMnJyTFDhw41oaGhZvfu3Z5IwRhz7jmzceNGk5eXZ7744gszYcIEExAQYNasWWOM8Y19YUzV8/DGfVGWa665xowePdp+21f2x/kqysMb98dDDz1kNmzYYPLy8swnn3xikpOTTaNGjczhw4eNMb67L3BhRUVFplmzZmb8+PGl1tWGfV6V/L3xdeuMtLQ0c/HFF5vly5ebvLw8895775lGjRqZRx55xL6Nr3xerI7q5O+NnzOdsWrVKvPRRx+Zb775xqxZs8ZcfvnlJjEx0Zw5c8YY49/735iq5+/L+7+i71RPPfWUiYyMNO+//7754osvzKBBg0xCQoL57bff7GNcd9115qWXXrLfXrx4sbFYLGbBggVmz549Zvjw4SYyMtLk5+e7PT9vVFF9asMc64yq1u+pp54yISEh5t1333X4rnr8+HFPpeBRVa3f+dLS0sygQYPcFK33qWr9Dh48aBo0aGBGjhxp9u7da5YvX26io6PN448/7qkUPKqq9ZsyZYpp0KCB+de//mWfk1u1amVuueUWT6XgMf7yt1x/wVzuHOby6mMedw7zuHOYx53jzXN5rWiMf/zxx0ZSqX9paWnGmHNvkNdcc02p+3Tu3NmEhISYli1bmvnz57s97vNVNY+nn37atGrVyoSGhpqoqCjTp08fs379es8E//8rK35JDvW95ppr7DmVeOedd8yll15qQkJCzGWXXWZWrFjh3sDPU508xoz5/9q7Y5xUoigMwL5mcAMGiZFJZhG6ADo3QG+pha83BhpX4CpcAhswVvYm7kFDZzT+dsSnRjOQ8ODyfSWX4t57LnOG+UP4m36/n6qq0u12c3R0lLu7u+VP/oPj4+PUdZ2qqrKzs5PBYDALk5P1qEXSfh2rWIvvfA6U16Uen/22jlWsx3A4TK/XS1VV2dvby3A4zMPDw2x8XWvBzyaTSba2tnJ/f/9lbBNq3mb9q/i5XcR0Os3Z2Vn6/X62t7fTNE3Oz8/z/Pw8e8+63C/OY571r+J95iKur6/TNE2qqsru7m5OT0/z9PQ0Gy+5/kn79a9z/X/7TvX29paLi4t0u910Op0MBoMv18W6rjMajf557erqanZdPDg4yO3t7ZJWtB5+2p9N6LGLarN/dV1/e8Y/n9lN0vb8fbTpD9ST9vt3c3OTw8PDdDqdNE2Ty8vLvL6+LnnWq6PN/r28vGQ8Hs967P7+fk5OTvL4+Lj8if9npTzLLYlevhi9fH76+GL08cXo4/Nb5V7+J/EbfgAAAAAAAADK5T/GAQAAAAAAACiaYBwAAAAAAACAognGAQAAAAAAACiaYBwAAAAAAACAognGAQAAAAAAACiaYBwAAAAAAACAognGAQAAAAAAACiaYBwAAAAAAACAognGAQAAAAAAACiaYBwAAAAAAACAognGAQAAAAAAACiaYBwAAAAAAACAor0D+gTMFUe09dwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "viz = df[['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA', 'Research', 'Admit']]\n", + "fig, axes = plt.subplots(nrows=2, ncols=4, figsize=(20, 7))\n", + "\n", + "axes = axes.flatten()\n", + "\n", + "for i, column in enumerate(viz.columns):\n", + " viz[column].hist(ax=axes[i])\n", + " axes[i].set_title(column)\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "0068030a", + "metadata": {}, + "outputs": [], + "source": [ + "# print(df)\n", + "train, test = train_test_split(df, test_size=0.20, random_state=42)\n", + "# test, evaluate = train_test_split(test, test_size=0.5, random_state=42)" + ] + }, + { + "cell_type": "markdown", + "id": "70a01055", + "metadata": {}, + "source": [ + "## Fit model based on data. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "92f95186", + "metadata": {}, + "outputs": [], + "source": [ + "train_x = np.asanyarray(train[['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA', 'Research']])\n", + "train_y = np.asanyarray(train[['Admit']])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "a3bb7499", + "metadata": {}, + "outputs": [], + "source": [ + "test_x = np.asanyarray(test[['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA', 'Research']])\n", + "test_y = np.asanyarray(test[['Admit']])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "bce9d88c", + "metadata": {}, + "outputs": [], + "source": [ + "model = GaussianNB()\n", + "model.fit(train_x, train_y.ravel())\n", + "test_y_ = model.predict(test_x)\n" + ] + }, + { + "cell_type": "markdown", + "id": "43eafda9", + "metadata": {}, + "source": [ + "## Evaluation" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "c31aad30", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The jaccard score for 0's:\n", + "0.30434782608695654\n", + "\n", + "The jaccard score for 1's:\n", + "0.8279569892473119\n" + ] + } + ], + "source": [ + "print(\"The jaccard score for 0's:\")\n", + "print(jaccard_score(test_y, test_y_, pos_label=0))\n", + "print(\"\\nThe jaccard score for 1's:\")\n", + "print(jaccard_score(test_y, test_y_, pos_label=1))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "150897f7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Accuracy: 0.84\n", + "Precision: 0.99\n", + "Recall: 0.84\n", + "\n", + "Naive Bayes Classification Report:\n", + " precision recall f1-score support\n", + "\n", + " 0 0.32 0.88 0.47 8\n", + " 1 0.99 0.84 0.91 92\n", + "\n", + " accuracy 0.84 100\n", + " macro avg 0.65 0.86 0.69 100\n", + "weighted avg 0.93 0.84 0.87 100\n", + "\n", + "\n", + "Naive Bayes Confusion Matrix:\n", + "[[ 7 1]\n", + " [15 77]]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAHHCAYAAABEJtrOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6MUlEQVR4nO3deVyU9fr/8fegsigMqClIImqWy9G0zIzMNZSsTA92yrITmtY5HbWSLPOcNJeSvnZSs1BbDLW0xUpLW8zlqJloSWGmRi6UpIKVAYKxBPfvD2N+jWDOOAPMzP16+rgfj+Zzb9fwMC+u6/7c920xDMMQAADwSn61HQAAADh/JHIAALwYiRwAAC9GIgcAwIuRyAEA8GIkcgAAvBiJHAAAL0YiBwDAi5HIAQDwYiRy4Az79+/XgAEDFBoaKovFolWrVrn1+N99950sFosWL17s1uN6sz59+qhPnz61HQbglUjk8EgHDx7UP/7xD7Vu3VqBgYGyWq3q0aOHnnnmGf3666/Veu6EhATt3r1bTzzxhF555RVdccUV1Xq+mjRixAhZLBZZrdYqf4779++XxWKRxWLRf//7X6ePf/ToUU2dOlXp6eluiBaAI+rWdgDAmd5//3397W9/U0BAgO6880517NhRJSUl2rp1qx566CHt2bNHL7zwQrWc+9dff1Vqaqr+85//aOzYsdVyjujoaP3666+qV69etRz/XOrWratTp05p9erVuuWWW+zWLVu2TIGBgSoqKjqvYx89elTTpk1Ty5Yt1aVLF4f3+/jjj8/rfABI5PAwmZmZGjZsmKKjo7Vx40Y1a9bMtm7MmDE6cOCA3n///Wo7/48//ihJCgsLq7ZzWCwWBQYGVtvxzyUgIEA9evTQa6+9VimRL1++XDfccIPefvvtGonl1KlTql+/vvz9/WvkfIAvorUOjzJr1iwVFBRo0aJFdkm8Qps2bXT//ffbPv/222+aMWOGLrroIgUEBKhly5b697//reLiYrv9WrZsqRtvvFFbt27VlVdeqcDAQLVu3VpLly61bTN16lRFR0dLkh566CFZLBa1bNlS0umWdMV//9HUqVNlsVjsxtatW6drrrlGYWFhCg4OVtu2bfXvf//btv5s18g3btyonj17qkGDBgoLC9PgwYO1b9++Ks934MABjRgxQmFhYQoNDdXIkSN16tSps/9gz3D77bfrww8/VG5urm3s888/1/79+3X77bdX2v7EiROaMGGCOnXqpODgYFmtVg0cOFC7du2ybbNp0yZ169ZNkjRy5Ehbi77ie/bp00cdO3ZUWlqaevXqpfr169t+LmdeI09ISFBgYGCl7x8XF6eGDRvq6NGjDn9XwNeRyOFRVq9erdatW+vqq692aPvRo0drypQpuvzyyzVnzhz17t1bSUlJGjZsWKVtDxw4oJtvvln9+/fX008/rYYNG2rEiBHas2ePJCk+Pl5z5syRJN1222165ZVXNHfuXKfi37Nnj2688UYVFxdr+vTpevrpp3XTTTfp008//dP91q9fr7i4OB0/flxTp05VYmKitm3bph49eui7776rtP0tt9yikydPKikpSbfccosWL16sadOmORxnfHy8LBaL3nnnHdvY8uXL1a5dO11++eWVtj906JBWrVqlG2+8UbNnz9ZDDz2k3bt3q3fv3rak2r59e02fPl2SdM899+iVV17RK6+8ol69etmO8/PPP2vgwIHq0qWL5s6dq759+1YZ3zPPPKMmTZooISFBZWVlkqTnn39eH3/8sZ599llFRkY6/F0Bn2cAHiIvL8+QZAwePNih7dPT0w1JxujRo+3GJ0yYYEgyNm7caBuLjo42JBlbtmyxjR0/ftwICAgwHnzwQdtYZmamIcl46qmn7I6ZkJBgREdHV4rhscceM/74v9GcOXMMScaPP/541rgrzpGSkmIb69Kli9G0aVPj559/to3t2rXL8PPzM+68885K57vrrrvsjvnXv/7VaNy48VnP+cfv0aBBA8MwDOPmm282rr32WsMwDKOsrMyIiIgwpk2bVuXPoKioyCgrK6v0PQICAozp06fbxj7//PNK361C7969DUnGwoULq1zXu3dvu7G1a9cakozHH3/cOHTokBEcHGwMGTLknN8RMBsqcniM/Px8SVJISIhD23/wwQeSpMTERLvxBx98UJIqXUvv0KGDevbsafvcpEkTtW3bVocOHTrvmM9UcW393XffVXl5uUP7HDt2TOnp6RoxYoQaNWpkG7/00kvVv39/2/f8o3/+8592n3v27Kmff/7Z9jN0xO23365NmzYpOztbGzduVHZ2dpVtden0dXU/v9P/XJSVlennn3+2XTb44osvHD5nQECARo4c6dC2AwYM0D/+8Q9Nnz5d8fHxCgwM1PPPP+/wuQCzIJHDY1itVknSyZMnHdr++++/l5+fn9q0aWM3HhERobCwMH3//fd24y1atKh0jIYNG+qXX345z4gru/XWW9WjRw+NHj1a4eHhGjZsmN58880/TeoVcbZt27bSuvbt2+unn35SYWGh3fiZ36Vhw4aS5NR3uf766xUSEqI33nhDy5YtU7du3Sr9LCuUl5drzpw5uvjiixUQEKALLrhATZo00VdffaW8vDyHz3nhhRc6NbHtv//9rxo1aqT09HTNmzdPTZs2dXhfwCxI5PAYVqtVkZGR+vrrr53a78zJZmdTp06dKscNwzjvc1Rcv60QFBSkLVu2aP369fr73/+ur776Srfeeqv69+9faVtXuPJdKgQEBCg+Pl5LlizRypUrz1qNS9LMmTOVmJioXr166dVXX9XatWu1bt06/eUvf3G48yCd/vk448svv9Tx48clSbt373ZqX8AsSOTwKDfeeKMOHjyo1NTUc24bHR2t8vJy7d+/3248JydHubm5thno7tCwYUO7Gd4Vzqz6JcnPz0/XXnutZs+erb179+qJJ57Qxo0b9b///a/KY1fEmZGRUWndN998owsuuEANGjRw7Qucxe23364vv/xSJ0+erHKCYIW33npLffv21aJFizRs2DANGDBAsbGxlX4mjv5S5YjCwkKNHDlSHTp00D333KNZs2bp888/d9vxAV9BIodHefjhh9WgQQONHj1aOTk5ldYfPHhQzzzzjKTTrWFJlWaWz549W5J0ww03uC2uiy66SHl5efrqq69sY8eOHdPKlSvttjtx4kSlfSsejHLmLXEVmjVrpi5dumjJkiV2ifHrr7/Wxx9/bPue1aFv376aMWOGnnvuOUVERJx1uzp16lSq9lesWKEjR47YjVX8wlHVLz3Omjhxog4fPqwlS5Zo9uzZatmypRISEs76cwTMigfCwKNcdNFFWr58uW699Va1b9/e7slu27Zt04oVKzRixAhJUufOnZWQkKAXXnhBubm56t27tz777DMtWbJEQ4YMOeutTedj2LBhmjhxov7617/qvvvu06lTp7RgwQJdcskldpO9pk+fri1btuiGG25QdHS0jh8/rvnz56t58+a65pprznr8p556SgMHDlRMTIxGjRqlX3/9Vc8++6xCQ0M1depUt32PM/n5+enRRx8953Y33nijpk+frpEjR+rqq6/W7t27tWzZMrVu3dpuu4suukhhYWFauHChQkJC1KBBA3Xv3l2tWrVyKq6NGzdq/vz5euyxx2y3w6WkpKhPnz6aPHmyZs2a5dTxAJ9Wy7PmgSp9++23xt133220bNnS8Pf3N0JCQowePXoYzz77rFFUVGTbrrS01Jg2bZrRqlUro169ekZUVJQxadIku20M4/TtZzfccEOl85x529PZbj8zDMP4+OOPjY4dOxr+/v5G27ZtjVdffbXS7WcbNmwwBg8ebERGRhr+/v5GZGSkcdtttxnffvttpXOceYvW+vXrjR49ehhBQUGG1Wo1Bg0aZOzdu9dum4rznXl7W0pKiiHJyMzMPOvP1DDsbz87m7Pdfvbggw8azZo1M4KCgowePXoYqampVd429u677xodOnQw6tata/c9e/fubfzlL3+p8px/PE5+fr4RHR1tXH755UZpaandduPHjzf8/PyM1NTUP/0OgJlYDMOJ2TEAAMCjcI0cAAAvRiIHAMCLkcgBAPBiJHIAALwYiRwAAC9GIgcAwIt59QNhysvLdfToUYWEhLj10ZAAgJphGIZOnjypyMhI2xv2qkNRUZFKSkpcPo6/v78CAwPdEJH7eHUiP3r0qKKiomo7DACAi7KystS8efNqOXZRUZGCQhpLv51y+VgRERHKzMz0qGTu1Ym84r3VX+w5pGAH32ENeJvQBo6/9hPwNifz89WmVZTt3/PqUFJSIv12SgEdEqQ6Lvz/VFai7L1LVFJSQiJ3l4p2enBIiEJ+f5c14GusJHKYQI1cHq0bKIsLidyweOa0Mq9O5AAAOMwiyZVfGDx0KhaJHABgDha/04sr+3sgz4wKAAA4hIocAGAOFouLrXXP7K2TyAEA5kBrHQAAeBoqcgCAOdBaBwDAm7nYWvfQJrZnRgUAABxCRQ4AMAda6wAAeDFmrQMAAE9DRQ4AMAda6wAAeDEfba2TyAEA5uCjFbln/noBAAAcQkUOADAHWusAAHgxi8XFRE5rHQAAuBkVOQDAHPwspxdX9vdAJHIAgDn46DVyz4wKAAA4hIocAGAOPnofOYkcAGAOtNYBAICnoSIHAJgDrXUAALwYrXUAALxYRUXuyuKEli1bymKxVFrGjBkjSSoqKtKYMWPUuHFjBQcHa+jQocrJyXH6a5HIAQCoBp9//rmOHTtmW9atWydJ+tvf/iZJGj9+vFavXq0VK1Zo8+bNOnr0qOLj450+D611AIA51HBrvUmTJnafn3zySV100UXq3bu38vLytGjRIi1fvlz9+vWTJKWkpKh9+/bavn27rrrqKofPQ0UOADAHN7XW8/Pz7Zbi4uJznrqkpESvvvqq7rrrLlksFqWlpam0tFSxsbG2bdq1a6cWLVooNTXVqa9FIgcAwAlRUVEKDQ21LUlJSefcZ9WqVcrNzdWIESMkSdnZ2fL391dYWJjdduHh4crOznYqHlrrAACTcLG1/nvtm5WVJavVahsNCAg4556LFi3SwIEDFRkZ6cL5q0YiBwCYg5vuI7darXaJ/Fy+//57rV+/Xu+8845tLCIiQiUlJcrNzbWrynNychQREeFUWLTWAQCoRikpKWratKluuOEG21jXrl1Vr149bdiwwTaWkZGhw4cPKyYmxqnjU5EDAMzBYnFx1rrz1Xx5eblSUlKUkJCgunX/f8oNDQ3VqFGjlJiYqEaNGslqtWrcuHGKiYlxasa6RCIHAJhFLTzZbf369Tp8+LDuuuuuSuvmzJkjPz8/DR06VMXFxYqLi9P8+fOdPgeJHACAajJgwAAZhlHlusDAQCUnJys5Odmlc5DIAQDmwEtTAADwYj760hQSOQDAHHy0IvfMXy8AAIBDqMgBAOZAax0AAC9Gax0AAHgaKnIAgClYLBZZfLAiJ5EDAEzBVxM5rXUAALwYFTkAwBwsvy+u7O+BSOQAAFOgtQ4AADwOFTkAwBR8tSInkQMATIFEDgCAF/PVRM41cgAAvBgVOQDAHLj9DAAA70VrHQAAeBwqcgCAKZx+i6krFbn7YnEnEjkAwBQscrG17qGZnNY6AABejIocAGAKvjrZjUQOADAHH739jNY6AABejIocAGAOLrbWDVrrAADUHlevkbs24736kMgBAKbgq4mca+QAAHgxKnIAgDn46Kx1EjkAwBRorQMAAI9DRQ4AMAVfrchJ5AAAU/DVRE5rHQAAL0ZFDgAwBV+tyEnkAABz8NHbz2itAwBQTY4cOaI77rhDjRs3VlBQkDp16qSdO3fa1huGoSlTpqhZs2YKCgpSbGys9u/f79Q5SOQAAFOoaK27sjjjl19+UY8ePVSvXj19+OGH2rt3r55++mk1bNjQts2sWbM0b948LVy4UDt27FCDBg0UFxenoqIih89Dax0AYAo1fY38//7v/xQVFaWUlBTbWKtWrWz/bRiG5s6dq0cffVSDBw+WJC1dulTh4eFatWqVhg0b5tB5qMgBAKbgroo8Pz/fbikuLq7yfO+9956uuOIK/e1vf1PTpk112WWX6cUXX7Stz8zMVHZ2tmJjY21joaGh6t69u1JTUx3+XiRyAACcEBUVpdDQUNuSlJRU5XaHDh3SggULdPHFF2vt2rW69957dd9992nJkiWSpOzsbElSeHi43X7h4eG2dY6gtQ4AMAc3zVrPysqS1Wq1DQcEBFS5eXl5ua644grNnDlTknTZZZfp66+/1sKFC5WQkOBCIPaoyAEApuCu1rrVarVbzpbImzVrpg4dOtiNtW/fXocPH5YkRURESJJycnLstsnJybGtcwSJHACAatCjRw9lZGTYjX377beKjo6WdHriW0REhDZs2GBbn5+frx07digmJsbh85DIcU7dOl2iZmEBlZZJE+6r7dAAt9j6yRYNHTJIrVpEKqieRe+9u6q2Q0I1qOnbz8aPH6/t27dr5syZOnDggJYvX64XXnhBY8aMscXzwAMP6PHHH9d7772n3bt3684771RkZKSGDBni8Hk8IpEnJyerZcuWCgwMVPfu3fXZZ5/Vdkj4gw//96l2ZXxvW95Y9YEkadDgobUcGeAehYWF6nRpZ82dl1zboaAaWeRiInfyAnu3bt20cuVKvfbaa+rYsaNmzJihuXPnavjw4bZtHn74YY0bN0733HOPunXrpoKCAn300UcKDAx0/HsZhmE4FZmbvfHGG7rzzju1cOFCde/eXXPnztWKFSuUkZGhpk2b/um++fn5Cg0N1beHf1TIHyYeoHpNfuRBrV/7gbZ9sddjnz3sS8Ia+Nd2CKYSVM+iN95aqZsGD6ntUEwhPz9f4Y1DlZeXZzeBzN3nCA0NVdQ/3pBfQP3zPk558SllPX9rtcZ6Pmq9Ip89e7buvvtujRw5Uh06dNDChQtVv359vfzyy7UdGqpQUlKit998TcPuGEESB+BVarq1XlNqNZGXlJQoLS3N7mZ4Pz8/xcbGOnUzPGrOR++/p/y8XN16+99rOxQAcI7FDYsHqtX7yH/66SeVlZVVeTP8N998U2n74uJiuyfo5OfnV3uMsLf8lRT1i41TRLPI2g4FACAPaK07Iykpye5pOlFRUbUdkqlkHf5en2zaqNvvHFnboQCA02itV4MLLrhAderUcfhm+EmTJikvL8+2ZGVl1VSokPTGsqW6oElTxcZdX9uhAIDTSOTVwN/fX127drW7Gb68vFwbNmyo8mb4gICASk/UQc0oLy/X68uW6pbb7lDdujzZF76loKBAu9LTtSs9XZL0XWamdqWn257ABd9gsbi+eKJa/xc5MTFRCQkJuuKKK3TllVdq7ty5Kiws1MiRtG89yZZNG3Tkh8Madof7ng8MeIov0nYqLrav7fPEhxIlSXf8PUEvvry4lqICHFPrifzWW2/Vjz/+qClTpig7O1tdunTRRx99VGkCHGpXn379dSy36lf1Ad6uV+8++rW0Vh+pgRpwuqp25X3kbgzGjWo9kUvS2LFjNXbs2NoOAwDgy1xtj3toIveqWesAAMCeR1TkAABUN1dnnnvqrHUSOQDAFFydee6heZzWOgAA3oyKHABgCn5+Fvn5nX9Zbbiwb3UikQMATIHWOgAA8DhU5AAAU2DWOgAAXsxXW+skcgCAKfhqRc41cgAAvBgVOQDAFHy1IieRAwBMwVevkdNaBwDAi1GRAwBMwSIXW+se+h5TEjkAwBRorQMAAI9DRQ4AMAVmrQMA4MVorQMAAI9DRQ4AMAVa6wAAeDFfba2TyAEApuCrFTnXyAEA8GJU5AAAc3Cxte6hD3YjkQMAzIHWOgAA8DhU5AAAU/DVWetU5AAAU6horbuyOGPq1KmV9m/Xrp1tfVFRkcaMGaPGjRsrODhYQ4cOVU5OjtPfi0QOAEA1+ctf/qJjx47Zlq1bt9rWjR8/XqtXr9aKFSu0efNmHT16VPHx8U6fg9Y6AMAUaqO1XrduXUVERFQaz8vL06JFi7R8+XL169dPkpSSkqL27dtr+/btuuqqqxw+BxU5AMAU3NVaz8/Pt1uKi4vPes79+/crMjJSrVu31vDhw3X48GFJUlpamkpLSxUbG2vbtl27dmrRooVSU1Od+l4kcgAAnBAVFaXQ0FDbkpSUVOV23bt31+LFi/XRRx9pwYIFyszMVM+ePXXy5EllZ2fL399fYWFhdvuEh4crOzvbqXhorQMATMFd95FnZWXJarXaxgMCAqrcfuDAgbb/vvTSS9W9e3dFR0frzTffVFBQ0HnHcSYqcgCAKVRcI3dlkSSr1Wq3nC2RnyksLEyXXHKJDhw4oIiICJWUlCg3N9dum5ycnCqvqf8ZEjkAwBRq+vazMxUUFOjgwYNq1qyZunbtqnr16mnDhg229RkZGTp8+LBiYmKcOi6tdQAAqsGECRM0aNAgRUdH6+jRo3rsscdUp04d3XbbbQoNDdWoUaOUmJioRo0ayWq1aty4cYqJiXFqxrpEIgcAmERN3372ww8/6LbbbtPPP/+sJk2a6JprrtH27dvVpEkTSdKcOXPk5+enoUOHqri4WHFxcZo/f77TcZHIAQCmUNMvTXn99df/dH1gYKCSk5OVnJx83jFJXCMHAMCrUZEDAEzBIhdb626LxL1I5AAAU/CzWOTnQiZ3Zd/qRGsdAAAvRkUOADAFX30fOYkcAGAKNT1rvaaQyAEApuBnOb24sr8n4ho5AABejIocAGAOFhfb4x5akZPIAQCm4KuT3WitAwDgxajIAQCmYPn9jyv7eyISOQDAFJi1DgAAPA4VOQDAFEz9QJj33nvP4QPedNNN5x0MAADVxVdnrTuUyIcMGeLQwSwWi8rKylyJBwAAOMGhRF5eXl7dcQAAUK189TWmLl0jLyoqUmBgoLtiAQCg2vhqa93pWetlZWWaMWOGLrzwQgUHB+vQoUOSpMmTJ2vRokVuDxAAAHeomOzmyuKJnE7kTzzxhBYvXqxZs2bJ39/fNt6xY0e99NJLbg0OAAD8OacT+dKlS/XCCy9o+PDhqlOnjm28c+fO+uabb9waHAAA7lLRWndl8UROXyM/cuSI2rRpU2m8vLxcpaWlbgkKAAB389XJbk5X5B06dNAnn3xSafytt97SZZdd5pagAACAY5yuyKdMmaKEhAQdOXJE5eXleuedd5SRkaGlS5dqzZo11REjAAAus8i1V4p7Zj1+HhX54MGDtXr1aq1fv14NGjTQlClTtG/fPq1evVr9+/evjhgBAHCZr85aP6/7yHv27Kl169a5OxYAAOCk834gzM6dO7Vv3z5Jp6+bd+3a1W1BAQDgbr76GlOnE/kPP/yg2267TZ9++qnCwsIkSbm5ubr66qv1+uuvq3nz5u6OEQAAl/nq28+cvkY+evRolZaWat++fTpx4oROnDihffv2qby8XKNHj66OGAEAwFk4XZFv3rxZ27ZtU9u2bW1jbdu21bPPPquePXu6NTgAANzJQ4tqlzidyKOioqp88EtZWZkiIyPdEhQAAO5Ga/13Tz31lMaNG6edO3faxnbu3Kn7779f//3vf90aHAAA7lIx2c2VxRM5VJE3bNjQ7jeRwsJCde/eXXXrnt79t99+U926dXXXXXdpyJAh1RIoAACozKFEPnfu3GoOAwCA6uWrrXWHEnlCQkJ1xwEAQLXy1Ue0nvcDYSSpqKhIJSUldmNWq9WlgAAAgOOcTuSFhYWaOHGi3nzzTf3888+V1peVlbklMAAA3InXmP7u4Ycf1saNG7VgwQIFBATopZde0rRp0xQZGamlS5dWR4wAALjMYnF9OV9PPvmkLBaLHnjgAdtYUVGRxowZo8aNGys4OFhDhw5VTk6O08d2OpGvXr1a8+fP19ChQ1W3bl317NlTjz76qGbOnKlly5Y5HQAAAL7s888/1/PPP69LL73Ubnz8+PFavXq1VqxYoc2bN+vo0aOKj493+vhOJ/ITJ06odevWkk5fDz9x4oQk6ZprrtGWLVucDgAAgJpQG68xLSgo0PDhw/Xiiy+qYcOGtvG8vDwtWrRIs2fPVr9+/dS1a1elpKRo27Zt2r59u1PncDqRt27dWpmZmZKkdu3a6c0335R0ulKveIkKAACexl2t9fz8fLuluLj4rOccM2aMbrjhBsXGxtqNp6WlqbS01G68Xbt2atGihVJTU536Xk4n8pEjR2rXrl2SpEceeUTJyckKDAzU+PHj9dBDDzl7OAAAvEpUVJRCQ0NtS1JSUpXbvf766/riiy+qXJ+dnS1/f/9KBXB4eLiys7OdisfpWevjx4+3/XdsbKy++eYbpaWlqU2bNpX6/wAAeAp3zVrPysqyu9U6ICCg0rZZWVm6//77tW7dOgUGBp73OR3h0n3kkhQdHa3o6Gh3xAIAQLVxdeZ5xb5Wq/Wcz0xJS0vT8ePHdfnll9vGysrKtGXLFj333HNau3atSkpKlJuba1eV5+TkKCIiwqm4HErk8+bNc/iA9913n1MBAABQE2ryEa3XXnutdu/ebTc2cuRItWvXThMnTlRUVJTq1aunDRs2aOjQoZKkjIwMHT58WDExMU7F5VAinzNnjkMHs1gsJHIAgOmFhISoY8eOdmMNGjRQ48aNbeOjRo1SYmKiGjVqJKvVqnHjxikmJkZXXXWVU+dyKJFXzFL3VD8VlKjIUnLuDQEv1KpPYm2HAFQbo6zm/u3203nM8D5jf3eaM2eO/Pz8NHToUBUXFysuLk7z5893+jguXyMHAMAb1PbbzzZt2mT3OTAwUMnJyUpOTnbpuO7+BQMAANQgKnIAgClYLJKfG2atexoSOQDAFPxcTOSu7FudaK0DAODFziuRf/LJJ7rjjjsUExOjI0eOSJJeeeUVbd261a3BAQDgLrXx0pSa4HQif/vttxUXF6egoCB9+eWXtofF5+XlaebMmW4PEAAAd6horbuyeCKnE/njjz+uhQsX6sUXX1S9evVs4z169NAXX3zh1uAAAMCfc3qyW0ZGhnr16lVpPDQ0VLm5ue6ICQAAt3PXs9Y9jdMVeUREhA4cOFBpfOvWrWrdurVbggIAwN0q3n7myuKJnE7kd999t+6//37t2LFDFotFR48e1bJlyzRhwgTde++91REjAAAu83PD4omcbq0/8sgjKi8v17XXXqtTp06pV69eCggI0IQJEzRu3LjqiBEAAJyF04ncYrHoP//5jx566CEdOHBABQUF6tChg4KDg6sjPgAA3MJXr5Gf95Pd/P391aFDB3fGAgBAtfGTa9e5/eSZmdzpRN63b98/vSl+48aNLgUEAAAc53Qi79Kli93n0tJSpaen6+uvv1ZCQoK74gIAwK1orf9uzpw5VY5PnTpVBQUFLgcEAEB14KUp53DHHXfo5ZdfdtfhAACAA9z2GtPU1FQFBga663AAALjV6feRn39Z7TOt9fj4eLvPhmHo2LFj2rlzpyZPnuy2wAAAcCeukf8uNDTU7rOfn5/atm2r6dOna8CAAW4LDAAAnJtTibysrEwjR45Up06d1LBhw+qKCQAAt2Oym6Q6depowIABvOUMAOB1LG7444mcnrXesWNHHTp0qDpiAQCg2lRU5K4snsjpRP74449rwoQJWrNmjY4dO6b8/Hy7BQAA1ByHr5FPnz5dDz74oK6//npJ0k033WT3qFbDMGSxWFRWVub+KAEAcJGvXiN3OJFPmzZN//znP/W///2vOuMBAKBaWCyWP31XiCP7eyKHE7lhGJKk3r17V1swAADAOU7dfuapv40AAHAupm+tS9Ill1xyzmR+4sQJlwICAKA68GQ3nb5OfuaT3QAAQO1xKpEPGzZMTZs2ra5YAACoNn4Wi0svTXFl3+rkcCLn+jgAwJv56jVyhx8IUzFrHQAAeA6HK/Ly8vLqjAMAgOrl4mQ3D33UuvOvMQUAwBv5ySI/F7KxK/tWJxI5AMAUfPX2M6dfmgIAADwHiRwAYAo1/RrTBQsW6NJLL5XVapXValVMTIw+/PBD2/qioiKNGTNGjRs3VnBwsIYOHaqcnBznv5fTewAA4IUq7iN3ZXFG8+bN9eSTTyotLU07d+5Uv379NHjwYO3Zs0eSNH78eK1evVorVqzQ5s2bdfToUcXHxzv9vbhGDgBANRg0aJDd5yeeeEILFizQ9u3b1bx5cy1atEjLly9Xv379JEkpKSlq3769tm/frquuusrh81CRAwBMoWKymyvL+SorK9Prr7+uwsJCxcTEKC0tTaWlpYqNjbVt065dO7Vo0UKpqalOHZuKHABgCn5y8RGtv99+lp+fbzceEBCggICAKvfZvXu3YmJiVFRUpODgYK1cuVIdOnRQenq6/P39FRYWZrd9eHi4srOznYwLAAA4LCoqSqGhobYlKSnprNu2bdtW6enp2rFjh+69914lJCRo7969bo2HihwAYAruuo88KytLVqvVNn62alyS/P391aZNG0lS165d9fnnn+uZZ57RrbfeqpKSEuXm5tpV5Tk5OYqIiHAqLipyAIAp+LlhkWS7naxi+bNEfqby8nIVFxera9euqlevnjZs2GBbl5GRocOHDysmJsap70VFDgBANZg0aZIGDhyoFi1a6OTJk1q+fLk2bdqktWvXKjQ0VKNGjVJiYqIaNWokq9WqcePGKSYmxqkZ6xKJHABgEhaLxaVXcju77/Hjx3XnnXfq2LFjCg0N1aWXXqq1a9eqf//+kqQ5c+bIz89PQ4cOVXFxseLi4jR//nyn4yKRAwBMwSLXXmDm7L6LFi360/WBgYFKTk5WcnLy+QclEjkAwCTO5+lsZ+7viZjsBgCAF6MiBwCYhmfW1K4hkQMATIH3kQMAAI9DRQ4AMIWavv2sppDIAQCm8Mens53v/p7IU+MCAAAOoCIHAJgCrXUAALxYTT/ZrabQWgcAwItRkQMATIHWOgAAXsxXZ62TyAEApuCrFbmn/oIBAAAcQEUOADAFX521TiIHAJgCL00BAAAeh4ocAGAKfrLIz4UGuSv7VicSOQDAFGitAwAAj0NFDgAwBcvvf1zZ3xORyAEApkBrHQAAeBwqcgCAKVhcnLVOax0AgFrkq611EjkAwBR8NZFzjRwAAC9GRQ4AMAVuPwMAwIv5WU4vruzviWitAwDgxajIAQCmQGsdAAAvxqx1AADgcajIAQCmYJFr7XEPLchJ5AAAc2DWOgAA8DhU5Khk5/atWvz8M9r3Vbp+PJ6tuS8uV7/rBtnWPzr+H3rvreV2+1zdO1YLX11Z06EC5+Wb96cpOrJxpfGFb2zRnCXrlfHB9Cr3G/7QIr2z/svqDg/VxFdnrddqRb5lyxYNGjRIkZGRslgsWrVqVW2Gg9/9+usptW3fSf9+/OmzbtOjT39tTDtgW2Y993INRgi45po7nlLL2Em25fp/PitJemfdl/oh5xe7dS1jJ2n6gjU6WViktZ/uqeXI4YqKWeuuLM5ISkpSt27dFBISoqZNm2rIkCHKyMiw26aoqEhjxoxR48aNFRwcrKFDhyonJ8ep89RqRV5YWKjOnTvrrrvuUnx8fG2Ggj/o2XeAevYd8Kfb+Pv764Km4TUUEeBeP/1SYPd5wsiOOnj4R32Stl+SlPPzSbv1N/XtrLfXfaHCX0tqLEa4n0WuTVhzdt/NmzdrzJgx6tatm3777Tf9+9//1oABA7R37141aNBAkjR+/Hi9//77WrFihUJDQzV27FjFx8fr008/dfg8tZrIBw4cqIEDB9ZmCDhPO7dvVe8urWQNDdOVV/fWuIcnK6xh5VYl4Onq1a2jYdd307xXN1a5/rL2UerSLkrjn3yzhiODt/voo4/sPi9evFhNmzZVWlqaevXqpby8PC1atEjLly9Xv379JEkpKSlq3769tm/frquuusqh83jVNfLi4mIVFxfbPufn59diNObVo09/XTvwJl0Y1VI/fH9I82ZN07/+PlSvvLtBderUqe3wAKfc1PdShYUE6dXVO6pcnzAkRvsOHdP2XZk1HBnczU8W+bnwVBe/32vyM3NPQECAAgICzrl/Xl6eJKlRo0aSpLS0NJWWlio2Nta2Tbt27dSiRQulpqY6nMi9atZ6UlKSQkNDbUtUVFRth2RKAwffrL4DbtAl7f+iftcN0nMpK/T1rjR9nvpJbYcGOC1hyNVa++leHfsxr9K6wIB6unXgFVqyKrUWIoO7WdywSFJUVJRdLkpKSjrnucvLy/XAAw+oR48e6tixoyQpOztb/v7+CgsLs9s2PDxc2dnZDn8vr6rIJ02apMTERNvn/Px8krkHaB7dSg0bNVbWd4d01TV9ajscwGEtmjVUv+5tNWzCi1Wu/2tsF9UP9NeyNZ/VcGTwZFlZWbJarbbPjlTjY8aM0ddff62tW7e6PR6vSuSOti9Qs7KPHVHuLyeY/Aav8/ebYnT8xEl9+EnVs9FHDLla72/eXWlyHLyUm2a7Wa1Wu0R+LmPHjtWaNWu0ZcsWNW/e3DYeERGhkpIS5ebm2lXlOTk5ioiIcPj4XtVaR804VVigb/Z8pW/2fCVJOpL1vb7Z85WOHcnSqcICPf34f7Tri890JOt7bd+6SfePGqYWLVurR+/YcxwZ8BwWi0V3Dr5Ky9bsUFlZeaX1raMu0DWXX6SUldtqITpUB4sb/jjDMAyNHTtWK1eu1MaNG9WqVSu79V27dlW9evW0YcMG21hGRoYOHz6smJgYh89TqxV5QUGBDhw4YPucmZmp9PR0NWrUSC1atKjFyMxtz1dfatQt19s+PzV9kiTppptv16Mz52r/vj16763lOpmfp6bhzRTTq5/GTpgsf7ol8CL9urdVi2aNtGTV9irXJwyO0ZGcXK1P/aaGI4OvGDNmjJYvX653331XISEhtuveoaGhCgoKUmhoqEaNGqXExEQ1atRIVqtV48aNU0xMjMMT3STJYhiGUV1f4lw2bdqkvn37VhpPSEjQ4sWLz7l/fn6+QkNDtW3vEQWHON7mALzJlYMeqe0QgGpjlJWoePeLysvLc6pd7YyKXLEh/bBLuaLgZL6u7dLC4VgtZ5khn5KSohEjRkg6/UCYBx98UK+99pqKi4sVFxen+fPnO9Var9WKvE+fPqrF3yMAACZS0w+EcSS/BQYGKjk5WcnJyecXlLhGDgCAV/OqWesAAJy3mi7JawiJHABgCr769jMSOQDAFM7nDWZn7u+JuEYOAIAXoyIHAJiCj14iJ5EDAEzCRzM5rXUAALwYFTkAwBSYtQ4AgBdj1joAAPA4VOQAAFPw0bluJHIAgEn4aCantQ4AgBejIgcAmAKz1gEA8GK+OmudRA4AMAUfvUTONXIAALwZFTkAwBx8tCQnkQMATMFXJ7vRWgcAwItRkQMATIFZ6wAAeDEfvUROax0AAG9GRQ4AMAcfLclJ5AAAU2DWOgAA8DhU5AAAU2DWOgAAXsxHL5GTyAEAJuGjmZxr5AAAeDEqcgCAKfjqrHUSOQDAHFyc7OaheZzWOgAA3oyKHABgCj46141EDgAwCR/N5LTWAQDwYlTkAABT8NVZ61TkAABTqHhEqyuLM7Zs2aJBgwYpMjJSFotFq1atsltvGIamTJmiZs2aKSgoSLGxsdq/f7/T34tEDgBANSgsLFTnzp2VnJxc5fpZs2Zp3rx5WrhwoXbs2KEGDRooLi5ORUVFTp2H1joAwBRqeq7bwIEDNXDgwCrXGYahuXPn6tFHH9XgwYMlSUuXLlV4eLhWrVqlYcOGOXweKnIAgDlY3LBIys/Pt1uKi4udDiUzM1PZ2dmKjY21jYWGhqp79+5KTU116lgkcgCAKVjc8EeSoqKiFBoaaluSkpKcjiU7O1uSFB4ebjceHh5uW+coWusAADghKytLVqvV9jkgIKAWo6EiBwCYhEUuzlr//ThWq9VuOZ9EHhERIUnKycmxG8/JybGtcxSJHABgCm66RO4WrVq1UkREhDZs2GAby8/P144dOxQTE+PUsWitAwBQDQoKCnTgwAHb58zMTKWnp6tRo0Zq0aKFHnjgAT3++OO6+OKL1apVK02ePFmRkZEaMmSIU+chkQMATOF8Hupy5v7O2Llzp/r27Wv7nJiYKElKSEjQ4sWL9fDDD6uwsFD33HOPcnNzdc011+ijjz5SYGCgU+chkQMATKJm7yTv06ePDMM4+9EsFk2fPl3Tp093ISaukQMA4NWoyAEAplDTrfWaQiIHAJiCj76OnNY6AADejIocAGAKtNYBAPBif3xe+vnu74lI5AAAc/DRi+RcIwcAwItRkQMATMFHC3ISOQDAHHx1shutdQAAvBgVOQDAFJi1DgCAN/PRi+S01gEA8GJU5AAAU/DRgpxEDgAwB2atAwAAj0NFDgAwCddmrXtqc51EDgAwBVrrAADA45DIAQDwYrTWAQCm4KutdRI5AMAUfPURrbTWAQDwYlTkAABToLUOAIAX89VHtNJaBwDAi1GRAwDMwUdLchI5AMAUmLUOAAA8DhU5AMAUmLUOAIAX89FL5CRyAIBJ+Ggm5xo5AABejIocAGAKvjprnUQOADAFJrt5IMMwJEmFBSdrORKg+hhlJbUdAlBtKv5+V/x7Xp3y8/Nrdf/q4tWJ/OTJ0wm8/5XtajkSAIArTp48qdDQ0Go5tr+/vyIiInRxqyiXjxURESF/f383ROU+FqMmfg2qJuXl5Tp69KhCQkJk8dSeh4/Jz89XVFSUsrKyZLVaazscwK34+13zDMPQyZMnFRkZKT+/6pt/XVRUpJIS17tb/v7+CgwMdENE7uPVFbmfn5+aN29e22GYktVq5R86+Cz+ftes6qrE/ygwMNDjErC7cPsZAABejEQOAIAXI5HDKQEBAXrssccUEBBQ26EAbsffb3gjr57sBgCA2VGRAwDgxUjkAAB4MRI5AABejEQOAIAXI5HDYcnJyWrZsqUCAwPVvXt3ffbZZ7UdEuAWW7Zs0aBBgxQZGSmLxaJVq1bVdkiAw0jkcMgbb7yhxMREPfbYY/riiy/UuXNnxcXF6fjx47UdGuCywsJCde7cWcnJybUdCuA0bj+DQ7p3765u3brpueeek3T6OfdRUVEaN26cHnnkkVqODnAfi8WilStXasiQIbUdCuAQKnKcU0lJidLS0hQbG2sb8/PzU2xsrFJTU2sxMgAAiRzn9NNPP6msrEzh4eF24+Hh4crOzq6lqAAAEokcAACvRiLHOV1wwQWqU6eOcnJy7MZzcnIUERFRS1EBACQSORzg7++vrl27asOGDbax8vJybdiwQTExMbUYGQCgbm0HAO+QmJiohIQEXXHFFbryyis1d+5cFRYWauTIkbUdGuCygoICHThwwPY5MzNT6enpatSokVq0aFGLkQHnxu1ncNhzzz2np556StnZ2erSpYvmzZun7t2713ZYgMs2bdqkvn37VhpPSEjQ4sWLaz4gwAkkcgAAvBjXyAEA8GIkcgAAvBiJHAAAL0YiBwDAi5HIAQDwYiRyAAC8GIkcAAAvRiIHXDRixAi7d1f36dNHDzzwQI3HsWnTJlksFuXm5p51G4vFolWrVjl8zKlTp6pLly4uxfXdd9/JYrEoPT3dpeMAqBqJHD5pxIgRslgsslgs8vf3V5s2bTR9+nT99ttv1X7ud955RzNmzHBoW0eSLwD8GZ61Dp913XXXKSUlRcXFxfrggw80ZswY1atXT5MmTaq0bUlJifz9/d1y3kaNGrnlOADgCCpy+KyAgABFREQoOjpa9957r2JjY/Xee+9J+v/t8CeeeEKRkZFq27atJCkrK0u33HKLwsLC1KhRIw0ePFjfffed7ZhlZWVKTExUWFiYGjdurIcfflhnPuX4zNZ6cXGxJk6cqKioKAUEBKhNmzZatGiRvvvuO9vzvRs2bCiLxaIRI0ZIOv12uaSkJLVq1UpBQUHq3Lmz3nrrLbvzfPDBB7rkkksUFBSkvn372sXpqIkTJ+qSSy5R/fr11bp1a02ePFmlpaWVtnv++ecVFRWl+vXr65ZbblFeXp7d+pdeeknt27dXYGCg2rVrp/nz5zsdC4DzQyKHaQQFBamkpMT2ecOGDcrIyNC6deu0Zs0alZaWKi4uTiEhIfrkk0/06aefKjg4WNddd51tv6efflqLFy/Wyy+/rK1bt+rEiRNauXLln573zjvv1GuvvaZ58+Zp3759ev755xUcHKyoqCi9/fbbkqSMjAwdO3ZMzzzzjCQpKSlJS5cu1cKFC7Vnzx6NHz9ed9xxhzZv3izp9C8c8fHxGjRokNLT0zV69Gg98sgjTv9MQkJCtHjxYu3du1fPPPOMXnzxRc2ZM8dumwMHDujNN9/U6tWr9dFHH+nLL7/Uv/71L9v6ZcuWacqUKXriiSe0b98+zZw5U5MnT9aSJUucjgfAeTAAH5SQkGAMHjzYMAzDKC8vN9atW2cEBAQYEyZMsK0PDw83iouLbfu88sorRtu2bY3y8nLbWHFxsREUFGSsXbvWMAzDaNasmTFr1izb+tLSUqN58+a2cxmGYfTu3du4//77DcMwjIyMDEOSsW7duirj/N///mdIMn755RfbWFFRkVG/fn1j27ZtdtuOGjXKuO222wzDMIxJkyYZHTp0sFs/ceLESsc6kyRj5cqVZ13/1FNPGV27drV9fuyxx4w6deoYP/zwg23sww8/NPz8/Ixjx44ZhmEYF110kbF8+XK748yYMcOIiYkxDMMwMjMzDUnGl19+edbzAjh/XCOHz1qzZo2Cg4NVWlqq8vJy3X777Zo6daptfadOneyui+/atUsHDhxQSEiI3XGKiop08OBB5eXl6dixY3avbq1bt66uuOKKSu31Cunp6apTp4569+7tcNwHDhzQqVOn1L9/f7vxkpISXXbZZZKkffv2VXqFbExMjMPnqPDGG29o3rx5OnjwoAoKCvTbb7/JarXabdOiRQtdeOGFducpLy9XRkaGQkJCdPDgQY0aNUp33323bZvffvtNoaGhTscDwHkkcvisvn37asGCBfL391dkZKTq1rX/696gQQO7zwUFBeratauWLVtW6VhNmjQ5rxiCgoKc3qegoECS9P7779slUOn0dX93SU1N1fDhwzVt2jTFxcUpNDRUr7/+up5++mmnY33xxRcr/WJRp04dt8UK4OxI5PBZDRo0UJs2bRze/vLLL9cbb7yhpk2bVqpKKzRr1kw7duxQr169JJ2uPNPS0nT55ZdXuX2nTp1UXl6uzZs3KzY2ttL6io5AWVmZbaxDhw4KCAjQ4cOHz1rJt2/f3jZxr8L27dvP/SX/YNu2bYqOjtZ//vMf29j3339fabvDhw/r6NGjioyMtJ3Hz89Pbdu2VXh4uCIjI3Xo0CENHz7cqfMDcA8muwG/Gz58uC644AINHjxYn3zyiTIzM7Vp0ybdd999+uGHHyRJ999/v5588kmtWrVK33zzjf71r3/96T3gLVu2VEJCgu666y6tWrXKdsw333xTkhQdHS2LxaI1a9boxx9/VEFBgUJCQjRhwgSNHz9eS5Ys0cGDB/XFF1/o2WeftU0g++c//6n9+/froYceUkZGhpYvX67Fixc79X0vvvhiHT58WK+//roOHjyoefPmVTlxLzAwUAkJCdq1a5c++eQT3XfffbrlllsUEREhSZo2bZqSkpI0b948ffvtt9q9e7dSUlI0e/Zsp+IBcH5I5MDv6tevry1btqhFixaKj49X+/btNWrUKBUVFdkq9AcffFB///vflZCQoJiYGIWEhOivf/3rnx53wYIFuvnmm/Wvf/1L7dq10913363CwkJJ0oUXXqhp06bpkUceUXh4uMaOHStJmjFjhiZPnqykpCS1b99e1113nd5//321atVK0unr1m+//bZWrVqlzp07a+HChZo5c6ZT3/emm27S+PHjNXbsWHXp0kXbtm3T5MmTK23Xpk0bxcfH6/rrr9eAAQN06aWX2t1eNnr0aL300ktKSUlRp06d1Lt3by1evNgWK4DqZTHONksHAAB4PCpyAAC8GIkcAAAvRiIHAMCLkcgBAPBiJHIAALwYiRwAAC9GIgcAwIuRyAEA8GIkcgAAvBiJHAAAL0YiBwDAi5HIAQDwYv8PWo86ZUz4IOQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "accuracy = accuracy_score(test_y, test_y_)\n", + "precision = precision_score(test_y, test_y_)\n", + "recall = recall_score(test_y, test_y_)\n", + "\n", + "print(f\"\\nAccuracy: {accuracy:.2f}\")\n", + "print(f\"Precision: {precision:.2f}\")\n", + "print(f\"Recall: {recall:.2f}\")\n", + "\n", + "# Classification report and confusion matrix\n", + "print(\"\\nNaive Bayes Classification Report:\")\n", + "print(classification_report(test_y, test_y_))\n", + "\n", + "print(\"\\nNaive Bayes Confusion Matrix:\")\n", + "print(confusion_matrix(test_y, test_y_))\n", + "\n", + "# Plot Confusion Matrix\n", + "skplt.metrics.plot_confusion_matrix(test_y, test_y_)" + ] + }, + { + "cell_type": "markdown", + "id": "3e8003fa", + "metadata": {}, + "source": [ + "Lets solve it using random forest" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/ML/classification/random forrest/.gitignore b/ML/classification/random forrest/.gitignore new file mode 100644 index 0000000..849d8e6 --- /dev/null +++ b/ML/classification/random forrest/.gitignore @@ -0,0 +1,3 @@ +*.csv +.ipynb_checkpoints + diff --git a/ML/classification/random forrest/.gitkeep b/ML/classification/random forrest/.gitkeep new file mode 100644 index 0000000..e69de29 diff --git a/ML/classification/random forrest/dataset/archive.zip b/ML/classification/random forrest/dataset/archive.zip new file mode 100644 index 0000000000000000000000000000000000000000..1809c4186d5d6649c10b6fd38e96cd67264e504d GIT binary patch literal 4963 zcmai&bx;%xx5gJFmPS&LlwL|{kQStrX6Y`GZX^Zi?xkD=q!yM~q+>-uU=a{yVPPrh zE(z)H{qFmHbLW0D_ug~NCW<>a_;}F?&gcIz(MzJidE)oKwp|%!5yUJV>^+51D5b{ zf(w~DZYtl&-qXyfAK&C924mB7oDbwU1O)|M)~{{{iz6<7A(0oY5urbdd#+X_7w=A4 z74GtGZ?FotJH2X7Y8?md1uwX6ewZ%Ja{fvTR(aF~>7x{he zTsd>C@QPA}*S>wXBpEj-!U(}LlR`Hsz$33(_Nr5-1%einA6aaP_&tLxyYnixaP^U72Z@tx)I% z?sblcSm64By~ggub=3tWDHc_4r_a6PJakJ=dt7;bvm_qn1+Ih&;6 zNJ^$gbwu#W6QvSGTgwtZd)v_Mt{@QtIy0K&n4v7s9bv`lsInw+$&pU(isi0N(AVPV z@%_w&2ccT9N))uCnZ#O+d*ok{@{0SP&S{&-&hL(>Q(TVlF04U_N`OQ`*jOuI2HGyio>kFw$RnYyV8(?Xm8Y^0t0 z%qjlMBdl+RV*6H!BX(9Fe1Azy_d8zu3BYjw<*EVyPzrSWeJfn%Cdzm&3uEpoIT97_ zenSR)BCtKaG&ZZ~){g)SDyl!L5FlyB#f!$|a)dL;bDmNx&lN8TH?nT%0ux5zCwF>WX$mqAaM4nn@XKISP`BbzB7zt7+|2Yq1`K&lOV1?Q^yVXyjD2F?LP!U%*M=T0M!pcn+OCpQ?lRa4E$o1SLr$#k3| z&R2Ti?|q_9`~>0=cWm#M^jQ#FJXfHv9`IIbg@j2WTP?(lEO(R@%`PGd0Q<+1J;JZ! zPSUzZv$0{T3bDDqtYdHLY8!9Q9xKjf*2eV^z|3e{JDbT9vaBaPC3f!30tTN8j^U7+ zS(5q25UwXj3FxWd&qx`oY=uj398KM8gHJ;kZgX%XeJ*uLJ2jH`ryCAsiv5BDJ7tNB zH@>}FwLq^75x4N;Pz4j}mVY**qkMy`=a3WUtjruE{%zIw^B{R}QK#N+x#L+$OIu@% zn+csmbf)G`q{>KTk@jl_E(#)3pQs5Jh+?j19}rj~qOW3=&KOY32&c`MoIA{(^{nU! zHi=F(nI)S3Gryk^J>+xA+W0!R^qWI7^G1WtP;{gb&WFYtd?l}FqhC#z1A|=6_KTaS z>DtvQtZmW2BO&)yBEGkV|G#(+m0x2d+m?QNA^3Rq66+EI-}|>ZpUYh59WG; zmgi|i>NYcyl5M8+Pfe0v1Da#Q2_H)9ya5B3UP;kV2-8c@_TQSKJIhUh%AG%MU_sBi zt*(^SSCu+;CuNY&ofEr;LKj837S=Ld#!T@>TT}0OQ$|?$_4Jq zr=g1c&5HY=yjYwkadykjMqsS7r?mLRvJlN710?}pLE~JhxTRe9er=GXfto}?f4GsL zzi`?7!Pg|TPsS%hdwal&r-Y<;tgT4lJHkq_1fHC}Bv+c31@|c#$=U4#dxhvDrFr>8 z;p_9f{O_3Lg=T}*DY-v|i6+Wx*)4mfXImsI)x%gUtsqxC4N8w>vc5i08U zMCH1P2`|9xP!628`Be3LuM|;OW|g@vHERpMS9IuK;LkjVe`20&bX@%A4Jg82YtNS^;s1hd8DzKC{ z>ca`{XAea}1&^GP&BNGe8#5Zlg_#G~^(NRq8SZk^5OGxgm>YV!x#>%ts!p(=sY|TY zUL}<_#$P%H#He>H6qSyPAlSck+qU_ah z)HIuuugzmz3JSN(Jtbi5Q7ylCvCYI9=n-sUAngTa(TcQc<$!+Bl(wYM4NqRUEng(@U`jnCFzoEJD4E@Z zTMP7UZO7v4D{3`Fw5oHUo2Y1_obvpq;Fq$%lS9?uZI$ctnSyD)2r%ta0@hDZCk;bH z-18FcB}HQb?jkcVQbJZFkpl9N3Y%6Z!<}i@=dGlG=Zvp2>(v!WE2V5Uw=d;BI_%am zMwQrYfuC6>sMqZwomo%j?Z;Iy#b76cpaNvs%O>d4ym4PSP6i<2@ojkWwi)GECIqs& zQVo7ddbznlg>7a$T-+WMj>MdOXMj!Fb8n&Lv)_VFA$4#`7aa%dItX=jGuQKVaXsvz z-*YczC?L_GC^BL>GsQE1%P13I$Dwf`KmJAeHp9&41L zmHE1BOX*=jM2=E+;XwAAXI~K9j&_FXzgi#Ip2N_EqUPY)pHH{Iyu@L*((kMjEg4+u zqkAlPPcq9$;}y9k{U$$J;k80I4GM$dA6E~T6J&-z<;je1c}QTmbCq2V!TZXGH6r6h zxc93jjbZSr9i4mqBv$2zAFn&mG|gogjO@BjHm!|?yCRasW!mejW|t$H@{juaM3!|1 zN{!PqmC?optZ;Mii@~HI;soB#b3G*E)Stqm(E45>CJdQPU0=KL`P$;)m833i6j#Xk0g$=aOZ3*^2uEG=zW|Nf?R2&3DY$|ze z{3&>9n#+8>L6HkJwxf{JkffW^((9fO`#))OdU_s%h-|*SZS$l=pRD@GD!;L7P3Oie zSLB@bfnJZ?77Be#*I7)Jv+)yy=|^;p`idzdr~d38mjQ?jy&s#$>XhwDd#ig3OUOmk zb-%UWeD)rSlu@&MTpm2JCGBze-VW1ecJKwdZ)-y&7;Z*UB{7=bn?!ig5@0r1=w+=T z9i)A2!G~R*a5M$zSXiUQtEtZIW0`E%Yz^}PKWma!*nRRRwf9iphU7Xw>u2PbFsKh? zwV%(KjyA;71p=`zgnMQq{Qcy%u7`c|u1p+WJzIh53Whs~X63RDcwdgXNxc-75Q_Mr z2d-cCkTk}O4jGG8GmfvisM!TA60F}CIZRi_a1Ro`dDQ)}8g^vOY^>S>V~pUyEL`^| zK8fj2KZQjHK-O?{Liesvr6>W2aFCm&_y>t}=7e_^;Lg{YU74vk5(^|%OgYweg`>V< zfQso~017%-%5b|?a7IrRcfaTe$r0;#z!cXM^#0Gcmo@~~fBf%ls{bmZraFm)2fLE( ze8H)VXbC>@D%3dI7#rdkfmzxQ4|g2ejeBPr7{%>$Yk}-G!ojDnmFK)o(moVk^G-NW z3peEx?j^cvbrA-mc!iZFlgmKJe%vS)+ck#95v%qrnA3tJn@Mf3{4L~|a&UNfzX<%X)L z4TE1ML82$>eGM>Dfj;d{h@4ih7-u1-=PiB?uFdRkvaLFbt4p38x9!va#t(1y%3JOw zVgS}i!5uHB_hc2SW0+W+*^Jq1xd%dqT!7xSuow#|qLGMeU8DFFr(~6NJP>g#em?pI zJYy{2-9T?%{m#HI_!kcRuuJvD_~LmxTb=QTk7;PoLLsew1=^l&7=p>R!AIA@GCnlqhgrKC2>oW_qrwPca(;n7!#dT)@r!_xY2%A$Z%7H0>CLX^^c*Z1Zxnlje+ zlSJRaDn_v}FKY9oQA+I_R1FMyo>W)uH}^vjB!Z&EDb#_o-?Z!Tx}p1(+aKrj3D95U zztJIQYm3NE+xs=hEU_+0?=4cjYTb`Fv&&+B<-@-H*c4QS(DOlUjH%a?ItM(Y&~*Wo z15YB<#nSDk2Yfp!rUId}U7<@eb{4H|wAAYhHX=W@>8(S2BX_%_3h?MBT?1L+;i}rp z?Y89(1Nfq%X(r#JD~5sCBng?zU*E2{HZ)zELssODqRYCdZ78+Fm)!lHeSm=^LHxW` z8;T{fDY^HF0WS25czO(sQFx}SMmgsB-WxLdr6zeGWcAEmWbTutaQP$`g4!;2^r2&pk?%_vO>*C(UKAV<6;k&|y|ucOJF>NgEecc}pO% zKUnw4>z39giS}IAOf9?^T&MlQq=#wrkhEsDDwI=!c?BBOrSET;irBj?nD943Z;WpR z&u5Vy*2k`Sj2$%uxi(W_i@JG4i0U9a(AToEc8^RTk|KY2aD;|Rm1pIChxV7JyiE{5 zZ<=XBuP|&X@gTpe!9?T2KA>LlVDo)yUX`!q|EFa>P z{~PH5|3W%mZnkg!jdL(Ke`B1gzXjl*-c26$m?kEWdU2JM?#`LnVp4@*1%n}A)D(^^ z-NI@`N1JV5&xiD6akSlQ22;~EAZpWF%c)Q@T{-uw!~%cMWU#xZcuQprXgEsmXVSOn z#${5Lw{T~jdL`^=P3bIPmQL9V$?LsVP)oI+@*4cd$yGW=U|Mxy9r^l;oy^@CS@L$0 zG!(mwcQ>DJF*9HIS$e;vrM8=j&@tU0d3poxk2=VEMp5W$;oyn_{&#HkuXFw-{~yHq jPq+U}?7!W9{)N5%ul#hi@Cp98jr&*U{iV%R|D65-=0}nQ literal 0 HcmV?d00001 diff --git a/ML/classification/random forrest/random_forest.ipynb b/ML/classification/random forrest/random_forest.ipynb new file mode 100644 index 0000000..287ffeb --- /dev/null +++ b/ML/classification/random forrest/random_forest.ipynb @@ -0,0 +1,814 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "29b5381a-72b4-4f81-9208-2075f7acad85", + "metadata": {}, + "source": [ + "# Random Forest Classification" + ] + }, + { + "cell_type": "markdown", + "id": "cac03d32", + "metadata": {}, + "source": [ + "Configure the project. Indeed you create a dataset in csv format." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "6f480cda-8380-4355-998a-5c59d6203b05", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Archive: ./dataset/archive.zip\n", + " inflating: Graduate.csv \n", + " inflating: play.csv \n" + ] + } + ], + "source": [ + "! rm -rf *.csv\n", + "! unzip ./dataset/archive.zip\n", + "! rm play.csv\n", + "! mv Graduate.csv data.csv" + ] + }, + { + "cell_type": "markdown", + "id": "52ec2f48", + "metadata": {}, + "source": [ + "Import needed libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "dd17f780", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import StandardScaler\n", + "from imblearn.over_sampling import SMOTE\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, jaccard_score\n", + "import scikitplot as skplt\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.preprocessing import LabelEncoder\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "57b33a77", + "metadata": {}, + "source": [ + "Read data from data.csv using pandas and store in data frame structure. Also shuffle data to have uniform distribution. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a102a751", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Serial No.GRE ScoreTOEFL ScoreUniversity RatingSOPLORCGPAResearchAdmit
036233411644.03.59.5411
17431410844.54.09.0411
237531510522.02.57.6500
315631210933.03.08.6901
410532611233.53.09.0511
\n", + "
" + ], + "text/plain": [ + " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n", + "0 362 334 116 4 4.0 3.5 9.54 \n", + "1 74 314 108 4 4.5 4.0 9.04 \n", + "2 375 315 105 2 2.0 2.5 7.65 \n", + "3 156 312 109 3 3.0 3.0 8.69 \n", + "4 105 326 112 3 3.5 3.0 9.05 \n", + "\n", + " Research Admit \n", + "0 1 1 \n", + "1 1 1 \n", + "2 0 0 \n", + "3 0 1 \n", + "4 1 1 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"data.csv\")\n", + "df.head()\n", + "df = df.sample(frac=1.0, random_state=42).reset_index(drop=True)\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "ca6a571f", + "metadata": {}, + "source": [ + "## Preprocessing" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "6f063a14", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(500, 9)\n", + "Index(['Serial No.', 'GRE Score', 'TOEFL Score', 'University Rating', 'SOP',\n", + " 'LOR ', 'CGPA', 'Research', 'Admit'],\n", + " dtype='object')\n", + "Serial No. int64\n", + "GRE Score int64\n", + "TOEFL Score int64\n", + "University Rating int64\n", + "SOP float64\n", + "LOR float64\n", + "CGPA float64\n", + "Research int64\n", + "Admit int64\n", + "dtype: object\n" + ] + } + ], + "source": [ + "print(df.shape)\n", + "print(df.columns)\n", + "print(df.dtypes)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e4bf7dcd", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Admit\n", + "1 463\n", + "0 37\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['Admit'].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "1743c9c6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GRE ScoreTOEFL ScoreUniversity RatingSOPLORCGPAResearchAdmit
033411644.03.59.5411
131410844.54.09.0411
231510522.02.57.6500
331210933.03.08.6901
432611233.53.09.0511
\n", + "
" + ], + "text/plain": [ + " GRE Score TOEFL Score University Rating SOP LOR CGPA Research Admit\n", + "0 334 116 4 4.0 3.5 9.54 1 1\n", + "1 314 108 4 4.5 4.0 9.04 1 1\n", + "2 315 105 2 2.0 2.5 7.65 0 0\n", + "3 312 109 3 3.0 3.0 8.69 0 1\n", + "4 326 112 3 3.5 3.0 9.05 1 1" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = df.drop('Serial No.', axis=1)\n", + "categorical_attr = ['Admit']\n", + "\n", + "le = LabelEncoder()\n", + "df[categorical_attr] = df[categorical_attr].apply(le.fit_transform, axis=0)\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "93002df5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
GRE ScoreTOEFL ScoreUniversity RatingSOPLORCGPAResearchAdmit
count500.000000500.000000500.000000500.000000500.00000500.000000500.000000500.000000
mean316.472000107.1920003.1140003.3740003.484008.5764400.5600000.926000
std11.2951486.0818681.1435120.9910040.925450.6048130.4968840.262033
min290.00000092.0000001.0000001.0000001.000006.8000000.0000000.000000
25%308.000000103.0000002.0000002.5000003.000008.1275000.0000001.000000
50%317.000000107.0000003.0000003.5000003.500008.5600001.0000001.000000
75%325.000000112.0000004.0000004.0000004.000009.0400001.0000001.000000
max340.000000120.0000005.0000005.0000005.000009.9200001.0000001.000000
\n", + "
" + ], + "text/plain": [ + " GRE Score TOEFL Score University Rating SOP LOR \\\n", + "count 500.000000 500.000000 500.000000 500.000000 500.00000 \n", + "mean 316.472000 107.192000 3.114000 3.374000 3.48400 \n", + "std 11.295148 6.081868 1.143512 0.991004 0.92545 \n", + "min 290.000000 92.000000 1.000000 1.000000 1.00000 \n", + "25% 308.000000 103.000000 2.000000 2.500000 3.00000 \n", + "50% 317.000000 107.000000 3.000000 3.500000 3.50000 \n", + "75% 325.000000 112.000000 4.000000 4.000000 4.00000 \n", + "max 340.000000 120.000000 5.000000 5.000000 5.00000 \n", + "\n", + " CGPA Research Admit \n", + "count 500.000000 500.000000 500.000000 \n", + "mean 8.576440 0.560000 0.926000 \n", + "std 0.604813 0.496884 0.262033 \n", + "min 6.800000 0.000000 0.000000 \n", + "25% 8.127500 0.000000 1.000000 \n", + "50% 8.560000 1.000000 1.000000 \n", + "75% 9.040000 1.000000 1.000000 \n", + "max 9.920000 1.000000 1.000000 " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# summarize data\n", + "df.describe() " + ] + }, + { + "cell_type": "markdown", + "id": "7ebceb4d", + "metadata": {}, + "source": [ + "Print the histogram chart of data" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "834eb664", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Index(['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA',\n", + " 'Research', 'Admit'],\n", + " dtype='object')\n" + ] + } + ], + "source": [ + "print(df.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "39faae37", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8YAAAKyCAYAAACnjLQgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD7S0lEQVR4nOzdfVxUZf7/8feg4+AdGJYgicqqhalpiTekm6YImZkm3diyhTebbXmTUpnueq+Fum2ShppuX8zSTLdyK2/JSjdD8ybb7MayJe0ObCskIccJzu8Pf0xOMMjNgTOMr+fj4aPmnDMXn+tzzpmLOR/OuWyGYRgCAAAAAAAAAAAAAMBPBVgdAAAAAAAAAAAAAAAA1YnCOAAAAAAAAAAAAADAr1EYBwAAAAAAAAAAAAD4NQrjAAAAAAAAAAAAAAC/RmEcAAAAAAAAAAAAAODXKIwDAAAAAAAAAAAAAPwahXEAAAAAAAAAAAAAgF+jMA4AAAAAAAAAAAAA8GsUxgEAAAAAAAAAAAAAfo3COAAAAAAAAPzWiBEj1Lp1a6vD8Oqtt96SzWbTW2+9ZXUopvriiy9ks9m0atUqq0MBAAAAJFEYByyXlZWlcePG6bLLLlODBg3UoEEDXXHFFRo7dqz+85//eGw7a9Ys2Ww29z+73a7WrVtrwoQJys3NLdF269atPbY/99/1119/3ti++OILjRw5Um3atFFgYKDCwsJ07bXXaubMmWZ1HwAAn+Nt7Pztv3MvXn///fd66KGHdPnllyswMFAhISGKj4/Xa6+9VqL94ovE3v7Nnz/fvW3fvn29bvfJJ59I+vVi+j//+c8K97WoqEirV69Wjx49FBISosaNG+uyyy7TXXfdpT179lQ8eQAAVFLx993//e9/pa7v2LGj+vbtW7NBWWjt2rVKTU01vd3f/j4RFBSkPn36aNOmTZVus7piBQDAV3zwwQe65ZZb1KpVKwUGBurSSy/VgAEDtGTJEo/tXC6XFi9erG7duqlx48Zq1KiRunXrpsWLF8vlcpVo97fX75s1a6bf//73evnll2uqa8AFp67VAQAXstdee02333676tatq8TERHXu3FkBAQH65JNP9NJLL2nZsmXKyspSq1atPN63bNkyNWrUSPn5+dqxY4eWLFmigwcP6u233y7xM7p06aIHHnigxPLw8PAyYzt69Ki6deum+vXra9SoUWrdurW+/fZbHTx4UAsWLNDs2bOr1nkAAHzUs88+6/F69erVysjIKLG8ffv2kqQjR46of//++u677zRy5EhFR0crNzdXa9as0eDBg/Xggw/qb3/7W4mfc8cdd+iGG24osfyqq67yeN2iRQulpKSU2O58Y3l5TJgwQWlpaRoyZIgSExNVt25dHTlyRFu2bNHvfvc79ezZs8o/AwAAq61cuVJFRUVWh+HVtddeq59//ln16tVzL1u7dq0OHz6siRMnmv7zBgwYoLvuukuGYejYsWNatmyZBg8erC1btig+Pr7C7XmLtVWrVvr5559lt9tNihwAgJr3zjvv6LrrrlPLli119913KywsTF9++aX27NmjJ554QuPHj5ck5efna9CgQdq5c6duvPFGjRgxQgEBAdq6davuv/9+vfTSS9q0aZMaNmzo0f651++/+eYbPfXUUxo2bJiWLVumP//5zzXeX8DfURgHLPL5559r+PDhatWqlXbs2KHmzZt7rF+wYIGWLl2qgICSD3a45ZZbdPHFF0uS7rnnHg0fPlwvvPCC3n33XXXv3t1j20svvVR//OMfKxzfokWLdOrUKR06dKhEYf7EiRMVbq8q8vPzS/zCAABAdfntuLlnzx5lZGSUOp66XC7dcsst+vHHH7Vr1y716NHDvW7SpElKTEzUY489pujoaN1+++0e77366qvLNUYHBwdXaiw/n5ycHC1dulR33323VqxY4bEuNTVV3333nek/05tffvlFRUVFHgUBAADMYkVhtqioSGfOnFFgYOB5tw0ICCjXdma57LLLPH63SEhI0BVXXKEnnniiUoVxb2w2W432CwCA6vDII48oODhY+/btU5MmTTzWnXudPDk5WTt37tSSJUs0btw49/J7771XaWlpGjdunB588EEtW7bMo43fXr+/66671LZtWy1atIjCOFANeJQ6YJGFCxcqPz9f6enpJYriklS3bl1NmDBBERER523r97//vaSzxXazfP7552rRokWJorgkNWvWrMSyLVu2qE+fPmrcuLGCgoLUrVs3rV271mObDRs2qGvXrqpfv74uvvhi/fGPf9TXX3/tsc2IESPUqFEjff7557rhhhvUuHFjJSYmSjp7YSE1NVUdOnRQYGCgQkNDdc899+jHH380rd8AAFTEiy++qMOHD2vKlCkeRXFJqlOnjp566ik1adJEs2bNsibAMmRlZckwDPXq1avEuuJHuJ0rNzdXkyZNUuvWreVwONSiRQvdddddHo+8PXHihEaPHq3Q0FAFBgaqc+fOeuaZZzzaKX6U/GOPPabU1FS1adNGDodDH330kSTpk08+0S233KKQkBAFBgYqOjpar7zySjVkAABQmxVPJbJ+/Xo98sgjatGihQIDA9W/f38dPXrUY9tz5xh3uVwKCQnRyJEjS7SZl5enwMBAPfjgg+5lTqdTM2fOVNu2beVwOBQREaHJkyfL6XR6vNdms2ncuHFas2aNOnToIIfDoa1bt0qS1q1bp65du7q/L3fq1ElPPPFEib4UT9PSt29fbdq0SceOHXM/WrV169Y6deqUGjZsqPvvv79E7F999ZXq1KlT6lNmzqd9+/a6+OKLS1xT+Ne//qVBgwYpPDxcDodDbdq00dy5c1VYWOjexlusUulzjBd/5//66681dOhQNWrUSJdccokefPBBj3als1PV3HnnnQoKClKTJk2UlJSk999/n3nLAQA16vPPP1eHDh1KFMWlX6+Tf/XVV3r66afVr18/j6J4sbFjx+q6667TP/7xD3311Vdl/rywsDC1b99eWVlZpsQPwBN3jAMWee2119S2bdsSF9Er44svvpAkXXTRRSXWuVyuUudoa9iwoerXr++1zVatWun111/XG2+8oX79+pX581etWqVRo0apQ4cOmjp1qpo0aaL33ntPW7du1R/+8Af3NiNHjlS3bt2UkpKinJwcPfHEE9q9e7fee+89j18sfvnlF8XHx6t379567LHH1KBBA0ln744vbmfChAnKysrSk08+qffee0+7d+/m8WwAgBr36quvSjr7F92lCQ4O1pAhQ/TMM8/o6NGjatu2rXtdQUFBqWN0kyZNVLfur7+mFxYWltguMDBQjRo1qlLsxX/8tmHDBt16663u8bY0p06d0u9//3t9/PHHGjVqlK6++mr973//0yuvvKKvvvpKF198sX7++Wf17dtXR48e1bhx4xQZGakNGzZoxIgRys3NLXERPz09XadPn9aYMWPkcDgUEhKiDz/8UL169dKll16qKVOmqGHDhlq/fr2GDh2qF198UTfffHOV+gwA8D/z589XQECAHnzwQZ08eVILFy5UYmKi9u7dW+r2drtdN998s1566SU99dRTHk8r2bhxo5xOp4YPHy7p7B9n33TTTXr77bc1ZswYtW/fXh988IEWLVqkTz/9VBs3bvRo+4033tD69es1btw4XXzxxWrdurUyMjJ0xx13qH///lqwYIEk6eOPP9bu3btLLXBL0l//+ledPHlSX331lRYtWiRJatSokRo1aqSbb75ZL7zwgh5//HHVqVPH/Z7nn39ehmG4/7C8Ik6ePKkff/xRbdq08Vi+atUqNWrUSMnJyWrUqJHeeOMNzZgxQ3l5ee5pYrzFWpbCwkLFx8erR48eeuyxx/T666/r73//u9q0aaN7771X0tncDx48WO+++67uvfdeRUVF6V//+peSkpIq3D8AAKqiVatWyszM1OHDh9WxY8dSt9myZYsKCwu9XhuQzl43ePPNN7V161b96U9/8rqdy+XSl19+qaZNm1Y5dgClMADUuJMnTxqSjKFDh5ZY9+OPPxrfffed+19BQYF73cyZMw1JxpEjR4zvvvvO+OKLL4z/+7//M+rXr29ccsklRn5+vkdbrVq1MiSV+i8lJaXMGA8fPmzUr1/fkGR06dLFuP/++42NGzeW+Bm5ublG48aNjR49ehg///yzx7qioiLDMAzjzJkzRrNmzYyOHTt6bPPaa68ZkowZM2a4lyUlJRmSjClTpni09e9//9uQZKxZs8Zj+datW0tdDgCAWcaOHWt4+7W5S5cuRnBwcJnvf/zxxw1JxiuvvGIYhmFkZWV5HZ8lGZmZme739unTp9RtkpKS3Nu8+eabhiRjw4YNFe7bXXfdZUgyLrroIuPmm282HnvsMePjjz8usd2MGTMMScZLL71UYl3xeJ+ammpIMp577jn3ujNnzhgxMTFGo0aNjLy8PI/+BwUFGSdOnPBoq3///kanTp2M06dPe7R/zTXXGO3atatw/wAAtUfx993vvvuu1PUdOnQw+vTp435dPP61b9/ecDqd7uVPPPGEIcn44IMP3MuSkpKMVq1auV9v27bNkGS8+uqrHj/jhhtuMH73u9+5Xz/77LNGQECA8e9//9tju+XLlxuSjN27d7uXSTICAgKMDz/80GPb+++/3wgKCjJ++eUXr30v7subb77pXjZo0CCPmH8b+5YtWzyWX3nllR758UaSMXr0aOO7774zTpw4Yezfv9+4/vrrDUnG3/72N49tz70eUeyee+4xGjRo4DFWe4u1eMxPT093Lyv+zj9nzhyPba+66iqja9eu7tcvvviiIclITU11LyssLDT69etXok0AAKrT9u3bjTp16hh16tQxYmJijMmTJxvbtm0zzpw5495m4sSJhiTjvffe89rOwYMHDUlGcnKye1mrVq2MuLg4dy3g/fffN4YPH25IMsaPH1+d3QIuWDxKHbBAXl6epNL/irpv37665JJL3P/S0tJKbHP55ZfrkksuUevWrTVq1Ci1bdtWW7ZsKfVOrx49eigjI6PEvzvuuKPMGDt06KBDhw7pj3/8o7744gs98cQTGjp0qEJDQ7Vy5Ur3dhkZGfrpp580ZcqUEnOH2Ww2SdL+/ft14sQJ3XfffR7bDBo0SFFRUdq0aVOJn1/8V+LFNmzYoODgYA0YMED/+9//3P+6du2qRo0a6c033yyzPwAAVIeffvpJjRs3LnOb4vXF43+xMWPGlDpGX3HFFR7bFd9tdu6/yZMnmxJ/enq6nnzySUVGRurll1/Wgw8+qPbt26t///4e0528+OKL6ty5c6l3bBeP95s3b1ZYWJjH7xh2u10TJkzQqVOntHPnTo/3JSQk6JJLLnG//uGHH/TGG2/otttu008//eQe67///nvFx8frs88+KzEFCwAAI0eO9Ljru3iqsf/+979e39OvXz9dfPHFeuGFF9zLfvzxR2VkZOj22293L9uwYYPat2+vqKgoj++hxU9V++330D59+pQYx5s0aaL8/HxlZGRUvpPniI2NVXh4uNasWeNedvjwYf3nP//xmJ+0LE8//bQuueQSNWvWTNHR0dqxY4cmT56s5ORkj+3Ofcpc8dj8+9//XgUFBfrkk0+q1I/fzpn6+9//3mOfbd26VXa7XXfffbd7WUBAgMaOHVulnwsAQEUNGDBAmZmZuummm/T+++9r4cKFio+P16WXXuqe9uunn36SpDKvD3i7NrB9+3Z3LaBz587asGGD7rzzTveTZgCYi0epAxYoHgRPnTpVYt1TTz2ln376STk5OV6/1L744osKCgrSd999p8WLFysrK8vrY9EvvvhixcbGVirOyy67TM8++6wKCwv10Ucf6bXXXtPChQs1ZswYRUZGKjY21j0HmbfHyEjSsWPHJJ0t6P9WVFSU3n77bY9ldevWVYsWLTyWffbZZzp58mSp85tLZ+c0BQCgpjVu3LjUx6Gfy9sX5Hbt2pVrjG7YsGGlx/LzKb7APHbsWH3//ffavXu3li9fri1btmj48OH697//LensnGoJCQlltnXs2DG1a9dOAQGef3vbvn179/pzRUZGerw+evSoDMPQ9OnTNX369FJ/xokTJ3TppZdWqI8AAP9R/MdY52rZsqXH6+Ipxn788Uev7dStW1cJCQlau3atnE6nHA6HXnrpJblcLo/C+GeffaaPP/7Y4w+5zvXb76G/Hdsk6b777tP69es1cOBAXXrppYqLi9Ntt92m66+/3ntHyxAQEKDExEQtW7ZMBQUFatCggdasWaPAwEDdeuut5WpjyJAhGjdunM6cOaN9+/bp0UcfVUFBQYkx/MMPP9S0adP0xhtvlLiIf/LkyUrFL52dEua3Ob3ooos89tmxY8fUvHnzEjcAnDstDQAANaVbt2566aWXdObMGb3//vt6+eWXtWjRIt1yyy06dOiQ+/t+8ff/0ni7NtCjRw/NmzdPNptNDRo0UPv27UudzxyAOSiMAxYIDg5W8+bNdfjw4RLriuccL543vDTXXnutLr74YknS4MGD1alTJyUmJurAgQMlvsiaoU6dOurUqZM6deqkmJgYXXfddVqzZk21XaR3OBwl+lFUVKRmzZp5/FX8ubxdqAAAoDq1b99ehw4d0vHjx0tcmC/2n//8R5JK3EHma5o2baqbbrpJN910k/r27audO3fq2LFj7rnIzfbbP+orKiqSJD344IOKj48v9T1cDAcA/1X8dLGff/651PUFBQUlnlImyWOe7XMZhlHmzxs+fLieeuopbdmyRUOHDtX69esVFRWlzp07u7cpKipSp06d9Pjjj5faRkREhMfr0v5gvVmzZjp06JC2bdumLVu2aMuWLUpPT9ddd92lZ555pswYvbnrrrv0t7/9TRs3btQdd9yhtWvX6sYbb1RwcHC53t+iRQv39/kbbrhBF198scaNG6frrrtOw4YNkyTl5uaqT58+CgoK0pw5c9SmTRsFBgbq4MGDevjhh93jdmV422cAAPi6evXqqVu3burWrZsuu+wyjRw50v2EGens9/8uXbqU+l5v1waqcmMbgIqjMA5YZNCgQfrHP/6hd999V927d690O40aNdLMmTM1cuRIrV+/XsOHDzcxypKio6MlSd9++60kqU2bNpLOPrrN28Xq4gvqR44ccT9yrtiRI0fKdcG9TZs2ev3119WrVy+vd8cDAFDTbrzxRj3//PNavXq1pk2bVmJ9Xl6e/vWvfykqKqpWFXWjo6O1c+dOffvtt2rVqpXatGlT6h/0natVq1b6z3/+o6KiIo8/cCt+1Or5xvvf/e53ks4+fp2LAgBw4Tn3e+NvC84FBQX68ssvFRcXZ9rPu/baa9W8eXO98MIL6t27t9544w399a9/9dimTZs2ev/999W/f/9S71Yvr3r16mnw4MEaPHiwioqKdN999+mpp57S9OnTvf5+UNbP69ixo6666iqtWbNGLVq00PHjx7VkyZJKx3fPPfdo0aJFmjZtmm6++WbZbDa99dZb+v777/XSSy/p2muvdW+blZVVoVgrq1WrVnrzzTfdd8UXO3r0qOk/CwCAyjj3OvmoUaNUp04dPfvss7rrrrtK3X716tWqW7dupZ8aA8AczDEOWGTy5Mlq0KCBRo0apZycnBLrz/fX7edKTExUixYtTJ135N///rdcLleJ5Zs3b5b062PR4+Li1LhxY6WkpOj06dMe2xb3ITo6Ws2aNdPy5cvldDrd67ds2aKPP/5YgwYNOm88t912mwoLCzV37twS63755Rfl5uaWu28AAJjllltu0RVXXKH58+dr//79HuuKiop077336scff9TMmTMtitC77OxsffTRRyWWnzlzRjt27FBAQID7Yn1CQoL7cXG/VTze33DDDcrOzvaYr/WXX37RkiVL1KhRI/Xp06fMeJo1a6a+ffvqqaeecv8B3rm+++67CvUPAFC79O/fX/Xq1dOyZctK3I28YsUK/fLLLxo4cKBpPy8gIEC33HKLXn31VT377LP65ZdfPB6jLp39Hvr1119r5cqVJd7/888/Kz8//7w/5/vvvy/xc6+88kpJ8vh+/FsNGzYs83Hld955p7Zv367U1FQ1bdq0SrmpW7euHnjgAX388cf617/+JenXu7rPvTZx5swZLV26tMKxVkZ8fLxcLpdH7ouKipSWlmbqzwEA4HzefPPNUq/Vn3udPCIiQiNHjtTrr7+uZcuWldh2+fLleuONNzR69OgSU4gCqFncMQ5YpF27dlq7dq3uuOMOXX755UpMTFTnzp1lGIaysrK0du1aBQQElGugtNvtuv/++/XQQw9p69atHn919vXXX+u5554r8Z5GjRpp6NChXttcsGCBDhw4oGHDhrm/tB88eFCrV69WSEiIJk6cKEkKCgrSokWL9Kc//UndunXTH/7wB1100UV6//33VVBQoGeeeUZ2u10LFizQyJEj1adPH91xxx3KycnRE088odatW2vSpEnn7WOfPn10zz33KCUlRYcOHVJcXJzsdrs+++wzbdiwQU888YRuueWW87YDAICZ6tWrp3/+85/q37+/evfurZEjRyo6Olq5ublau3atDh48qAceeKDUJ7ocPHiw1DG6TZs2iomJqXAsL774ovvu7HMlJSWVuPNOkr766it1795d/fr1U//+/RUWFqYTJ07o+eef1/vvv6+JEye6p2556KGH9M9//lO33nqrRo0apa5du+qHH37QK6+8ouXLl6tz584aM2aMnnrqKY0YMUIHDhxQ69at9c9//lO7d+9WampqiXnUSpOWlqbevXurU6dOuvvuu/W73/1OOTk5yszM1FdffaX333+/wnkBANQOzZo104wZMzRt2jRde+21uummm9SgQQO98847ev755xUXF6fBgweb+jNvv/12LVmyRDNnzlSnTp3cj0Etduedd2r9+vX685//rDfffFO9evVSYWGhPvnkE61fv17btm1z3y3mzZ/+9Cf98MMP6tevn1q0aKFjx45pyZIl6tKlS4mfd66uXbvqhRdeUHJysrp166ZGjRp59P8Pf/iDJk+erJdffln33nuv7HZ7lXIxYsQIzZgxQwsWLNDQoUN1zTXX6KKLLlJSUpImTJggm82mZ599ttTCwPlirYyhQ4eqe/fueuCBB3T06FFFRUXplVde0Q8//CCpeu5SBwCgNOPHj1dBQYFuvvlmRUVF6cyZM3rnnXf0wgsvqHXr1ho5cqQkadGiRfrkk0903333eVyj37Ztm/71r3+pT58++vvf/25lVwBIkgHAUkePHjXuvfdeo23btkZgYKBRv359Iyoqyvjzn/9sHDp0yGPbmTNnGpKM7777rkQ7J0+eNIKDg40+ffq4l7Vq1cqQVOq/Vq1alRnX7t27jbFjxxodO3Y0goODDbvdbrRs2dIYMWKE8fnnn5fY/pVXXjGuueYao379+kZQUJDRvXt34/nnn/fY5oUXXjCuuuoqw+FwGCEhIUZiYqLx1VdfeWyTlJRkNGzY0GtcK1asMLp27WrUr1/faNy4sdGpUydj8uTJxjfffFNmfwAAqKyxY8ca5/u1+cSJE0ZycrLRtm1bw+FwGE2aNDFiY2ONV155pcS2WVlZXsdnSUZSUpJ72z59+hgdOnQo82e/+eabZbb373//u9T35eXlGU888YQRHx9vtGjRwrDb7Ubjxo2NmJgYY+XKlUZRUZHH9t9//70xbtw449JLLzXq1atntGjRwkhKSjL+97//ubfJyckxRo4caVx88cVGvXr1jE6dOhnp6eml9v9vf/tbqXF9/vnnxl133WWEhYUZdrvduPTSS40bb7zR+Oc//1lmHgAA/uG5554zevbsaTRs2NBwOBxGVFSUMXv2bOP06dMe2xWPfxs2bPBYXjzOnDv+JCUllfoduKioyIiIiDAkGfPmzSs1njNnzhgLFiwwOnToYDgcDuOiiy4yunbtasyePds4efKkeztJxtixY0u8/5///KcRFxdnNGvWzKhXr57RsmVL45577jG+/fbbEn1588033ctOnTpl/OEPfzCaNGni9Tv8DTfcYEgy3nnnnVJjL423OA3DMGbNmuURx+7du42ePXsa9evXN8LDw43Jkycb27ZtK3es3vZFad/5i693nOu7774z/vCHPxiNGzc2goODjREjRhi7d+82JBnr1q0rd58BAKiKLVu2GKNGjTKioqKMRo0aGfXq1TPatm1rjB8/3sjJyfHY1ul0GosWLTK6du1qNGzY0GjQoIFx9dVXG6mpqcaZM2dKtN2qVStj0KBBNdUVAIZh2AyjAs9rBgAAAAAAAGC5m2++WR988MEFNe/2xo0bdfPNN+vtt99Wr169rA4HAAAAtQxzjAMAAAAAAAC1yLfffqtNmzbpzjvvtDqUavPzzz97vC4sLNSSJUsUFBSkq6++2qKoAAAAUJsxxzgAAAAAAABQC2RlZWn37t36xz/+IbvdrnvuucfqkKrN+PHj9fPPPysmJkZOp1MvvfSS3nnnHT366KOqX7++1eEBAACgFqIwDgAAAAAAANQCO3fu1MiRI9WyZUs988wzCgsLszqkatOvXz/9/e9/12uvvabTp0+rbdu2WrJkicaNG2d1aAAAAKilmGMcAAAAAAAAAAAAAODXmGMcAAAAAAAAAAAAAODXKIwDAAAAAAAAAAAAAPxarZxjvKioSN98840aN24sm81mdTgAAFSZYRj66aefFB4eroAA//67NcZxAIA/YiwHAKD2YhwHAKD2qsg4XisL4998840iIiKsDgMAANN9+eWXatGihdVhVCvGcQCAP2MsBwCg9mIcBwCg9irPOF4rC+ONGzeWdLaDQUFBVW7P5XJp+/btiouLk91ur3J7FxryVzXkr2rIX+WRu6oxO395eXmKiIhwj3H+zOxxvDbhvPOO3JSN/HhHbrwjN2VjLK88vpOX5A99kOiHr6EfvoV++BbG8cpjHC8d/fAd/tAHiX74GvrhW6wcx2tlYbz4ES9BQUGmDd4NGjRQUFBQrT6QrEL+qob8VQ35qzxyVzXVlb8L4TFmZo/jtQnnnXfkpmzkxzty4x25KRtjeeXxnbwkf+iDRD98Df3wLfTDtzCOVx7jeOnoh+/whz5I9MPX0A/fYuU47t8TpgAAAAAAAAAAAAAALngUxgEAAAAAAAAAAAAAfo3COAAAAAAAAAAAAADAr1EYBwAAAAAAAAAAAAD4NQrjAAAAAAAAAAAAAAC/RmEcAAAAAAAAAAAAAODXKIwDAAAAAAAAAAAAAPwahXEAAAAAAAAAAAAAgF+jMA4AAAAAAAAAAAAA8GsUxgEAAAAAAAAAAAAAfo3COAAAAAAAtcCuXbs0ePBghYeHy2azaePGjSW2+fjjj3XTTTcpODhYDRs2VLdu3XT8+HH3+tOnT2vs2LFq2rSpGjVqpISEBOXk5NRgLwAAAAAAsEZdqwMAADN0nLVNzkKb1WGU6ov5g6wOAQAAn9V6yqYqvd9Rx9DC7tX3uwDjOHxJfn6+OnfurFGjRmnYsGEl1n/++efq3bu3Ro8erdmzZysoKEgffvihAgMD3dtMmjRJmzZt0oYNGxQcHKxx48Zp2LBh2r17d012BUAF8H0XAABciKp6veBc1XHtgN+DaicK4wAAAAAA1AIDBw7UwIEDva7/61//qhtuuEELFy50L2vTpo37/0+ePKmnn35aa9euVb9+/SRJ6enpat++vfbs2aOePXtWX/AAAAAAAFiMwjgAAAAAALVcUVGRNm3apMmTJys+Pl7vvfeeIiMjNXXqVA0dOlSSdODAAblcLsXGxrrfFxUVpZYtWyozM9NrYdzpdMrpdLpf5+XlSZJcLpdcLleVYy9uw4y2rOIPfZDoh68pjt8RYFgciXflybG/7Q/64RvM7kdtzwcAACgfCuMAAAAAANRyJ06c0KlTpzR//nzNmzdPCxYs0NatWzVs2DC9+eab6tOnj7Kzs1WvXj01adLE472hoaHKzs722nZKSopmz55dYvn27dvVoEED0/qQkZFhWltW8Yc+SPTD18yNLrI6BK82b95c7m39ZX/QD99iVj8KCgpMaQcAapPyPKq8uqcvA2oahXEAAAAAAGq5oqKzhbMhQ4Zo0qRJkqQuXbronXfe0fLly9WnT59Ktz116lQlJye7X+fl5SkiIkJxcXEKCgqqWuA6e5deRkaGBgwYILvdXuX2rOAPfZDoh68p7sf0/QFyFvnmhejDs+LPu42/7Q/64RvM7kfx01AAAIB/ozAOAADcCgsLNWvWLD333HPKzs5WeHi4RowYoWnTpslmO3sxzjAMzZw5UytXrlRubq569eqlZcuWqV27dhZHDwDAheviiy9W3bp1dcUVV3gsb9++vd5++21JUlhYmM6cOaPc3FyPu8ZzcnIUFhbmtW2HwyGHw1Fiud1uN7WoYnZ7VvCHPkj0w9c4i2w+e4dWRfLrL/uDfvgWs/rhD7kAAADnF2B1AAAAwHcsWLBAy5Yt05NPPqmPP/5YCxYs0MKFC7VkyRL3NgsXLtTixYu1fPly7d27Vw0bNlR8fLxOnz5tYeQAAFzY6tWrp27duunIkSMeyz/99FO1atVKktS1a1fZ7Xbt2LHDvf7IkSM6fvy4YmJiajReAAAAAABqGneMAwAAt3feeUdDhgzRoEGDJEmtW7fW888/r3fffVfS2bvFU1NTNW3aNA0ZMkSStHr1aoWGhmrjxo0aPny4ZbEDAODvTp06paNHj7pfZ2Vl6dChQwoJCVHLli310EMP6fbbb9e1116r6667Tlu3btWrr76qt956S5IUHBys0aNHKzk5WSEhIQoKCtL48eMVExOjnj17WtQrAAAAAABqBoVxAADgds0112jFihX69NNPddlll+n999/X22+/rccff1zS2Qvw2dnZio2Ndb8nODhYPXr0UGZmZqmFcafTKafT6X5dPHeby+WSy+Wq5h75luL+Xmj9Lg9yUzZ/zo+jjlG19wcYHv81W23OuT8fN2YwOz81kef9+/fruuuuc78unvc7KSlJq1at0s0336zly5crJSVFEyZM0OWXX64XX3xRvXv3dr9n0aJFCggIUEJCgpxOp+Lj47V06dJqjx0AAAAAAKtRGAcAAG5TpkxRXl6eoqKiVKdOHRUWFuqRRx5RYmKiJCk7O1uSFBoa6vG+0NBQ97rfSklJ0ezZs0ss3759uxo0aGByD2qHjIwMq0PwWeSmbP6Yn4XdzWlnbnSROQ39xubNm6ul3Zrkj8eNmczKT0FBgSntlKVv374yjLL/CGTUqFEaNWqU1/WBgYFKS0tTWlqa2eEBAAAAAODTKIwDAAC39evXa82aNVq7dq06dOigQ4cOaeLEiQoPD1dSUlKl2pw6dar7jjbp7B3jERERiouLU1BQkFmh1woul0sZGRkaMGCA7Ha71eH4FHJTNn/OT8dZ26r0fkeAobnRRZq+P0DOIptJUf3q8Kx409usKf583JjB7PwUPxEFAAAAAAD4JgrjAADA7aGHHtKUKVPcj0Tv1KmTjh07ppSUFCUlJSksLEySlJOTo+bNm7vfl5OToy5dupTapsPhkMPhKLHcbrdfsIWaC7nv50NuyuaP+XEWmlPMdhbZTGvrXP6Qb388bsxkVn7IMQAAAAAAvi3A6gAAAIDvKCgoUECA568HderUUVHR2UcUR0ZGKiwsTDt27HCvz8vL0969exUTE1OjsQIAAAAAAAAAUF7cMQ4AANwGDx6sRx55RC1btlSHDh303nvv6fHHH3fPVWqz2TRx4kTNmzdP7dq1U2RkpKZPn67w8HANHTrU2uABAAAAAAAAAPDC9DvGCwsLNX36dEVGRqp+/fpq06aN5s6dK8Mw3NsYhqEZM2aoefPmql+/vmJjY/XZZ5+ZHQoAAKigJUuW6JZbbtF9992n9u3b68EHH9Q999yjuXPnureZPHmyxo8frzFjxqhbt246deqUtm7dqsDAQAsjBwAAAAAAAADAO9PvGF+wYIGWLVumZ555Rh06dND+/fs1cuRIBQcHa8KECZKkhQsXavHixXrmmWfcd5rFx8fro48+4qI6AAAWaty4sVJTU5Wamup1G5vNpjlz5mjOnDk1FxgAAAAAAAAAAFVgemH8nXfe0ZAhQzRo0CBJUuvWrfX888/r3XfflXT2bvHU1FRNmzZNQ4YMkSStXr1aoaGh2rhxo4YPH252SAAAAAAAAAAAAACAC5jphfFrrrlGK1as0KeffqrLLrtM77//vt5++209/vjjkqSsrCxlZ2crNjbW/Z7g4GD16NFDmZmZpRbGnU6nnE6n+3VeXp4kyeVyyeVyVTnm4jbMaOtCRP6qhvxVTXHeHAHGeba0jq/uW469qjE7f+wHAAAAAAAAAACqj+mF8SlTpigvL09RUVGqU6eOCgsL9cgjjygxMVGSlJ2dLUkKDQ31eF9oaKh73W+lpKRo9uzZJZZv375dDRo0MC32jIwM09q6EJG/qiF/VTM3usjqELzavHmz1SGUiWOvaszKX0FBgSntAAAAAAAAAACAkkwvjK9fv15r1qzR2rVr1aFDBx06dEgTJ05UeHi4kpKSKtXm1KlTlZyc7H6dl5eniIgIxcXFKSgoqMoxu1wuZWRkaMCAAbLb7VVu70JD/qqG/FVNcf6m7w+Qs8hmdTilOjwr3uoQSsWxVzVm56/4aSgAAAAAAAAAAMB8phfGH3roIU2ZMsX9SPROnTrp2LFjSklJUVJSksLCwiRJOTk5at68uft9OTk56tKlS6ltOhwOORyOEsvtdrupxRyz27vQkL+qIX9V4yyyyVnom4VxX9+vHHtVY1b+2AcAAAAAAAAAAFSfALMbLCgoUECAZ7N16tRRUdHZxxxHRkYqLCxMO3bscK/Py8vT3r17FRMTY3Y4AAAAAAAAAAAAAIALnOl3jA8ePFiPPPKIWrZsqQ4dOui9997T448/rlGjRkmSbDabJk6cqHnz5qldu3aKjIzU9OnTFR4erqFDh5odDlBrdJy1zWfveP5i/iCrQwAAAAAAAAD8VmFhoWbNmqXnnntO2dnZCg8P14gRIzRt2jTZbGevGRqGoZkzZ2rlypXKzc1Vr169tGzZMrVr187i6AEAqB1ML4wvWbJE06dP13333acTJ04oPDxc99xzj2bMmOHeZvLkycrPz9eYMWOUm5ur3r17a+vWrQoMDDQ7HAAAAAAAAAAAfNqCBQu0bNkyPfPMM+rQoYP279+vkSNHKjg4WBMmTJAkLVy4UIsXL9YzzzzjvuEsPj5eH330EdfWAQAoB9ML440bN1ZqaqpSU1O9bmOz2TRnzhzNmTPH7B8PAAAAAAAAAECt8s4772jIkCEaNOjskxtbt26t559/Xu+++66ks3eLp6amatq0aRoyZIgkafXq1QoNDdXGjRs1fPhwy2IHAKC2MH2OcQAAAAAAAAAAUH7XXHONduzYoU8//VSS9P777+vtt9/WwIEDJUlZWVnKzs5WbGys+z3BwcHq0aOHMjMzLYkZAIDaxvQ7xgEAAAD4jtZTNlkdAgAAAIDzmDJlivLy8hQVFaU6deqosLBQjzzyiBITEyVJ2dnZkqTQ0FCP94WGhrrXlcbpdMrpdLpf5+XlSZJcLpdcLleV4y5uw4y2rEQ/fIc/9EGqHf1w1DHOv02A4fHf2qo6+mHFvq0Nx1V5mN2PirRDYRwAAAAAAAAAAAutX79ea9as0dq1a9WhQwcdOnRIEydOVHh4uJKSkirdbkpKimbPnl1i+fbt29WgQYOqhOwhIyPDtLasRD98hz/0QfLtfizsXv5t50YXVV8gNcjMfmzevNm0tirKl4+rijCrHwUFBeXelsI4AAAAAAAAAAAWeuihhzRlyhT3XOGdOnXSsWPHlJKSoqSkJIWFhUmScnJy1Lx5c/f7cnJy1KVLF6/tTp06VcnJye7XeXl5ioiIUFxcnIKCgqoct8vlUkZGhgYMGCC73V7l9qxCP3yHP/RB+rUf0/cHyFlkszqcSnMEGJobXUQ/SnF4Vrwp7VSEv50fZvWj+Gko5UFhHAAAAAAAAAAACxUUFCggIMBjWZ06dVRUdPbuxsjISIWFhWnHjh3uQnheXp727t2re++912u7DodDDoejxHK73W5qUcXs9qxCP3yHP/RBkpxFNjkLa29BuRj9KMnK49Nfzg+z+lGRNiiMAwAAAAAAAABgocGDB+uRRx5Ry5Yt1aFDB7333nt6/PHHNWrUKEmSzWbTxIkTNW/ePLVr106RkZGaPn26wsPDNXToUGuDBwCglqAwDgAAAAAAAACAhZYsWaLp06frvvvu04kTJxQeHq577rlHM2bMcG8zefJk5efna8yYMcrNzVXv3r21detWBQYGWhg5AAC1R8D5NwEAAAAAAFbbtWuXBg8erPDwcNlsNm3cuNHrtn/+859ls9mUmprqsfyHH35QYmKigoKC1KRJE40ePVqnTp2q3sABAMB5NW7cWKmpqTp27Jh+/vlnff7555o3b57q1avn3sZms2nOnDnKzs7W6dOn9frrr+uyyy6zMGoAAGoXCuMAAAAAANQC+fn56ty5s9LS0src7uWXX9aePXsUHh5eYl1iYqI+/PBDZWRk6LXXXtOuXbs0ZsyY6goZAAAAAACfwaPUAQAAAACoBQYOHKiBAweWuc3XX3+t8ePHa9u2bRo0aJDHuo8//lhbt27Vvn37FB0dLensY1tvuOEGPfbYY6UW0gEAAAAA8BcUxgEAAAAA8ANFRUW688479dBDD6lDhw4l1mdmZqpJkybuorgkxcbGKiAgQHv37tXNN99cartOp1NOp9P9Oi8vT5LkcrnkcrmqHHdxG2a0ZRV/6INEP3xNcfyOAMPiSLwrT479bX/QD99gdj9qez4AAED5UBgHAAAAAMAPLFiwQHXr1tWECRNKXZ+dna1mzZp5LKtbt65CQkKUnZ3ttd2UlBTNnj27xPLt27erQYMGVQv6HBkZGaa1ZRV/6INEP3zN3Ogiq0PwavPmzeXe1l/2B/3wLWb1o6CgwJR2AACAb6MwDgAA3Fq3bq1jx46VWH7fffcpLS1Np0+f1gMPPKB169bJ6XQqPj5eS5cuVWhoqAXRAgCAYgcOHNATTzyhgwcPymazmdr21KlTlZyc7H6dl5eniIgIxcXFKSgoqMrtu1wuZWRkaMCAAbLb7VVuzwr+0AeJfvia4n5M3x8gZ5G557VZDs+KP+82/rY/6IdvMLsfxU9DAQAA/o3COAAAcNu3b58KCwvdrw8fPqwBAwbo1ltvlSRNmjRJmzZt0oYNGxQcHKxx48Zp2LBh2r17t1UhAwAASf/+97914sQJtWzZ0r2ssLBQDzzwgFJTU/XFF18oLCxMJ06c8HjfL7/8oh9++EFhYWFe23Y4HHI4HCWW2+12U4sqZrdnBX/og0Q/fI2zyCZnoW8WxiuSX3/ZH/TDt5jVD3/IBQAAOD8K4wAAwO2SSy7xeD1//ny1adNGffr00cmTJ/X0009r7dq16tevnyQpPT1d7du31549e9SzZ08rQgYAAJLuvPNOxcbGeiyLj4/XnXfeqZEjR0qSYmJilJubqwMHDqhr166SpDfeeENFRUXq0aNHjccMAAAAAEBNojAOAABKdebMGT333HNKTk6WzWbTgQMH5HK5PC66R0VFqWXLlsrMzKQwDgBANTt16pSOHj3qfp2VlaVDhw4pJCRELVu2VNOmTT22t9vtCgsL0+WXXy5Jat++va6//nrdfffdWr58uVwul8aNG6fhw4crPDy8RvsCAAAAAEBNozAOAABKtXHjRuXm5mrEiBGSpOzsbNWrV09NmjTx2C40NFTZ2dle23E6nXI6ne7XxXO3uVwuuVwu0+P2ZcX9vdD6XR7kpmxVyY+jjmF2OD7FEWB4/NdstfmY5Lwqm9n5qYk879+/X9ddd537dfG830lJSVq1alW52lizZo3GjRun/v37KyAgQAkJCVq8eHF1hAsAAAAAgE+hMA4AAEr19NNPa+DAgVW+gywlJUWzZ88usXz79u1q0KBBldqurTIyMqwOwWeRm7JVJj8Lu1dDID5obnRRtbS7efPmamm3JnFelc2s/BQUFJjSTln69u0rwyj/H4F88cUXJZaFhIRo7dq1JkYFAAAAAEDtQGEcAACUcOzYMb3++ut66aWX3MvCwsJ05swZ5ebmetw1npOTo7CwMK9tTZ061X1Hm3T2jvGIiAjFxcUpKCioWuL3VS6XSxkZGRowYIDsdrvV4fgUclO2quSn46xt1RSVb3AEGJobXaTp+wPkLLKZ3v7hWfGmt1lTOK/KZnZ+ip+IAgAAAAAAfBOFcQAAUEJ6erqaNWumQYMGuZd17dpVdrtdO3bsUEJCgiTpyJEjOn78uGJiYry25XA45HA4Siy32+0XbKHmQu77+ZCbslUmP85C84vFvshZZKuWvvrD8ch5VTaz8kOOAQAAAADwbRTGAQCAh6KiIqWnpyspKUl16/76q0JwcLBGjx6t5ORkhYSEKCgoSOPHj1dMTIx69uxpYcTwd62nbLI6hDJ9MX/Q+TcCAAAAAAAAYCkK4wAAwMPrr7+u48ePa9SoUSXWLVq0SAEBAUpISJDT6VR8fLyWLl1qQZQAAAAAAAAAAJQfhXEAAOAhLi5OhmGUui4wMFBpaWlKS0ur4agAAAAAAAAAAKi8AKsDAAAAAAAAAAAAAACgOlEYBwAAAAAAAAAAAAD4NR6lDuC8Wk/ZZHUIXjnqGFrY3eooAAAAAAAAAAAA4Mu4YxwAAAAAAAAAAAAA4NcojAMAAAAAAAAAAAAA/BqFcQAAAAAAAAAAAACAX6MwDgAAAAAAAAAAAADwa3WtDgAAAACozVpP2VTtP8NRx9DC7lLHWdvkLLRV+88DAAAAAAAA/A13jAMAAAAAAAAAAAAA/BqFcQAAAAAAAAAAAACAX+NR6gAAAADgRU08Kr8qvpg/yOoQAAAAAAAAagUK4wAAAAAAALWUmX/A46hjaGF3qeOsbXIW2kxpkz/gAQAAAOAreJQ6AAAAAAAAAAAAAMCvURgHAAAAAAAAAAAAAPg1CuMAAAAAAAAAAAAAAL9GYRwAAAAAAAAAAAAA4NcojAMAAAAAAAAAAAAA/BqFcQAAAAAAaoFdu3Zp8ODBCg8Pl81m08aNG93rXC6XHn74YXXq1EkNGzZUeHi47rrrLn3zzTcebfzwww9KTExUUFCQmjRpotGjR+vUqVM13BMAAAAAAGoehXEAAAAAAGqB/Px8de7cWWlpaSXWFRQU6ODBg5o+fboOHjyol156SUeOHNFNN93ksV1iYqI+/PBDZWRk6LXXXtOuXbs0ZsyYmuoCAAAAAACWqWt1AAAAAAAA4PwGDhyogQMHlrouODhYGRkZHsuefPJJde/eXcePH1fLli318ccfa+vWrdq3b5+io6MlSUuWLNENN9ygxx57TOHh4dXeBwAAAAAArEJhHAAAAAAAP3Ty5EnZbDY1adJEkpSZmakmTZq4i+KSFBsbq4CAAO3du1c333xzqe04nU45nU7367y8PElnH9/ucrmqHGdxG2a0ZRUr++CoY5jXVoDh8V8zWJETfzimpF/jN3N/mK08Ofa3/UE/fIPZ/ajt+QAAAOVDYRwAAAAAAD9z+vRpPfzww7rjjjsUFBQkScrOzlazZs08tqtbt65CQkKUnZ3tta2UlBTNnj27xPLt27erQYMGpsX82zveayMr+rCwu/ltzo0uMq2tzZs3m9ZWRfnDMSWZuz/MVpH96y/7g374FrP6UVBQYEo7AADAt1EYBwAAHr7++ms9/PDD2rJliwoKCtS2bVulp6e77y4zDEMzZ87UypUrlZubq169emnZsmVq166dxZEDAADp7F1vt912mwzD0LJly6rc3tSpU5WcnOx+nZeXp4iICMXFxbmL7lXhcrmUkZGhAQMGyG63V7k9K1jZh46ztpnWliPA0NzoIk3fHyBnkc2UNg/PijelnYrwh2NK+rUfZu4Ps5Vn//rb/qAfvsHsfhQ/DQUAAPg3CuMAUM1aT9lkdQilctQxquXuEtRuP/74o3r16qXrrrtOW7Zs0SWXXKLPPvtMF110kXubhQsXavHixXrmmWcUGRmp6dOnKz4+Xh999JECAwMtjB4AABQXxY8dO6Y33njDo3AdFhamEydOeGz/yy+/6IcfflBYWJjXNh0OhxwOR4nldrvd1KKK2e1ZwYo+OAvNL5g6i2ymtWvlPvWHY0oyd3+YrSL59Zf9QT98i1n98IdcAACA86MwDgAA3BYsWKCIiAilp6e7l0VGRrr/3zAMpaamatq0aRoyZIgkafXq1QoNDdXGjRs1fPjwGo8ZAACcVVwU/+yzz/Tmm2+qadOmHutjYmKUm5urAwcOqGvXrpKkN954Q0VFRerRo4cVIQMAAAAAUGMojAMAALdXXnlF8fHxuvXWW7Vz505deumluu+++3T33XdLkrKyspSdna3Y2Fj3e4KDg9WjRw9lZmaWWhh3Op1yOp3u18WPqHO5XHK5XNXcI99S3N8Lrd/lUVZuHHWMmg7H5zgCDI//4lcXem7K+jzhM6dsZuenJvJ86tQpHT161P06KytLhw4dUkhIiJo3b65bbrlFBw8e1GuvvabCwkL3vOEhISGqV6+e2rdvr+uvv1533323li9fLpfLpXHjxmn48OEKDw+v9vgBAAAAALAShXEAAOD23//+V8uWLVNycrL+8pe/aN++fZowYYLq1aunpKQk9wX20NBQj/eFhoa61/1WSkqKZs+eXWL59u3b1aBBA/M7UQtkZGRYHYLPKi03TPvwq7nRRVaH4LMu1Nxs3rz5vNvwmVM2s/JTUFBgSjtl2b9/v6677jr36+J5v5OSkjRr1iy98sorkqQuXbp4vO/NN99U3759JUlr1qzRuHHj1L9/fwUEBCghIUGLFy+u9tgBAAAAALAahXEAAOBWVFSk6OhoPfroo5Kkq666SocPH9by5cuVlJRUqTanTp3qvnAvnb1jPCIiQnFxcR7znl4IXC6XMjIyNGDAAOaw+42yctNx1jaLovIdjgBDc6OLNH1/gJxFvjnHqFUu9NwcnhXvdR2fOWUzOz/FT0SpTn379pVheH86QlnrioWEhGjt2rVmhgUAAAA/1nrKphr9eY46hhZ2P3stwFlY9ne8L+YPqqGoAPiLaimMf/3113r44Ye1ZcsWFRQUqG3btkpPT1d0dLSks1/WZ86cqZUrVyo3N1e9evXSsmXL1K5du+oIBwAAlFPz5s11xRVXeCxr3769XnzxRUlSWFiYJCknJ0fNmzd3b5OTk1Pi7rRiDodDDoejxHK73X7BFmou5L6fT2m5Od8X4QuJs8hGPry4UHNTns8SPnPKZlZ+yDEAAAAAAL4twOwGf/zxR/Xq1Ut2u11btmzRRx99pL///e+66KKL3NssXLhQixcv1vLly7V37141bNhQ8fHxOn36tNnhAACACujVq5eOHDnisezTTz9Vq1atJEmRkZEKCwvTjh073Ovz8vK0d+9excTE1GisAAAAAAAAAACUl+l3jC9YsEARERFKT093L4uMjHT/v2EYSk1N1bRp0zRkyBBJ0urVqxUaGqqNGzdq+PDhZocEAADKadKkSbrmmmv06KOP6rbbbtO7776rFStWaMWKFZIkm82miRMnat68eWrXrp0iIyM1ffp0hYeHa+jQodYGDwAAAAAAAAA1oKanGZCYasAMpt8x/sorryg6Olq33nqrmjVrpquuukorV650r8/KylJ2drZiY2Pdy4KDg9WjRw9lZmaaHQ4AAKiAbt266eWXX9bzzz+vjh07au7cuUpNTVViYqJ7m8mTJ2v8+PEaM2aMunXrplOnTmnr1q0KDAy0MHIAAAAAAAAAALwz/Y7x//73v1q2bJmSk5P1l7/8Rfv27dOECRNUr149JSUlKTs7W5IUGhrq8b7Q0FD3ut9yOp1yOp3u13l5eZIkl8sll8tV5ZiL2zCjrQsR+aua4rw5AgyLI6mdivNG/iquOGecu5Vj9mefL+2HG2+8UTfeeKPX9TabTXPmzNGcOXNqMCoAAAAAAAAAACrP9MJ4UVGRoqOj9eijj0qSrrrqKh0+fFjLly9XUlJSpdpMSUnR7NmzSyzfvn27GjRoUKV4z5WRkWFaWxci8lc1c6OLrA6hViN/lce5WzVm5a+goMCUdgAAAAAAAAAAQEmmF8abN2+uK664wmNZ+/bt9eKLL0qSwsLCJEk5OTlq3ry5e5ucnBx16dKl1DanTp2q5ORk9+u8vDxFREQoLi5OQUFBVY7Z5XIpIyNDAwYMkN1ur3J7FxryVzXF+Zu+P0DOorLnhEBJjgBDc6OLyF8lFOeOc7dyzP7sK34aCgAAAAAAAAAAMJ/phfFevXrpyJEjHss+/fRTtWrVSpIUGRmpsLAw7dixw10Iz8vL0969e3XvvfeW2qbD4ZDD4Six3G63m1rMMbu9Cw35qxpnkU3OQgq7lUX+Ko9zt2rMyh/7AAAAAACAC9vXX3+thx9+WFu2bFFBQYHatm2r9PR0RUdHS5IMw9DMmTO1cuVK5ebmqlevXlq2bJnatWtnceQAANQOphfGJ02apGuuuUaPPvqobrvtNr377rtasWKFVqxYIensvKQTJ07UvHnz1K5dO0VGRmr69OkKDw/X0KFDzQ4HAAAA59F6yiarQ5CjjqGF3aWOs7bxh04AAAAALjg//vijevXqpeuuu05btmzRJZdcos8++0wXXXSRe5uFCxdq8eLFeuaZZ9zX1ePj4/XRRx8pMDDQwugBAKgdTC+Md+vWTS+//LKmTp2qOXPmKDIyUqmpqUpMTHRvM3nyZOXn52vMmDHKzc1V7969tXXrVgZvAAAAAAAAAMAFZ8GCBYqIiFB6erp7WWRkpPv/DcNQamqqpk2bpiFDhkiSVq9erdDQUG3cuFHDhw+v8ZgBAKhtTC+MS9KNN96oG2+80et6m82mOXPmaM6cOdXx4wEAAAAAAAAAqDVeeeUVxcfH69Zbb9XOnTt16aWX6r777tPdd98tScrKylJ2drZiY2Pd7wkODlaPHj2UmZnptTDudDrldDrdr/Py8iRJLpdLLperynEXt2FGW1aiH9456himtVWunxdgePy3LL68v4pjK08/fFlF9ocvuxD7URvOD7NirEg71VIYBwAAAAAAAAAA5fPf//5Xy5YtU3Jysv7yl79o3759mjBhgurVq6ekpCRlZ2dLkkJDQz3eFxoa6l5XmpSUFM2ePbvE8u3bt6tBgwamxZ+RkWFaW1aiHyUt7G5aUxUyN7rovNts3ry5BiKpmvL0ozagH77FX84Psz6rCgoKyr0thXEAAAAAAAAAACxUVFSk6OhoPfroo5Kkq666SocPH9by5cuVlJRU6XanTp2q5ORk9+u8vDxFREQoLi5OQUFBVY7b5XIpIyNDAwYMkN1ur3J7VqEf3nWctc2UdsrLEWBobnSRpu8PkLPIVua2h2fF11BUFVe8L8rTD19Wkf3hyy7EftSG88Osz6rip6GUB4VxAAAAAAAAAAAs1Lx5c11xxRUey9q3b68XX3xRkhQWFiZJysnJUfPmzd3b5OTkqEuXLl7bdTgccjgcJZbb7XZTC8Bmt2cV+lGSs9CaIqKzyHben10b9lV5+lEb0A/f4i/nh1mfVRVpI6DKPw0AAAAAAAAAAFRar169dOTIEY9ln376qVq1aiVJioyMVFhYmHbs2OFen5eXp7179yomJqZGYwUAoLbijnEAAAAAAAAAACw0adIkXXPNNXr00Ud122236d1339WKFSu0YsUKSZLNZtPEiRM1b948tWvXTpGRkZo+fbrCw8M1dOhQa4MHAKCWoDAOAAAAAAAAAICFunXrppdffllTp07VnDlzFBkZqdTUVCUmJrq3mTx5svLz8zVmzBjl5uaqd+/e2rp1qwIDAy2MHACA2oPCOAAAAAAAAAAAFrvxxht14403el1vs9k0Z84czZkzpwajAgDAf1AYBwAAAAAAAOB3Wk/ZZFpbjjqGFnaXOs7aJmehzZQ2v5g/yJR2AAAAUD4BVgcAAAAAAAAAAAAAAEB1ojAOAAAAAAAAAAAAAPBrFMYBAAAAAAAAAAAAAH6NwjgAAAAAALXArl27NHjwYIWHh8tms2njxo0e6w3D0IwZM9S8eXPVr19fsbGx+uyzzzy2+eGHH5SYmKigoCA1adJEo0eP1qlTp2qwFwAAAAAAWIPCOAAAAAAAtUB+fr46d+6stLS0UtcvXLhQixcv1vLly7V37141bNhQ8fHxOn36tHubxMREffjhh8rIyNBrr72mXbt2acyYMTXVBQAAAAAALFPX6gAAAAAAAMD5DRw4UAMHDix1nWEYSk1N1bRp0zRkyBBJ0urVqxUaGqqNGzdq+PDh+vjjj7V161bt27dP0dHRkqQlS5bohhtu0GOPPabw8PAa6wsAAAAAADWNwjgAAAAAALVcVlaWsrOzFRsb614WHBysHj16KDMzU8OHD1dmZqaaNGniLopLUmxsrAICArR3717dfPPNpbbtdDrldDrdr/Py8iRJLpdLLperyrEXt2FGW1axsg+OOoZ5bQUYHv81gxU58YdjSvo1fjP3h9nKk2POD+84PyrP7H7U9nwAAIDyoTAOAADcZs2apdmzZ3ssu/zyy/XJJ59Ikk6fPq0HHnhA69atk9PpVHx8vJYuXarQ0FArwgUAAP9fdna2JJUYk0NDQ93rsrOz1axZM4/1devWVUhIiHub0qSkpJT4/UCStm/frgYNGlQ1dLeMjAzT2rKKFX1Y2N38NudGF5nW1ubNm01rq6L84ZiSzN0fZqvI/uX8KInzo+rM6kdBQYEp7QAAAN9GYRwAAHjo0KGDXn/9dffrunV//XVh0qRJ2rRpkzZs2KDg4GCNGzdOw4YN0+7du60IFQAA1ICpU6cqOTnZ/TovL08RERGKi4tTUFBQldt3uVzKyMjQgAEDZLfbq9yeFazsQ8dZ20xryxFgaG50kabvD5CzyGZKm4dnxZvSTkX4wzEl/doPM/eH2cqzfzk/vOP8qDyz+1H8NBQAAODfKIwDAAAPdevWVVhYWInlJ0+e1NNPP621a9eqX79+kqT09HS1b99ee/bsUc+ePWs6VAAA8P8Vj905OTlq3ry5e3lOTo66dOni3ubEiRMe7/vll1/0ww8/lDr2F3M4HHI4HCWW2+12U4sqZrdnBSv64Cw0v2DqLLKZ1q6V+9QfjinJ3P1htorkl/OjJM6PqjOrH/6QCwAAcH4UxgEAgIfPPvtM4eHhCgwMVExMjFJSUtSyZUsdOHBALpfLY+7SqKgotWzZUpmZmV4L49U9L2lt4qvz+Zk592KlY6iGORv9Cfnx7kLPTVmfJ776meMr/G1u0sjISIWFhWnHjh3uQnheXp727t2re++9V5IUExOj3NxcHThwQF27dpUkvfHGGyoqKlKPHj2sCh0AAAAAgBpBYRwAALj16NFDq1at0uWXX65vv/1Ws2fP1u9//3sdPnxY2dnZqlevnpo0aeLxnnPnLi1NTc1LWpv42nx+1TH3YmX58hyavoD8eHeh5qY8c5P62meOr6lNc5OeOnVKR48edb/OysrSoUOHFBISopYtW2rixImaN2+e2rVrp8jISE2fPl3h4eEaOnSoJKl9+/a6/vrrdffdd2v58uVyuVwaN26chg8frvDw8GqPHwAAAAAAK1EYBwAAbgMHDnT//5VXXqkePXqoVatWWr9+verXr1+pNqt7XtLaxFfn8zNz7sXKqo45G/0J+fHuQs9NWXOT+upnjq+ojXOT7t+/X9ddd537dfH4mpSUpFWrVmny5MnKz8/XmDFjlJubq969e2vr1q0KDAx0v2fNmjUaN26c+vfvr4CAACUkJGjx4sXVHjsAAAAAAFajMA4AALxq0qSJLrvsMh09elQDBgzQmTNnlJub63HXeE5Ojk/MS1qb+FrffWnOSl+eQ9MXkB/vLtTclOezxNc+c3xNbZqbtG/fvjIM79MG2Gw2zZkzR3PmzPG6TUhIiNauXVsd4QEAAAAA4NMCrA4AAAD4rlOnTunzzz9X8+bN1bVrV9ntdu3YscO9/siRIzp+/LhiYmIsjBIAAAAAAAAAgLJxxzgAAHB78MEHNXjwYLVq1UrffPONZs6cqTp16uiOO+5QcHCwRo8ereTkZIWEhCgoKEjjx49XTEyMevbsaXXoAAAAAAAAAAB4RWEcAAC4ffXVV7rjjjv0/fff65JLLlHv3r21Z88eXXLJJZKkRYsWuecjdTqdio+P19KlSy2OGgAAAAAAAACAslEYxwWh9ZRNVofglaOOoYXdrY4CAM5at25dmesDAwOVlpamtLS0GooIAAAAAAAAAICqY45xAAAAAAAAAAAAAIBfozAOAAAAAAAAAAAAAPBrFMYBAAAAAAAAAAAAAH6NwjgAAAAAAAAAAAAAwK9RGAcAAAAAAAAAAAAA+DUK4wAAAAAAAAAAAAAAv0ZhHAAAAAAAAAAAAADg1yiMAwAAAAAAAAAAAAD8Wl2rA4D/6Dhrm5yFNqvDAAAAAAAAAAAAAAAP3DEOAAAAAAAAAAAAAPBrFMYBAAAAAAAAAAAAAH6NwjgAAAAAAAAAAAAAwK9RGAcAAAAAAAAAAAAA+DUK4wAAAAAAAAAAAAAAv0ZhHAAAAAAAAAAAAADg1yiMAwAAAAAAAAAAAAD8GoVxAAAAAAAAAAAAAIBfozAOAAAAAAAAAAAAAPBrFMYBAAAAAPADhYWFmj59uiIjI1W/fn21adNGc+fOlWEY7m0Mw9CMGTPUvHlz1a9fX7Gxsfrss88sjBoAAAAAgJpBYRwAAAAAAD+wYMECLVu2TE8++aQ+/vhjLViwQAsXLtSSJUvc2yxcuFCLFy/W8uXLtXfvXjVs2FDx8fE6ffq0hZEDAAAAAFD96lodAAAAAAAAqLp33nlHQ4YM0aBBgyRJrVu31vPPP693331X0tm7xVNTUzVt2jQNGTJEkrR69WqFhoZq48aNGj58uGWxAwAAAABQ3SiMAwAAr+bPn6+pU6fq/vvvV2pqqiTp9OnTeuCBB7Ru3To5nU7Fx8dr6dKlCg0NtTZYAAAucNdcc41WrFihTz/9VJdddpnef/99vf3223r88cclSVlZWcrOzlZsbKz7PcHBwerRo4cyMzO9FsadTqecTqf7dV5eniTJ5XLJ5XJVOe7iNsxoyypW9sFRxzj/RuVtK8Dw+K8ZrMiJPxxT0q/xm7k/zFaeHHN+eMf5UXlm96O25wMAAJQPhXEAAFCqffv26amnntKVV17psXzSpEnatGmTNmzYoODgYI0bN07Dhg3T7t27LYoUAABI0pQpU5SXl6eoqCjVqVNHhYWFeuSRR5SYmChJys7OlqQSf8wWGhrqXlealJQUzZ49u8Ty7du3q0GDBqbFn5GRYVpbVrGiDwu7m9/m3Ogi09ravHmzaW1VlD8cU5K5+8NsFdm/nB8lcX5UnVn9KCgoMKUdAADg2yiMAwCAEk6dOqXExEStXLlS8+bNcy8/efKknn76aa1du1b9+vWTJKWnp6t9+/bas2ePevbsaVXIAABc8NavX681a9Zo7dq16tChgw4dOqSJEycqPDxcSUlJlW536tSpSk5Odr/Oy8tTRESE4uLiFBQUVOW4XS6XMjIyNGDAANnt9iq3ZwUr+9Bx1jbT2nIEGJobXaTp+wPkLLKZ0ubhWfGmtFMR/nBMSb/2w8z9Ybby7F/OD+84PyrP7H4UPw0FAAD4NwrjAACghLFjx2rQoEGKjY31KIwfOHBALpfL4xGsUVFRatmypTIzMymMAwBgoYceekhTpkxxPxK9U6dOOnbsmFJSUpSUlKSwsDBJUk5Ojpo3b+5+X05Ojrp06eK1XYfDIYfDUWK53W43tahidntWsKIPzkLzC6bOIptp7Vq5T/3hmJLM3R9mq0h+OT9K4vyoOrP64Q+5AAAA50dhHAAAeFi3bp0OHjyoffv2lViXnZ2tevXqqUmTJh7Ly3oEa3XPS1qb+Op8fmbOvVjpGKphzkZ/Qn68u9BzU9bnia9+5vgKf5ybtKCgQAEBAR7L6tSpo6Kis4/9jYyMVFhYmHbs2OEuhOfl5Wnv3r269957azpcAAAASGo9ZZNpbTnqGFrY/ewTM3z1j6oAwErVXhifP3++pk6dqvvvv1+pqamSpNOnT+uBBx7QunXr5HQ6FR8fr6VLl5aY5wwAANSsL7/8Uvfff78yMjIUGBhoSps1NS9pbeJr8/lVx9yLleXLc2j6AvLj3YWam/LMTeprnzm+xp/mJh08eLAeeeQRtWzZUh06dNB7772nxx9/XKNGjZIk2Ww2TZw4UfPmzVO7du0UGRmp6dOnKzw8XEOHDrU2eAAAAAAAqlm1Fsb37dunp556SldeeaXH8kmTJmnTpk3asGGDgoODNW7cOA0bNky7d++uznAAAMB5HDhwQCdOnNDVV1/tXlZYWKhdu3bpySef1LZt23TmzBnl5uZ63DWek5Pjfjzrb1X3vKS1ia/O52fm3IuVVR1zNvoT8uPdhZ6bsuYm9dXPHF/hj3OTLlmyRNOnT9d9992nEydOKDw8XPfcc49mzJjh3mby5MnKz8/XmDFjlJubq969e2vr1q2m/UEcAAAAAAC+qtoK46dOnVJiYqJWrlzpMTfpyZMn9fTTT2vt2rXq16+fJCk9PV3t27fXnj17mJsUAAAL9e/fXx988IHHspEjRyoqKkoPP/ywIiIiZLfbtWPHDiUkJEiSjhw5ouPHjysmJqbUNmtqXtLaxNf67kuPV/PlOTR9Afnx7kLNTXk+S3ztM8fX+NPcpI0bN1Zqaqr7aW2lsdlsmjNnjubMmVNzgQEAAAAAapSZ0zSYrXjaBytUW2F87NixGjRokGJjYz0K4wcOHJDL5VJsbKx7WVRUlFq2bKnMzMxSC+PVPTcpc+9VTXHeLtR5HavqQp8Xs6rIX+UV54zPvsrxx3lJpbMX1Dt27OixrGHDhmratKl7+ejRo5WcnKyQkBAFBQVp/PjxiomJ4Y/bAAAAAAAAAAA+q1oK4+vWrdPBgwe1b9++Euuys7NVr149j8evSlJoaKiys7NLba+m5iZl7r2quVDndTQL+asa8ld5fPZVjT/NS1peixYtUkBAgBISEuR0OhUfH6+lS5daHRYAAAAAAH5j/vz5mjp1qu6//37302BOnz6tBx54QOvWrfP4Ph4aGmptsAAA1BKmF8a//PJL3X///crIyDBtjrLqnpuUufeqpjh/F+q8jlV1oc+LWVXkr/KKc8dnX+X447yk3rz11lserwMDA5WWlqa0tDRrAgIAAAAAwI/t27dPTz31lK688kqP5ZMmTdKmTZu0YcMGBQcHa9y4cRo2bJh2795tUaQAANQuphfGDxw4oBMnTujqq692LyssLNSuXbv05JNPatu2bTpz5oxyc3M97hrPyclRWFhYqW3W1NykzL1XNRfqvI5mIX9VQ/4qj8++qvGneUkBAAAAAIC1Tp06pcTERK1cudJjitKTJ0/q6aef1tq1a9WvXz9JUnp6utq3b689e/YwvRkAAOVgemG8f//++uCDDzyWjRw5UlFRUXr44YcVEREhu92uHTt2KCEhQZJ05MgRHT9+XDExMWaHAwAAAAAAAABArTB27FgNGjRIsbGxHoXxAwcOyOVyKTY21r0sKipKLVu2VGZmptfCuNPplNPpdL8ufmKdy+WSy+WqcrzFbZjRlpWs7IejjmFeWwGGx39ro4r0wZePu+LYavO+kPzjmJLoh68pjt+sc7gi7ZheGG/cuLE6duzosaxhw4Zq2rSpe/no0aOVnJyskJAQBQUFafz48YqJieGv2gAAAAAAAADAB7SessnqELxy1DG0sLvVUZhv3bp1OnjwoPbt21diXXZ2turVq+fxFFZJCg0NVXZ2ttc2U1JSNHv27BLLt2/frgYNGlQ55mIZGRmmtWUlK/pRHcfy3Ogi8xutYeXpw+bNm2sgkqrxh30h0Q9f4y/9MOszt6CgoNzbml4YL49FixYpICBACQkJcjqdio+P19KlS60IBQAAAAAAAAAAS3355Ze6//77lZGRocDAQNPanTp1qpKTk92v8/LyFBERobi4OAUFBVW5fZfLpYyMDA0YMKBWTxNnZT86ztpmWluOAENzo4s0fX+AnEW1c9rJivTh8Kz4Goqq4oqPqdq8LyT/OKYk+uFrivth1mdu8dNQyqNGCuNvvfWWx+vAwEClpaUpLS2tJn48AAAAAAAAAAA+68CBAzpx4oSuvvpq97LCwkLt2rVLTz75pLZt26YzZ84oNzfX467xnJwchYWFeW3X4XDI4XCUWG63200tAJvdnlWs6Iez0PzilrPIVi3t1qTy9KE2HHP+sC8k+uFr/KUfZn3mVqQNS+4YBwAAAAAAAAAAZ/Xv318ffPCBx7KRI0cqKipKDz/8sCIiImS327Vjxw4lJCRIko4cOaLjx48rJibGipABAKh1KIwDAAAAAAAAAGChxo0bq2PHjh7LGjZsqKZNm7qXjx49WsnJyQoJCVFQUJDGjx+vmJgY9ezZ04qQAQCodSiMA8AFruOsbT772JUv5g+yOgQAAAAAAACfsGjRIgUEBCghIUFOp1Px8fFaunSp1WEBAFBrUBgHAAAAAAAAAMDHvPXWWx6vAwMDlZaWprS0NGsCAgCglguwOgAAAAAAAAAAAAAAAKoTd4wDAAAAQC3Vesomr+scdQwt7G7ttClMiwIAAAAAAHwFhfFaoqwLXlYrvuAGAAAAAAAAAAAAAL6IR6kDAAAAAAAAAAAAAPwahXEAAAAAAAAAAAAAgF+jMA4AAAAAAAAAAAAA8GsUxgEAAAAAAAAAAAAAfo3COAAAAAAAAAAAAADAr1EYBwAAAAAAAAAAAAD4NQrjAAAAAAAAAAAAAAC/RmEcAAAAAAA/8fXXX+uPf/yjmjZtqvr166tTp07av3+/e71hGJoxY4aaN2+u+vXrKzY2Vp999pmFEQMAAAAAUDMojAMAAAAA4Ad+/PFH9erVS3a7XVu2bNFHH32kv//977rooovc2yxcuFCLFy/W8uXLtXfvXjVs2FDx8fE6ffq0hZEDAAAAAFD9KIwDAAC3ZcuW6corr1RQUJCCgoIUExOjLVu2uNefPn1aY8eOVdOmTdWoUSMlJCQoJyfHwogBAECxBQsWKCIiQunp6erevbsiIyMVFxenNm3aSDp7t3hqaqqmTZumIUOG6Morr9Tq1av1zTffaOPGjdYGDwAAAABANaMwDgAA3Fq0aKH58+frwIED2r9/v/r166chQ4boww8/lCRNmjRJr776qjZs2KCdO3fqm2++0bBhwyyOGgAASNIrr7yi6Oho3XrrrWrWrJmuuuoqrVy50r0+KytL2dnZio2NdS8LDg5Wjx49lJmZaUXIAAAAAADUmLpWBwAAAHzH4MGDPV4/8sgjWrZsmfbs2aMWLVro6aef1tq1a9WvXz9JUnp6utq3b689e/aoZ8+eVoQMAAD+v//+979atmyZkpOT9Ze//EX79u3ThAkTVK9ePSUlJSk7O1uSFBoa6vG+0NBQ97rSOJ1OOZ1O9+u8vDxJksvlksvlqnLcxW2Y0ZZVrOyDo45hXlsBhsd/zWBFTvzhmJJ+jd/M/WG28uSY88M7Xz8/zMyf2Yr3g1k5rO2fFwAAoHwojAMAgFIVFhZqw4YNys/PV0xMjA4cOCCXy+Vxl1lUVJRatmypzMxMCuMAAFisqKhI0dHRevTRRyVJV111lQ4fPqzly5crKSmp0u2mpKRo9uzZJZZv375dDRo0qHS7v5WRkWFaW1axog8Lu5vf5tzoItPa2rx5s2ltVZQ/HFOSufvDbBXZv5wfJfn6+VEd+TObWcdVQUGBKe0AAADfRmEcAAB4+OCDDxQTE6PTp0+rUaNGevnll3XFFVfo0KFDqlevnpo0aeKxvdV3mdUmvnr3ki/cCVIdd+D4E/LjHbnxzhdy42ufd+cy+zPZF/ravHlzXXHFFR7L2rdvrxdffFGSFBYWJknKyclR8+bN3dvk5OSoS5cuXtudOnWqkpOT3a/z8vIUERGhuLg4BQUFVTlul8uljIwMDRgwQHa7vcrtWcHKPnSctc20thwBhuZGF2n6/gA5i2ymtHl4Vrwp7VSEPxxT0q/9MHN/mK08+5fzwztfPz/MzJ/ZiveHWcdV8fdUAADg3yiMAwAAD5dffrkOHTqkkydP6p///KeSkpK0c+fOSrdXU3eZ1Sa+dveSL90J4st3RPkC8uMdufHOytxYeSdcefnTnWa9evXSkSNHPJZ9+umnatWqlSQpMjJSYWFh2rFjh7sQnpeXp7179+ree+/12q7D4ZDD4Six3G63m1rkMrs9K1jRB2eh+QVTZ5HNtHat3Kf+cExJ5u4Ps1Ukv5wfJfn6+eGrx925zDqu/OGzAgAAnB+FcQAA4KFevXpq27atJKlr167at2+fnnjiCd1+++06c+aMcnNzPe4az8nJcd+BVprqvsusNvHVu5d84U6Q6rgDx5+QH+/IjXe+kBsr7oQrL7M/k33hTrNJkybpmmuu0aOPPqrbbrtN7777rlasWKEVK1ZIkmw2myZOnKh58+apXbt2ioyM1PTp0xUeHq6hQ4daGzwAAAAAANWMwjgAAChTUVGRnE6nunbtKrvdrh07dighIUGSdOTIER0/flwxMTFe319Td5nVJr7Wd1+6E8SX74jyBeTHO3LjnZW58aXPOm/86U6zbt266eWXX9bUqVM1Z84cRUZGKjU1VYmJie5tJk+erPz8fI0ZM0a5ubnq3bu3tm7dqsDAQAsjBwAAAACg+lEYBwAAblOnTtXAgQPVsmVL/fTTT1q7dq3eeustbdu2TcHBwRo9erSSk5MVEhKioKAgjR8/XjExMerZs6fVoQMAfFDrKZusDsErRx3Dp6aSMMuNN96oG2+80et6m82mOXPmaM6cOTUYFQAAAAAA1qMwDgAA3E6cOKG77rpL3377rYKDg3XllVdq27ZtGjBggCRp0aJFCggIUEJCgpxOp+Lj47V06VKLowYAAAAAAAAAoGwUxgEAgNvTTz9d5vrAwEClpaUpLS2thiICAAAAAAAAAKDqAqwOAAAAAAAAAAAAAACA6kRhHAAAAAAAAAAAAADg1yiMAwAAAAAAAAAAAAD8GoVxAAAAAAAAAAAAAIBfozAOAAAAAAAAAAAAAPBrFMYBAAAAAAAAAAAAAH6NwjgAAAAAAAAAAAAAwK/VtToAAAC8aT1lk9UheOWoY2hhd6ujAAAAAAAAAAAA5cEd4wAAAAAAAAAAAAAAv0ZhHAAAAAAAAAAAAADg1yiMAwAAAAAAAAAAAAD8GoVxAAAAAAAAAAAAAIBfozAOAAAAAAAAAAAAAPBrFMYBAAAAAAAAAAAAAH6NwjgAAAAAAAAAAAAAwK/VtToAAAAAAAAAAACA6tB6yqbzbuOoY2hhd6njrG1yFtpqICoAgBW4YxwAAAAAAAAAAAAA4NcojAMAAAAAAAAAAAAA/BqFcQAAAAAAAAAAAACAX6MwDgAAAAAAAAAAAADwaxTGAQAAAADwQ/Pnz5fNZtPEiRPdy06fPq2xY8eqadOmatSokRISEpSTk2NdkAAAAAAA1BAK4wAAAAAA+Jl9+/bpqaee0pVXXumxfNKkSXr11Ve1YcMG7dy5U998842GDRtmUZQAAAAAANQcCuMAAMAtJSVF3bp1U+PGjdWsWTMNHTpUR44c8diGO80AAPBtp06dUmJiolauXKmLLrrIvfzkyZN6+umn9fjjj6tfv37q2rWr0tPT9c4772jPnj0WRgwAAAAAQPWjMA4AANx27typsWPHas+ePcrIyJDL5VJcXJzy8/Pd23CnGQAAvm3s2LEaNGiQYmNjPZYfOHBALpfLY3lUVJRatmypzMzMmg4TAAAAAIAaVdfsBlNSUvTSSy/pk08+Uf369XXNNddowYIFuvzyy93bnD59Wg888IDWrVsnp9Op+Ph4LV26VKGhoWaHAwAAKmDr1q0er1etWqVmzZrpwIEDuvbaa913mq1du1b9+vWTJKWnp6t9+/bas2ePevbsaUXYAADg/1u3bp0OHjyoffv2lViXnZ2tevXqqUmTJh7LQ0NDlZ2d7bVNp9Mpp9Ppfp2XlydJcrlccrlcVY65uA0z2rKKlX1w1DHMayvA8PivGazIiT8cU9Kv8Zu5P8xWnhxzfnjn6+eHmfkzW/F+MCuHtf3zAgAAlI/phfHiO826deumX375RX/5y18UFxenjz76SA0bNpR09k6zTZs2acOGDQoODta4ceM0bNgw7d692+xwAABAFZw8eVKSFBISIun8d5qVVhiv7ovptYmvXqT1hQte1XGh0Z+QH+/IjXfkpmz+eEH9yy+/1P3336+MjAwFBgaa1m5KSopmz55dYvn27dvVoEED035ORkaGaW1ZxYo+LOxufptzo4tMa2vz5s2mtVVR/nBMSebuD7NVZP9yfpTk6+dHdeTPbGYdVwUFBaa0AwAAfJvphXHuNAMAwD8UFRVp4sSJ6tWrlzp27Cipcnea1dTF9NrE1y7S+tIFL1++8OsLyI935MY7clM2f7qgfuDAAZ04cUJXX321e1lhYaF27dqlJ598Utu2bdOZM2eUm5vrMZbn5OQoLCzMa7tTp05VcnKy+3VeXp4iIiIUFxenoKCgKsftcrmUkZGhAQMGyG63V7k9K1jZh46ztpnWliPA0NzoIk3fHyBnkc2UNg/PijelnYrwh2NK+rUfZu4Ps5Vn/3J+eOfr54eZ+TNb8f4w67gq/gNuq/E0VgAAqpfphfHfqg13mvnq3Vvn8oU7ubzhTpSqIX9VQ/4qj9xVjT/eZfZbY8eO1eHDh/X2229XqZ3qvphem/jqRVpfuOBVHRca/Qn58Y7ceEduyuaPF9T79++vDz74wGPZyJEjFRUVpYcfflgRERGy2+3asWOHEhISJElHjhzR8ePHFRMT47Vdh8Mhh8NRYrndbjd1PDO7PStY0Qdnofnnt7PIZlq7Vu5TfzimJHP3h9kqkl/Oj5J8/fzw1ePuXGYdV77yWcHTWAEAqF7VWhivbXea+drdW+fypTu5vOFOlKohf1VD/iqP3FWNP91ldq5x48bptdde065du9SiRQv38rCwsArfaVZTF9NrE1/ruy9d8PLlC7++gPx4R268Izdl86cL6o0bN3Z/9y7WsGFDNW3a1L189OjRSk5OVkhIiIKCgjR+/HjFxMTw9DYAAHwAT2MFAKB6VWthvLbcaeard2+dyxfu5PKGO1GqhvxVDfmrPHJXNf54l5kkGYah8ePH6+WXX9Zbb72lyMhIj/Vdu3at1J1mAADANyxatEgBAQFKSEjwePwqAADwPWY8jRUAAPyq2grjtfFOM1+7e+tcteEOD+5EqRryVzXkr/LIXdX4011m0tk/alu7dq3+9a9/qXHjxu6nuQQHB6t+/foKDg7mTjMAAGqRt956y+N1YGCg0tLSlJaWZk1AAACgXMx6GivTlJZvmlJ/mXLQH/pRkT748nFXHFtt3heSfxxTEv3wNVZOU2p6YZw7zQAAqL2WLVsmSerbt6/H8vT0dI0YMUISd5oBAAAAAFDdzHoaK9OUVmyaUn+ZctAf+lGePmzevLkGIqkaf9gXEv3wNf7SDyumKTW9MM6dZgAA1F6Gcf6/NuROMwAAAAAAqo+ZT2NlmtLyTVPqL1MO+kM/KtKHw7Piayiqiis+N2rzvpD845iS6IevsXKaUtML49xpBgAAAAAAAABAxVTH01iZprRi05T6y5SD/tCP8vTBV4+5c/nDvpDoh6/xl35YMU1ptTxK/Xy40wwAAAAAAAAAgF/xNFYAAKqX6YVxAAAAAACAiuo4a5tP3vXwxfxBVocAALhA8DRWAACqF4VxAAAAAAAAAAAsxtNYAQCoXgFWBwAAAAAAAAAAAAAAQHWiMA4AAAAAAAAAAAAA8Gs8Sh0AAKCatZ6ySZLkqGNoYXffnUMVAAAAAAAAAPwVd4wDAAAAAAAAAAAAAPwahXEAAAAAAAAAAAAAgF+jMA4AAAAAAAAAAAAA8GsUxgEAAAAAAAAAAAAAfo3COAAAAAAAAAAAAADAr1EYBwAAAAAAAAAAAAD4NQrjAAAAAAAAAAAAAAC/RmEcAAAAAAAAAAAAAODXKIwDAAAAAAAAAAAAAPwahXEAAAAAAAAAAAAAgF+jMA4AAAAAAAAAAAAA8GsUxgEAAAAAAAAAAAAAfo3COAAAAAAAAAAAAADAr1EYBwAAAADAD6SkpKhbt25q3LixmjVrpqFDh+rIkSMe25w+fVpjx45V06ZN1ahRIyUkJCgnJ8eiiAEAAAAAqDkUxgEAgIddu3Zp8ODBCg8Pl81m08aNGz3WG4ahGTNmqHnz5qpfv75iY2P12WefWRMsAABw27lzp8aOHas9e/YoIyNDLpdLcXFxys/Pd28zadIkvfrqq9qwYYN27typb775RsOGDbMwagAAAAAAagaFcQAA4CE/P1+dO3dWWlpaqesXLlyoxYsXa/ny5dq7d68aNmyo+Ph4nT59uoYjBQAA59q6datGjBihDh06qHPnzlq1apWOHz+uAwcOSJJOnjypp59+Wo8//rj69eunrl27Kj09Xe+884727NljcfQAAAAAAFSvulYHAAAAfMvAgQM1cODAUtcZhqHU1FRNmzZNQ4YMkSStXr1aoaGh2rhxo4YPH16ToQIAgDKcPHlSkhQSEiJJOnDggFwul2JjY93bREVFqWXLlsrMzFTPnj0tiRMAAAAAgJpAYRwAAJRbVlaWsrOzPS6oBwcHq0ePHsrMzCy1MO50OuV0Ot2v8/LyJEkul0sul6v6g/YBjjrG2f8GeP4XvyI3ZSM/3pEb78hN2YrzYtZY5GtjWlFRkSZOnKhevXqpY8eOkqTs7GzVq1dPTZo08dg2NDRU2dnZXtuq7rG8uA1fPVbL08fibaw4Dop/zzClrWr43LAiJ1buDzP5+rkhcX5Ula+fH2bmz2z+Po4DAIDqQWEcAACUW/FF89DQUI/lZV1QT0lJ0ezZs0ss3759uxo0aGB+kD5oYXfP13Oji6wJpBYgN2UjP96RG+/ITdkyMjJMaaegoMCUdswyduxYHT58WG+//XaV26qpsdxXj9XNmzeXe1uzjqeK+O3vGWYwc19UJH9ms2J/VAdfPTckzo+q8vXzozryZzZ/HccBAED1oDAOAACq1dSpU5WcnOx+nZeXp4iICMXFxSkoKMjCyGpOx1nbJJ29q2FudJGm7w+Qs8hmcVS+hdyUjfx4R268IzdlK87PgAEDZLfbq9xe8V3UvmDcuHF67bXXtGvXLrVo0cK9PCwsTGfOnFFubq7HXeM5OTkKCwvz2l51j+Uul0sZGRk+e6wenhV/3m2K+2DW8VQRxb9nmKE6PjfKkz+zWbk/zOTr54bE+VFVvn5+mJk/s/nzOA4AAKoPhXEAAFBuxRfNc3Jy1Lx5c/fynJwcdenSpdT3OBwOORyOEsvtdnutvlBZEc5CzwtnziJbiWU4i9yUjfx4R268IzdlM2s88oUxzTAMjR8/Xi+//LLeeustRUZGeqzv2rWr7Ha7duzYoYSEBEnSkSNHdPz4ccXExHhtt6bGcl89VivSRyt+v6mOnJm5L6w8N/zl901fPTckzo+q8vXzw1ePu3P50zgOAACqX4DVAQAAgNojMjJSYWFh2rFjh3tZXl6e9u7dW+YFdQAAUP3Gjh2r5557TmvXrlXjxo2VnZ2t7Oxs/fzzz5Kk4OBgjR49WsnJyXrzzTd14MABjRw5UjExMerZs6fF0QMAAAAAUL24YxwAAHg4deqUjh496n6dlZWlQ4cOKSQkRC1bttTEiRM1b948tWvXTpGRkZo+fbrCw8M1dOhQ64IGAABatmyZJKlv374ey9PT0zVixAhJ0qJFixQQEKCEhAQ5nU7Fx8dr6dKlNRwpAAAAAAA1j8I4AADwsH//fl133XXu18VziiYlJWnVqlWaPHmy8vPzNWbMGOXm5qp3797aunWrAgMDrQoZAADo7KPUzycwMFBpaWlKS0urgYgAAAAAAPAdFMYBAICHvn37lnlh3Wazac6cOZozZ04NRgUAAAAAAAAAQOUxxzgAAAAAAAAAAAAAwK9RGAcAAAAAAAAAAAAA+DUK4wAAAAAAAAAAAAAAv0ZhHAAAAAAAAAAAAADg1yiMAwAAAAAAAAAAAAD8GoVxAAAAAAAAAAAAAIBfozAOAAAAAAAAAAAAAPBrFMYBAAAAAAAAAAAAAH6trtUBAAAAAAAAAACA2qvjrG1yFtqsDgMAgDJxxzgAAAAAAAAAAAAAwK9xx/g5+Ks2AABqp9ZTNlkdAgAAAAAAAADAh3HHOAAAAAAAAAAAAADAr1EYBwAAAAAAAAAAAAD4NQrjAAAAAAAAAAAAAAC/RmEcAAAAAAAAAAAAAODXKIwDAAAAAAAAAAAAAPwahXEAAAAAAAAAAAAAgF+jMA4AAAAAAAAAAAAA8GsUxgEAAAAAAAAAAAAAfo3COAAAAAAAAAAAAADAr1EYBwAAAAAAAAAAAAD4NcsK42lpaWrdurUCAwPVo0cPvfvuu1aFAgAAKoGxHACA2otxHACA2otxHACAyrGkMP7CCy8oOTlZM2fO1MGDB9W5c2fFx8frxIkTVoQDAAAqiLEcAIDai3EcAIDai3EcAIDKs6Qw/vjjj+vuu+/WyJEjdcUVV2j58uVq0KCB/u///s+KcAAAQAUxlgMAUHsxjgMAUHsxjgMAUHk1Xhg/c+aMDhw4oNjY2F+DCAhQbGysMjMzazocAABQQYzlAADUXozjAADUXozjAABUTd2a/oH/+9//VFhYqNDQUI/loaGh+uSTT0p9j9PplNPpdL8+efKkJOmHH36Qy+Wqckwul0sFBQWq6wpQYZGtyu1daOoWGSooKCJ/lUT+qob8VR65q5ri/H3//fey2+1Vbu+nn36SJBmGUeW2qltFx/LqHsclqe4v+aa0U90477wjN2UjP96RG+/ITdku1LGc7+QV9/333593m+I+mHU8VYSZvwdVx+dGefJnNiv3h5l8/dyQOD+qytfPD1/+nsU4zjhuNn/53dkf+lGRPljxOVpenBu+hX74FivH8RovjFdGSkqKZs+eXWJ5ZGSkBdGgNH+wOoBajvxVDfmrPHJXNdWRv59++knBwcHV0LJ1GMc9cd55R27KRn68IzfekZuyMZaXz4U+ll/8d6sjqFlmnxcXWv4uNBfa/uX88C2M4+VzoY/jFeEvvzv7Qz/K2wc+R2uGPxxTEv3wNVaN4zVeGL/44otVp04d5eTkeCzPyclRWFhYqe+ZOnWqkpOT3a+Lior0ww8/qGnTprLZqv4XEXl5eYqIiNCXX36poKCgKrd3oSF/VUP+qob8VR65qxqz82cYhn766SeFh4ebEF31quhYXt3jeG3CeecduSkb+fGO3HhHbsp2oY7lfCevHv7QB4l++Br64Vvoh29hHGccNxv98B3+0AeJfvga+uFbrBzHa7wwXq9ePXXt2lU7duzQ0KFDJZ0djHfs2KFx48aV+h6HwyGHw+GxrEmTJqbHFhQUVKsPJKuRv6ohf1VD/iqP3FWNmfmrLX+VXtGxvKbG8dqE8847clM28uMdufGO3JTtQhvL+U5evfyhDxL98DX0w7fQD9/COM44bjb64Tv8oQ8S/fA19MO3WDGOW/Io9eTkZCUlJSk6Olrdu3dXamqq8vPzNXLkSCvCAQAAFcRYDgBA7cU4DgBA7cU4DgBA5VlSGL/99tv13XffacaMGcrOzlaXLl20detWhYaGWhEOAACoIMZyAABqL8ZxAABqL8ZxAAAqz5LCuCSNGzfO6+NdaprD4dDMmTNLPFIG5UP+qob8VQ35qzxyVzXkz7fG8tqC48Y7clM28uMdufGO3JTtQs+PL43j/rAv/KEPEv3wNfTDt9AP3+Iv/agsxnHz0Q/f4Q99kOiHr6EfvsXKftgMwzBq/KcCAAAAAAAAAAAAAFBDAqwOAAAAAAAAAAAAAACA6kRhHAAAAAAAAAAAAADg1yiMAwAAAAAAAAAAAAD8mt8WxlNSUtStWzc1btxYzZo109ChQ3XkyBGPbT7//HPdfPPNuuSSSxQUFKTbbrtNOTk5Htv88MMPSkxMVFBQkJo0aaLRo0fr1KlTNdkVSyxbtkxXXnmlgoKCFBQUpJiYGG3ZssW9/vTp0xo7dqyaNm2qRo0aKSEhoUTujh8/rkGDBqlBgwZq1qyZHnroIf3yyy813RVLnC9/K1asUN++fRUUFCSbzabc3NwSbVyox55Udv5++OEHjR8/Xpdffrnq16+vli1basKECTp58qRHGxfq8Xe+Y++ee+5RmzZtVL9+fV1yySUaMmSIPvnkE482LtTcSefPXzHDMDRw4EDZbDZt3LjRY92FnD/86qefftLEiRPVqlUr1a9fX9dcc4327dvnXj9ixAjZbDaPf9dff72FEVefXbt2afDgwQoPDy/1nDEMQzNmzFDz5s1Vv359xcbG6rPPPvPYxl/HRDNy07p16xLH0vz582uwF9XjfLl56aWXFBcXp6ZNm8pms+nQoUMl2ijP76u1lRn56du3b4lj589//nPNdKAalZUbl8ulhx9+WJ06dVLDhg0VHh6uu+66S998841HG/76mWOV8x2vpXnrrbd09dVXy+FwqG3btlq1alW1x3k+Fe3HW2+9VeIcs9lsys7OrpmAS1Ge6ySl2bBhg6KiohQYGKhOnTpp8+bNNRCtd5Xpx6pVq0rsi8DAwBqKuHTl/e5xLl/bF1LF++GL+6I08+fPl81m08SJE8vczhf3ybnK0w9f3CezZs0qEVNUVFSZ7/H1fVFbMY77zjguMZb72meVP4zljOO+tT9+i3G8evhtYXznzp0aO3as9uzZo4yMDLlcLsXFxSk/P1+SlJ+fr7i4ONlsNr3xxhvavXu3zpw5o8GDB6uoqMjdTmJioj788ENlZGTotdde065duzRmzBirulVjWrRoofnz5+vAgQPav3+/+vXrpyFDhujDDz+UJE2aNEmvvvqqNmzYoJ07d+qbb77RsGHD3O8vLCzUoEGDdObMGb3zzjt65plntGrVKs2YMcOqLtWo8+WvoKBA119/vf7yl794beNCPfaksvP3zTff6JtvvtFjjz2mw4cPa9WqVdq6datGjx7tfv+FfPyd79jr2rWr0tPT9fHHH2vbtm0yDENxcXEqLCyUdGHnTjp//oqlpqbKZrOVeP+Fnj/86k9/+pMyMjL07LPP6oMPPlBcXJxiY2P19ddfu7e5/vrr9e2337r/Pf/88xZGXH3y8/PVuXNnpaWllbp+4cKFWrx4sZYvX669e/eqYcOGio+P1+nTp93b+OuYaEZuJGnOnDkex9L48eNrIvxqdb7c5Ofnq3fv3lqwYIHXNs73+2ptZkZ+JOnuu+/2OHYWLlxYHeHWqLJyU1BQoIMHD2r69Ok6ePCgXnrpJR05ckQ33XSTx3b++pljlfMdr7+VlZWlQYMG6brrrtOhQ4c0ceJE/elPf9K2bduqOdKyVbQfxY4cOeJxnjVr1qyaIjy/810nKc0777yjO+64Q6NHj9Z7772noUOHaujQoTp8+HANRu6pMv2QpKCgII99cezYsRqKuHTl/e5RzBf3hVTxfki+ty9+a9++fXrqqad05ZVXlrmdr+6TYuXth+Sb+6RDhw4eMb399ttet/X1fVGbMY77zjguMZb72meVP4zljOO+tT/OxThejfvCuECcOHHCkGTs3LnTMAzD2LZtmxEQEGCcPHnSvU1ubq5hs9mMjIwMwzAM46OPPjIkGfv27XNvs2XLFsNmsxlff/11zXbAB1x00UXGP/7xDyM3N9ew2+3Ghg0b3Os+/vhjQ5KRmZlpGIZhbN682QgICDCys7Pd2yxbtswICgoynE5njcfuC4rzd64333zTkGT8+OOPHss59koqLX/F1q9fb9SrV89wuVyGYXD8/VZZuXv//fcNScbRo0cNwyB3pflt/t577z3j0ksvNb799ltDkvHyyy+715E/GIZhFBQUGHXq1DFee+01j+VXX3218de//tUwDMNISkoyhgwZYkF01vrtOVNUVGSEhYUZf/vb39zLcnNzDYfDYTz//POGYVw4Y2JlcmMYhtGqVStj0aJFNRhpzfttbs6VlZVlSDLee+89j+Xl+X3VX1QmP4ZhGH369DHuv//+ao3NamXlpti7775rSDKOHTtmGMaF85ljlfLsk8mTJxsdOnTwWHb77bcb8fHx1RhZxZSnH96+6/mS314nKc1tt91mDBo0yGNZjx49jHvuuae6wyu38vQjPT3dCA4OrrmgKqms7261YV8UK6sfvr4vfvrpJ6Ndu3ZGRkbGecdKX94nFemHL+6TmTNnGp07dy739r68L/wJ47jvYSz3Pf4wljOOW78/GMerd1/47R3jv1X8mOWQkBBJktPplM1mk8PhcG8TGBiogIAA918uZGZmqkmTJoqOjnZvExsbq4CAAO3du7cGo7dWYWGh1q1bp/z8fMXExOjAgQNyuVyKjY11bxMVFaWWLVsqMzNT0tncderUSaGhoe5t4uPjlZeXV+ZfG/mj3+avPDj2flWe/J08eVJBQUGqW7euJI6/YufLXX5+vtLT0xUZGamIiAhJ5O5cpeWvoKBAf/jDH5SWlqawsLAS7yF/kKRffvlFhYWFJR5bVL9+fY+/jnzrrbfUrFkzXX755br33nv1/fff13SolsvKylJ2drbH7xTBwcHq0aOHx+8UF+KYWJ7cFJs/f76aNm2qq666Sn/729+YvkEq1++rkNasWaOLL75YHTt21NSpU1VQUGB1SDXu5MmTstlsatKkiaQL9zPHl2RmZnqcu9LZ36dq67nbpUsXNW/eXAMGDNDu3butDsfDb6+TlKY27I/y9EOSTp06pVatWikiIuK8d0LVtPJ8760N+6K81z98eV+MHTtWgwYNKpHr0vjyPqlIP/T/2Lvz8Kbq9P//r7a0KQXaWqCbbAWRRUA2LQVUlNKKiDAyoyijdRlRLAxQRcAB2dQq44I6CC4MuMAw4kdQAYECAl+0IFQ6sigCVnGUFhWhLBJC+/79wa8ZQ1u6JM3W5+O6uDTnnLxz3/dJ8k5655wj79wn+/btU3x8vFq2bKlhw4bp4MGD5W7rzfuitvG3feHN87jEXO4N71Ul/GEuZx73nv3BPF6z+6JOjYzqZYqLizVmzBj16tVLHTp0kCT16NFD9erV0/jx4/Xkk0/KGKMJEyaoqKhIhw4dkiTl5+eXOj1KnTp1FBUV5fHribjDzp07lZSUpNOnT6t+/fpaunSp2rdvr9zcXIWEhNj/eFQiJibGXpf8/HyHxlDJ+pJ1tUF59auM2v7ckypfv59//lkzZsxwOL1lbX/+VVS7l19+WY888ohOnjypNm3aKCsrSyEhIZKonXTh+o0dO1Y9e/bUoEGDyrwv9YMkNWjQQElJSZoxY4batWunmJgY/etf/1J2drYuueQSSedOo37zzTcrISFBBw4c0KOPPqr+/fsrOztbQUFBHs7AfUpeF2W9bn7/maI2zomVqY0k/fWvf1XXrl0VFRWlTz/9VBMnTtShQ4f03HPPuTVeb5Ofn1/h59Xa7vbbb1fz5s0VHx+vL774QuPHj9fevXv13nvveTo0tzl9+rTGjx+v2267TeHh4ZJq73uONynv81RhYaF+++031a1b10ORVU1cXJzmzp2r7t27y2q16vXXX1efPn20detWde3a1dPhlfl3krKUtz+85fVQ2TzatGmjf/7zn+rUqZOOHTumZ555Rj179tTu3bvVpEkTN0bsqCp/N/DmfVGVPLx1X0jS4sWL9fnnn2vbtm2V2t5b90lV8/DGfZKYmKgFCxaoTZs2OnTokKZNm6arrrpKu3btUoMGDUpt7637ojZiHncf5nLPv1dJ/jGXM4//jzfsD+bxc2pyX9SKxnh6erp27drlcJRW48aNtWTJEo0YMUIvvviiAgMDddttt6lr164KDKw1B9JfUJs2bZSbm6tjx47p3XffVVpamjZu3OjpsHxGefWrbHO8tqtM/QoLCzVgwAC1b99eU6dO9VywXqai2g0bNkz9+vXToUOH9Mwzz+iWW27RJ598Uuro1tqqvPrt379f69ev144dOzwdInzAW2+9pXvuuUcXX3yxgoKC1LVrV912223KycmRJA0dOtS+bceOHdWpUye1atVKGzZsUN++fT0VNnxQRkaG/f87deqkkJAQ3X///crMzHQ4MxJwvt//qLBjx46Ki4tT3759deDAAbVq1cqDkbmHzWbTLbfcImOM5syZ4+lw4IfatGmjNm3a2G/37NlTBw4c0PPPP6+33nrLg5GdU9bfSXxRZfNISkpyOPKpZ8+eateunV555RXNmDGjpsMsl7/83aAqeXjrvvj+++81evRoZWVl+fR34+rk4Y37pH///vb/79SpkxITE9W8eXO98847uvfeez0SE2oXb5/HJeZyb3ivkvxjLmce9x7M4+7h9x3gkSNHavny5fr4449L/ToiJSVFBw4c0OHDh/Xzzz/rrbfe0g8//KCWLVtKkmJjY3X48GGH+5w9e1ZHjhwp8xS6/iYkJESXXHKJunXrpszMTF1++eV64YUXFBsbqzNnzujo0aMO2xcUFNjrEhsbq4KCglLrS9bVBuXVrzJq+3NPqrh+x48f1/XXX68GDRpo6dKlCg4Otq+r7c+/imoXERGh1q1b6+qrr9a7776rr776SkuXLpVE7aTy67d+/XodOHBAkZGRqlOnjv3U/UOGDFGfPn0kUT/8T6tWrbRx40adOHFC33//vT777DPZbDb7Z4zztWzZUo0aNdL+/fvdHKlnlbwuynrd/P4zRW2cEytTm7IkJibq7Nmz+vbbb2syPK9Xmc+rcJSYmChJteJ9qKQp/t133ykrK8t+tLhUe99zvEl5n6fCw8N95iiz8lx55ZVe8Rq70N9Jzlfe/vCG10NV8jhfcHCwunTp4vH9UZW/G3jzvnDm7x/esi9ycnJ0+PBhde3a1f59b+PGjXrxxRdVp04dFRUVlbqPN+6T6uRxPm/ZJ78XGRmpSy+9tNyYvHFf1FbM4+7BXO4971X+MJczj/+Pp/cH8/j/1OS+8NvGuDFGI0eO1NKlS7V+/XolJCSUu22jRo0UGRmp9evX6/Dhw7rpppsknfulxdGjR+1Hd0nS+vXrVVxcbP/DUW1SXFwsq9Wqbt26KTg4WOvWrbOv27t3rw4ePGj/ZUpSUpJ27tzp8Eelkj86+dKvpVyppH6VwXOvtN/Xr7CwUCkpKQoJCdEHH3xQ6tdTPP8cXei5Z4yRMca+ntqVVlK/CRMm6IsvvlBubq79nyQ9//zzmj9/viTqh9Lq1aunuLg4/frrr1q9enW5p+H/73//q19++UVxcXFujtCzEhISFBsb6/CZorCwUFu3bnX4TFEb58TK1KYsubm5CgwMLHUq6NqmMp9X4ahkXvP396GSpvi+ffu0du1aNWzY0GF9bX3P8SZJSUkOr13p3Ocpf3jt5ubmevQ1VpW/k5Twxv1RnTzOV1RUpJ07d3rde96Fvrt5474oT1X+/uEt+6Jv377auXOnw/e97t27a9iwYcrNzS3zckfeuE+qk8f5vGWf/N6JEyd04MCBcmPyxn1RW/nzvvD0PC4xl/+eN75XSf4xlzOPM4+7mtfN48ZPjRgxwkRERJgNGzaYQ4cO2f+dOnXKvs0///lPk52dbfbv32/eeustExUVZTIyMhzGuf76602XLl3M1q1bzebNm03r1q3Nbbfd5u503G7ChAlm48aNJi8vz3zxxRdmwoQJJiAgwKxZs8YYY8wDDzxgmjVrZtavX2+2b99ukpKSTFJSkv3+Z8+eNR06dDApKSkmNzfXrFq1yjRu3NhMnDjRUym5VUX1O3TokNmxY4d57bXXjCSzadMms2PHDvPLL7/Yx6itzz1jLly/Y8eOmcTERNOxY0ezf/9+h9f32bNnjTG1+/l3ododOHDAPPnkk2b79u3mu+++M5988okZOHCgiYqKMgUFBcaY2l07Yyp+7Z5Pklm6dKn9dm2vH/5n1apV5qOPPjLffPONWbNmjbn88stNYmKiOXPmjDl+/Lh5+OGHTXZ2tsnLyzNr1641Xbt2Na1btzanT5/2dOgud/z4cbNjxw6zY8cOI8k899xzZseOHea7774zxhjz1FNPmcjISPP++++bL774wgwaNMgkJCSY3377zT6Gv86Jztbm008/Nc8//7zJzc01Bw4cMG+//bZp3LixufPOOz2ZlktUVJtffvnF7Nixw6xYscJIMosXLzY7duwwhw4dso9R0edVX+Zsffbv32+mT59utm/fbvLy8sz7779vWrZsaa6++mpPpuUSF6rNmTNnzE033WSaNGlicnNzHT5HWq1W+xj++p7jKRU9XydMmGDuuOMO+/bffPONCQsLM+PGjTNffvmlmT17tgkKCjKrVq3yVArGmKrn8fzzz5tly5aZffv2mZ07d5rRo0ebwMBAs3btWk+lUKm/k9xxxx1mwoQJ9tuffPKJqVOnjnnmmWfMl19+aaZMmWKCg4PNzp07PZGCMaZ6eUybNs2sXr3aHDhwwOTk5JihQ4ea0NBQs3v3bk+kYIyp+LuHL+wLY6qehzfui/Jcc801ZvTo0fbbvrJPzldRHt64Tx566CGzYcMGk5eXZz755BOTnJxsGjVqZA4fPmyM8d194YuYx71nHjeGudzb3qv8YS5nHveu/VEW5nHX89vGuKQy/82fP9++zfjx401MTIwJDg42rVu3Ns8++6wpLi52GOeXX34xt912m6lfv74JDw83d999tzl+/Libs3G/e+65xzRv3tyEhISYxo0bm759+zo0hn777Tfz4IMPmosuusiEhYWZP/zhDw5/iDTGmG+//db079/f1K1b1zRq1Mg89NBDxmazuTsVj6ioflOmTKnw+Vlbn3vGXLh+H3/8cbmv77y8PPsYtfX5d6Ha/fDDD6Z///4mOjraBAcHmyZNmpjbb7/dfPXVVw5j1NbaGVPxa/d85zfGjand9cP//Pvf/zYtW7Y0ISEhJjY21qSnp5ujR48aY4w5deqUSUlJMY0bNzbBwcGmefPm5r777jP5+fkejrpmlPe+nZaWZowxpri42EyePNnExMQYi8Vi+vbta/bu3eswhr/Oic7WJicnxyQmJpqIiAgTGhpq2rVrZ5588km/+IFFRbWZP39+meunTJliH6Myn1d9lbP1OXjwoLn66qtNVFSUsVgs5pJLLjHjxo0zx44d81xSLnKh2uTl5ZX7OfLjjz+2j+Gv7zmeUtHzNS0tzVxzzTWl7tO5c2cTEhJiWrZs6fA9yVOqmsfTTz9tWrVqZUJDQ01UVJTp06ePWb9+vWeC//9V5u8k11xzjT2nEu+884659NJLTUhIiLnsssvMihUr3Bv4eaqTx5gxY0yzZs1MSEiIiYmJMTfccIP5/PPP3R/871T03cMX9oUxVc/DG/dFec7/Q7Sv7JPzVZSHN+6TW2+91cTFxZmQkBBz8cUXm1tvvdXs37/fvt5X94UvYh73nnncGOZyb3uv8oe5nHncu/ZHWZjHXS/AGGMEAAAAAAAAAAAAAICf8ttrjAMAAAAAAAAAAAAAINEYBwAAAAAAAAAAAAD4ORrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPwajXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPwajXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAACBJuuuuu1S/fn1PhwEAgE9YsGCBAgIC9O2337pszKlTpyogIMBl4wH4HxrjgJ8qmZC3b99+we2MMXrrrbd09dVXKzIyUmFhYerYsaOmT5+ukydPltq+T58+CggIsP+rW7euOnXqpFmzZqm4uLim0gEAoFY5cOCA7r//frVs2VKhoaEKDw9Xr1699MILL+i3336zb1dcXKw333xT/fr1U6NGjRQcHKzo6GilpKTo1VdfldVqdRj393N4YGCg4uPjlZKSog0bNpSKoaioSPHx8QoICNBHH31U0ykDAOAVSr5Ll/yrU6eOLr74Yt1111364YcfPB0eAACoQS+//LICAgKUmJjo6VBKefLJJ7Vs2TJPhwH4vDqeDgCA5xQVFen222/XO++8o6uuukpTp05VWFiY/t//+3+aNm2alixZorVr1yomJsbhfk2aNFFmZqYk6eeff9aiRYs0duxY/fTTT3riiSc8kQoAAH5jxYoV+tOf/iSLxaI777xTHTp00JkzZ7R582aNGzdOu3fv1quvvqrffvtNf/jDH7R69Wr17NlTDz/8sGJiYnTkyBFt3LhRDz74oLZu3ap58+Y5jN+vXz/deeedMsYoLy9PL7/8sq677jqtWLFC/fv3t2+3fv16HTp0SC1atNDChQsd1gEA4O+mT5+uhIQEnT59Wlu2bNGCBQu0efNm7dq1S6GhoZ4ODwAA1ICFCxeqRYsW+uyzz7R//35dcsklHolj0qRJmjBhgsOyJ598Un/84x81ePBgj8QE+Asa40AtNnPmTL3zzjt6+OGH9fe//92+fPjw4brllls0ePBg3XXXXaWOEouIiNCf//xn++0HHnhAbdu21UsvvaTp06crKCjIbTkAAOBP8vLyNHToUDVv3lzr169XXFycfV16err279+vFStWSJLGjh2r1atXa9asWRo9erTDOA899JD27dunrKysUo9x6aWXOszjf/jDH+xnf/l98/vtt99W165dlZaWpkcffVQnT55UvXr1XJ0yAABeqX///urevbsk6S9/+YsaNWqkp59+Wh988IFuueUWD0dXdadPn1ZISIgCAzl5JAAAZcnLy9Onn36q9957T/fff78WLlyoKVOmeCSWOnXqqE4d2ndATeDTMFBL/fbbb/r73/+uSy+91H709+8NHDhQaWlpWrVqlbZs2XLBsUJDQ3XFFVfo+PHjOnz4cE2FDACA35s5c6ZOnDihefPmOTTFS1xyySUaPXq0vv/+e73++uu6/vrrSzXFS7Ru3VoPPvhghY/ZsWNHNWrUSHl5efZlv/32m5YuXaqhQ4fqlltu0W+//ab333+/+okBAODjrrrqKknnLndS4quvvtIf//hHRUVFKTQ0VN27d9cHH3zgcD+bzaZp06apdevWCg0NVcOGDdW7d+9SP16rzFhHjhzRww8/rI4dO6p+/foKDw9X//799Z///Mdhuw0bNiggIECLFy/WpEmTdPHFFyssLEyFhYWSpK1bt+qGG27QRRddpHr16qlTp0564YUXSuX8ww8/aPDgwapfv74aN26shx9+WEVFRdUvIgAAXmzhwoW66KKLNGDAAP3xj3/UwoULS22ze/duXXfddapbt66aNGmixx9/vMzLi7Zo0UI33nijNmzYoO7du6tu3brq2LGj/TJm7733njp27KjQ0FB169ZNO3bscLj/+dcYDwgI0MmTJ/XGG2/YL/dy1113uTR/oLagMQ7UUps3b9avv/6q22+/vdxfn915552SpOXLl1c43rfffquAgABFRka6MkwAAGqVDz/8UC1btlTPnj0vuN1HH32koqIihyO/q+vXX3/Vr7/+qoYNG9qXffDBBzpx4oSGDh2q2NhY9enTp8w/CgAAUFt8++23kqSLLrpI0rk/jPfo0UNffvmlJkyYoGeffVb16tXT4MGDtXTpUvv9pk6dqmnTpunaa6/VP/7xD/3tb39Ts2bN9Pnnn9u3qexY33zzjZYtW6Ybb7xRzz33nMaNG6edO3fqmmuu0Y8//lgq5hkzZmjFihV6+OGH9eSTTyokJERZWVm6+uqrtWfPHo0ePVrPPvusrr322lLf+4uKipSamqqGDRvqmWee0TXXXKNnn31Wr776qivLCgCA11i4cKFuvvlmhYSE6LbbbtO+ffu0bds2+/r8/Hxde+21ys3N1YQJEzRmzBi9+eabZf64TJL279+v22+/XQMHDlRmZqZ+/fVXDRw4UAsXLtTYsWP15z//WdOmTdOBAwd0yy23lNlgL/HWW2/JYrHoqquu0ltvvaW33npL999/v8trANQGnIsBqKX27NkjSbr88svL3aZk3ZdffumwvKioSD///LMk6ZdfftG8efO0fft2DRgwQHXr1q2hiAEA8G+FhYX64YcfNGjQoAq3/eqrryRJHTp0cFh+5swZ+9Fg0rlflf++4S2dO5Xqzz//bL/G+KOPPqqioiL96U9/sm/z9ttvq2fPnmratKkkaejQoXrwwQf1008/qXHjxtXOEQAAX3Hs2DH9/PPPOn36tLZu3app06bJYrHoxhtvlCSNHj1azZo107Zt22SxWCRJDz74oHr37q3x48frD3/4gyRpxYoVuuGGGy7YUK7sWB07dtTXX3/tcDr0O+64Q23bttW8efM0efJkh3FPnz6t7du327+nFxUV6f7771dcXJxyc3MdfthujCl131tvvdU+5gMPPKCuXbtq3rx5GjFiRJXrCQCAN8vJydFXX32ll156SZLUu3dvNWnSRAsXLtQVV1whSXr66af1008/aevWrbryyislSWlpaWrdunWZY+7du1effvqpkpKSJEnt27dXamqq7rvvPn311Vdq1qyZpHM/urv//vu1adMm9enTp8yx/vznP+uBBx5Qy5YtXfIDeaA244hxoJY6fvy4JKlBgwblblOy7vd/YJfO/TG+cePGaty4sdq2bau///3vuummm7RgwYIaixcAAH9XMt9eaG4+f9v69es7LF+5cqV9jm7cuLGaN29e6r7z5s1T48aNFR0drcTERH3yySfKyMjQmDFjJJ370dvq1at122232e8zZMgQBQQE6J133qluegAA+JTk5GQ1btxYTZs21R//+EfVq1dPH3zwgZo0aaIjR45o/fr1uuWWW3T8+HH9/PPP+vnnn/XLL78oNTVV+/bt0w8//CBJioyM1O7du7Vv374yH6cqY1ksFntTvKioSL/88ovq16+vNm3aOByBXiItLc3hx+s7duxQXl6exowZU+psb78/XWuJBx54wOH2VVddpW+++abyRQQAwEcsXLhQMTExuvbaayWdmxdvvfVWLV682H4ZkZUrV6pHjx72prgkNW7cWMOGDStzzPbt29ub4pKUmJgoSbruuuvsTfHfL2eOBdyDxjhQS5X80b2kQV6W8prnLVq0UFZWllavXq2XX35ZF198sX766SeFhobWXMAAAPi58PBwSReem0uUzM0nTpxwWN6rVy9lZWUpKytLKSkpZd530KBBysrK0tq1a7V161b9/PPPevbZZ+1/aP/3v/8tm82mLl26aP/+/dq/f7+OHDmixMRETqcOAKg1Zs+eraysLL377ru64YYb9PPPP9uP5t6/f7+MMZo8ebLDD9IaN26sKVOmSJIOHz4sSZo+fbqOHj2qSy+9VB07dtS4ceP0xRdf2B+nKmMVFxfr+eefV+vWrWWxWNSoUSM1btxYX3zxhY4dO1Yqh4SEBIfbJddHP/+MM2UJDQ0tdZaYiy66SL/++mul6gcAgK8oKirS4sWLde211yovL8/+PTgxMVEFBQVat26dJOm7774r8+jwNm3alDnu75vfkhQRESFJ9jOznb+cORZwD06lDtRS7dq1kyR98cUXGjx4cJnblHxZb9++vcPyevXqKTk52X67V69e6tq1qx599FG9+OKLNRMwAAB+Ljw8XPHx8dq1a1eF27Zt21aStGvXLofLojRu3Ng+R7/99ttl3rdJkyYO8/j5SprfvXr1KnP9N998o5YtW1YYIwAAvuzKK69U9+7dJUmDBw9W7969dfvtt2vv3r32a4A+/PDDSk1NLfP+l1xyiSTp6quv1oEDB/T+++9rzZo1ev311/X8889r7ty5+stf/lKlsZ588klNnjxZ99xzj2bMmKGoqCgFBgZqzJgxZV6X1JlLnQUFBVX7vgAA+JL169fr0KFDWrx4sRYvXlxq/cKFC8v94fmFlDeXlrf8/MuaAKgZNMaBWqp3796KjIzUokWL9Le//a3MCfnNN9+UJPs11MrTqVMn/fnPf9Yrr7yihx9+uNSv4QAAQOXceOONevXVV5Wdne1wyrXz9e/fX0FBQVq4cGG5p22rjry8PH366acaOXKkrrnmGod1xcXFuuOOO7Ro0SJNmjTJZY8JAIC3CwoKUmZmpq699lr94x//0D333CNJCg4OvuCPzUpERUXp7rvv1t13360TJ07o6quv1tSpU/WXv/zF/mOzyoz17rvv6tprr9W8efMclh89elSNGjWqMI5WrVpJOvfDusrEDQBAbbBw4UJFR0dr9uzZpda99957Wrp0qebOnavmzZuXeWmUvXv3uiPMMi97AqDqOJU6UEuFhYXp4Ycf1t69e/W3v/2t1PoVK1ZowYIFSk1NVY8ePSoc75FHHpHNZtNzzz1XE+ECAFArPPLII6pXr57+8pe/qKCgoNT6AwcO6IUXXlCzZs10zz336KOPPtI//vGPMseqzq/NS44Wf+SRR/THP/7R4d8tt9yia665htOpAwBqpT59+ujKK6/UrFmzFB4erj59+uiVV17RoUOHSm37008/2f//l19+cVhXv359XXLJJbJarZKk6OjoSo8VFBRUan5fsmSJ/RrkFenatasSEhI0a9YsHT161GEdR6kBAGqj3377Te+9955uvPHGUt+B//jHP2rkyJE6fvy4PvjgA91www3asmWLPvvsM/v9f/rpJ7d9R65Xr16p+RtA1XHEOODn/vnPf2rVqlWllo8ePVoTJkzQjh079PTTTys7O1tDhgxR3bp1tXnzZr399ttq166d3njjjUo9Tvv27XXDDTfo9ddf1+TJk9WwYUNXpwIAgN9r1aqVFi1apFtvvVXt2rXTnXfeqQ4dOujMmTP69NNPtWTJEt11112SpFmzZikvL0+jRo3S4sWLNXDgQEVHR+vnn3/WJ598og8//LDca52VZ+HChercuXOpa56VuOmmmzRq1Ch9/vnn6tq1q7PpAgDgU8aNG6c//elPWrBggWbPnq3evXurY8eOuu+++9SyZUsVFBQoOztb//3vf/Wf//xH0rnvyn369FG3bt0UFRWl7du3691339XIkSPt41Z2rBtvvFHTp0/X3XffrZ49e2rnzp1auHBhpS9xEhgYqDlz5mjgwIHq3Lmz7r77bsXFxemrr77S7t27tXr1atcXDQAAL/bBBx/o+PHjuummm8pc36NHDzVu3FgLFy7UK6+8orfeekvXX3+9Ro8erXr16unVV19V8+bN7ZckrUndunXT2rVr9dxzzyk+Pl4JCQlKTEys8ccF/A2NccDPzZkzp8zld911lxo0aKB33nlHb775pr2hfebMGbVq1UpTpkzRQw89pHr16lX6scaNG6cVK1bopZde0tSpU12UAQAAtctNN92kL774Qn//+9/1/vvva86cObJYLOrUqZOeffZZ3XfffZLOnf1l1apVeuutt/TWW29p5syZKiwsVGRkpC6//HK9/PLLSktLq/Tjfv755/rqq680efLkcrcZOHCgRo0apbfffpvGOACg1rn55pvVqlUrPfPMM7rvvvu0fft2TZs2TQsWLNAvv/yi6OhodenSRY899pj9Pn/961/1wQcfaM2aNbJarWrevLkef/xxjRs3zr5N+/btKzXWo48+qpMnT2rRokX697//ra5du2rFihWaMGFCpXNITU3Vxx9/rGnTpunZZ59VcXGxWrVqZf98AQBAbbJw4UKFhoaqX79+Za4PDAzUgAEDtHDhQoWEhOjjjz/WqFGj9NRTT6lhw4Z64IEHFB8fr3vvvbfGY33uuec0fPhwTZo0Sb/99pvS0tJojAPVEGA4VxIAAAAAAAAAAAAAwI9xjXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODX6ng6gOooLi7Wjz/+qAYNGiggIMDT4QAA4DRjjI4fP674+HgFBvr379aYxwEA/oi5HAAA38U8DgCA76rKPO6TjfEff/xRTZs29XQYAAC43Pfff68mTZp4OowaxTwOAPBnzOUAAPgu5nEAAHxXZeZxn2yMN2jQQNK5BMPDw50ez2azac2aNUpJSVFwcLDT43kKeXgX8vAu5OE9/CEHyfV5FBYWqmnTpvY5zp+5eh53F3957lYX+ZM/+ZM/+V84f+by6qvtzzFnUDvnUD/nUD/nUD/n8J28+pjHvQv1qz5q5xzq5xzq5xxPzuM+2RgvOcVLeHi4yybvsLAwhYeH+/QTmDy8C3l4F/LwHv6Qg1RzedSG05i5eh53F3957lYX+ZM/+ZM/+Vcuf+byqqvtzzFnUDvnUD/nUD/nUD/n8J28+pjHvQv1qz5q5xzq5xzq5xxPzuP+fcEUAAAAAAAAAAAAAECtR2McAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPxalRvjmzZt0sCBAxUfH6+AgAAtW7bMYb0xRo899pji4uJUt25dJScna9++fQ7bHDlyRMOGDVN4eLgiIyN177336sSJE04lAgAAAAAAAAAAAABAWarcGD958qQuv/xyzZ49u8z1M2fO1Isvvqi5c+dq69atqlevnlJTU3X69Gn7NsOGDdPu3buVlZWl5cuXa9OmTRo+fHj1swAAAAAAAAAAAAAAoBx1qnqH/v37q3///mWuM8Zo1qxZmjRpkgYNGiRJevPNNxUTE6Nly5Zp6NCh+vLLL7Vq1Spt27ZN3bt3lyS99NJLuuGGG/TMM88oPj7eiXQAAAAAAAAAAAAAAHDk0muM5+XlKT8/X8nJyfZlERERSkxMVHZ2tiQpOztbkZGR9qa4JCUnJyswMFBbt251ZTgAAAAAAAAAAAAAAFT9iPELyc/PlyTFxMQ4LI+JibGvy8/PV3R0tGMQdeooKirKvs35rFarrFar/XZhYaEkyWazyWazOR13yRiuGMuTyMO7kId3IQ/v4Q85SK7Pw9frAQAAAAAAAACAN3NpY7ymZGZmatq0aaWWr1mzRmFhYS57nKysLJeN5Unk4V3Iw7uQh/fwhxwk1+Vx6tQpl4wDAAAAAAAAAABKc2ljPDY2VpJUUFCguLg4+/KCggJ17tzZvs3hw4cd7nf27FkdOXLEfv/zTZw4URkZGfbbhYWFatq0qVJSUhQeHu503DabTVlZWerXr5+Cg4OdHs9TyMO7kId3IQ/v4Q85SK7Po+RsKAAAAAAAAAAAwPVc2hhPSEhQbGys1q1bZ2+EFxYWauvWrRoxYoQkKSkpSUePHlVOTo66desmSVq/fr2Ki4uVmJhY5rgWi0UWi6XU8uDgYJc2VVw9nqeQh3fxlzy6PLFe1qIAT4dRpm+fGlDpbf1lf/hDHv6Qg+S6PPyhFgC8U4sJK5wewxJkNPNKqcPU1S7/PFCVeRwAAADu44rPkTWl5PMpAAAoG/N42arcGD9x4oT2799vv52Xl6fc3FxFRUWpWbNmGjNmjB5//HG1bt1aCQkJmjx5suLj4zV48GBJUrt27XT99dfrvvvu09y5c2Wz2TRy5EgNHTpU8fHxLksMAAAAAAAAAAAAAACpGo3x7du369prr7XfLjnFeVpamhYsWKBHHnlEJ0+e1PDhw3X06FH17t1bq1atUmhoqP0+Cxcu1MiRI9W3b18FBgZqyJAhevHFF12QDgAAAAAAAAAAAAAAjqrcGO/Tp4+MMeWuDwgI0PTp0zV9+vRyt4mKitKiRYuq+tAAAAAAAAAAAAAAAFRZoKcDAAAAAAAAAAAAAACgJtEYBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPwajXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4tTqeDgAA/F2LCStcNpYlyGjmlVKHqatlLQpwerxvnxrggqgAAAAAAAAAAAC8G0eMAwAAAAAAAAAAAAD8Go1xAAAAAAAAAAAAAIBfozEOAAAAAAAAAAAAAPBrNMYBAAAAAAAAAAAAAH6NxjgAAAAAAAAAAAAAwK/RGAcAAAAAAAAAAAAA+DUa4wAAAAAAAAAAAAAAv0ZjHAAAAAAAAAAAAADg12iMAwAAAAAAAAAAAAD8Go1xAAAAAAB8QGZmpq644go1aNBA0dHRGjx4sPbu3euwTZ8+fRQQEODw74EHHnDY5uDBgxowYIDCwsIUHR2tcePG6ezZs+5MBQAAAAAAt6vj6QAAAAAAAEDFNm7cqPT0dF1xxRU6e/asHn30UaWkpGjPnj2qV6+efbv77rtP06dPt98OCwuz/39RUZEGDBig2NhYffrppzp06JDuvPNOBQcH68knn3RrPgAAAAAAuBONcQAAAAAAfMCqVascbi9YsEDR0dHKycnR1VdfbV8eFham2NjYMsdYs2aN9uzZo7Vr1yomJkadO3fWjBkzNH78eE2dOlUhISE1mgMAAAAAAJ7CqdQBAAAAAPBBx44dkyRFRUU5LF+4cKEaNWqkDh06aOLEiTp16pR9XXZ2tjp27KiYmBj7stTUVBUWFmr37t3uCRwAAAAAAA/giHEAAAAAAHxMcXGxxowZo169eqlDhw725bfffruaN2+u+Ph4ffHFFxo/frz27t2r9957T5KUn5/v0BSXZL+dn59f5mNZrVZZrVb77cLCQkmSzWaTzWZzOpeSMVwxVm1D7ZxD/ZxD/ZzjC/WzBBlPh1AuS+C52FxVP2/eDwAAwHVojAMAAAAA4GPS09O1a9cubd682WH58OHD7f/fsWNHxcXFqW/fvjpw4IBatWpVrcfKzMzUtGnTSi1fs2aNw/XLnZWVleWysWobaucc6ucc6uccb67fzCs9HUHFXFW/359dBQAA+C8a4wAAAAAA+JCRI0dq+fLl2rRpk5o0aXLBbRMTEyVJ+/fvV6tWrRQbG6vPPvvMYZuCggJJKve65BMnTlRGRob9dmFhoZo2baqUlBSFh4c7k4qkc0fpZWVlqV+/fgoODnZ6vNqE2jmH+jmH+jnHF+rXYepqT4dQLkug0YzuxS6rX8nZUAAAgH+jMQ4AAAAAgA8wxmjUqFFaunSpNmzYoISEhArvk5ubK0mKi4uTJCUlJemJJ57Q4cOHFR0dLenc0Xbh4eFq3759mWNYLBZZLJZSy4ODg13azHH1eLUJtXMO9XMO9XOON9fPWhTg6RAq5Kr6ees+AAAArhXo6QAAAAAAAEDF0tPT9fbbb2vRokVq0KCB8vPzlZ+fr99++02SdODAAc2YMUM5OTn69ttv9cEHH+jOO+/U1VdfrU6dOkmSUlJS1L59e91xxx36z3/+o9WrV2vSpElKT08vs/kNAABc76mnnlJAQIDGjBljX3b69Gmlp6erYcOGql+/voYMGWI/q0uJgwcPasCAAQoLC1N0dLTGjRuns2fPujl6AAB8F41xAAAAAAB8wJw5c3Ts2DH16dNHcXFx9n///ve/JUkhISFau3atUlJS1LZtWz300EMaMmSIPvzwQ/sYQUFBWr58uYKCgpSUlKQ///nPuvPOOzV9+nRPpQUAQK2ybds2vfLKK/YfrZUYO3asPvzwQy1ZskQbN27Ujz/+qJtvvtm+vqioSAMGDNCZM2f06aef6o033tCCBQv02GOPuTsFAAB8FqdSBwAAAIBytJiwQpYgo5lXnrvOpredUvTbpwZ4OgS4kTHmguubNm2qjRs3VjhO8+bNtXLlSleFBQAAKunEiRMaNmyYXnvtNT3++OP25ceOHdO8efO0aNEiXXfddZKk+fPnq127dtqyZYt69OihNWvWaM+ePVq7dq1iYmLUuXNnzZgxQ+PHj9fUqVMVEhLiqbQAAPAZNMYB+LwWE1ZUuI03/0EbAAAAAAAA/i89PV0DBgxQcnKyQ2M8JydHNptNycnJ9mVt27ZVs2bNlJ2drR49eig7O1sdO3ZUTEyMfZvU1FSNGDFCu3fvVpcuXdyaCwAAvojGOAAAAAAAAAAANWjx4sX6/PPPtW3btlLr8vPzFRISosjISIflMTExys/Pt2/z+6Z4yfqSdeWxWq2yWq3224WFhZIkm80mm81WrVx+r2QMV4xVG1G/6qN2zqF+zvGF+lmCLnzGMU+yBJ6LzVX1q8o4NMYBAAAAAAAAAKgh33//vUaPHq2srCyFhoa69bEzMzM1bdq0UsvXrFmjsLAwlz1OVlaWy8aqjahf9VE751A/53hz/WZe6ekIKuaq+p06darS29IYBwAAdkVFRZo6darefvtt5efnKz4+XnfddZcmTZqkgIBzlyEwxmjKlCl67bXXdPToUfXq1Utz5sxR69atPRw9AAAAAADeJycnR4cPH1bXrl3ty4qKirRp0yb94x//0OrVq3XmzBkdPXrU4ajxgoICxcbGSpJiY2P12WefOYxbUFBgX1eeiRMnKiMjw367sLBQTZs2VUpKisLDw53OzWazKSsrS/369VNwcLDT49U21K/6qJ1zqJ9zfKF+Haau9nQI5bIEGs3oXuyy+pWcDaUyaIwDAAC7p59+WnPmzNEbb7yhyy67TNu3b9fdd9+tiIgI/fWvf5UkzZw5Uy+++KLeeOMNJSQkaPLkyUpNTdWePXvc/st3AAAAAAC8Xd++fbVz506HZXfffbfatm2r8ePHq2nTpgoODta6des0ZMgQSdLevXt18OBBJSUlSZKSkpL0xBNP6PDhw4qOjpZ07ki78PBwtW/fvtzHtlgsslgspZYHBwe7tJnj6vFqG+pXfdTOOdTPOd5cP2tRgKdDqJCr6leVMWiMAwAAu08//VSDBg3SgAEDJEktWrTQv/71L/uv0o0xmjVrliZNmqRBgwZJkt58803FxMRo2bJlGjp0qMdiBwAAAADAGzVo0EAdOnRwWFavXj01bNjQvvzee+9VRkaGoqKiFB4erlGjRikpKUk9evSQJKWkpKh9+/a64447NHPmTOXn52vSpElKT08vs/ENAABKC/R0AAAAwHv07NlT69at09dffy1J+s9//qPNmzerf//+kqS8vDzl5+crOTnZfp+IiAglJiYqOzvbIzEDAAAAAODrnn/+ed14440aMmSIrr76asXGxuq9996zrw8KCtLy5csVFBSkpKQk/fnPf9add96p6dOnezBqAAB8C0eMAwAAuwkTJqiwsFBt27ZVUFCQioqK9MQTT2jYsGGSpPz8fElSTEyMw/1iYmLs685ntVpltVrtt0uu+WKz2WSz2WoijRpREqsvxexK5O+7+VuCjPNjBBqH/7qSt9fUEmRqNH9nuaN+vvz8d4XK5l9b6wMAAKpnw4YNDrdDQ0M1e/ZszZ49u9z7NG/eXCtXrqzhyAAA8F80xgEAgN0777yjhQsXatGiRbrsssuUm5urMWPGKD4+XmlpadUaMzMzU9OmTSu1fM2aNQoLC3M2ZLfLysrydAgeRf6+l//MK1031ozuxa4b7P/n7X/Y+339aiJ/Z7mzfr74/HelivI/deqUmyIBAAAAAADVQWMcAADYjRs3ThMmTLBfK7xjx4767rvvlJmZqbS0NMXGxkqSCgoKFBcXZ79fQUGBOnfuXOaYEydOVEZGhv12YWGhmjZtqpSUFIWHh9dcMi5ms9mUlZWlfv36KTg42NPhuB35l59/h6mrPRSV+1gCjWZ0L9bk7YGyFge4dOxdU1NdOp6rdZi6ukbzd5Y76sfrv3L5l5wRBQAAAAAAeCca4wAAwO7UqVMKDAx0WBYUFKTi4nNHSSYkJCg2Nlbr1q2zN8ILCwu1detWjRgxoswxLRaLLBZLqeXBwcE+2WDx1bhdhfxL528t8q5GaU2yFge4PF9vfz79Pt+ayN9Z7qwfr/8L51+bawMAAAAAgC+gMQ4AAOwGDhyoJ554Qs2aNdNll12mHTt26LnnntM999wjSQoICNCYMWP0+OOPq3Xr1kpISNDkyZMVHx+vwYMHezZ4AAAAAAAAAADKEVjxJlVTVFSkyZMnKyEhQXXr1lWrVq00Y8YMGWPs2xhj9NhjjykuLk5169ZVcnKy9u3b5+pQAABAFb300kv64x//qAcffFDt2rXTww8/rPvvv18zZsywb/PII49o1KhRGj58uK644gqdOHFCq1atUmhoqAcjBwAAAAAAAACgfC4/Yvzpp5/WnDlz9MYbb+iyyy7T9u3bdffddysiIkJ//etfJUkzZ87Uiy++qDfeeMN+pFlqaqr27NnDH9UBAPCgBg0aaNasWZo1a1a52wQEBGj69OmaPn26+wIDAAAAAAAAAMAJLm+Mf/rppxo0aJAGDBggSWrRooX+9a9/6bPPPpN07mjxWbNmadKkSRo0aJAk6c0331RMTIyWLVumoUOHujokAAAAAAAAAAAAAEAt5vJTqffs2VPr1q3T119/LUn6z3/+o82bN6t///6SpLy8POXn5ys5Odl+n4iICCUmJio7O9vV4QAAAAAAAAAAAAAAajmXHzE+YcIEFRYWqm3btgoKClJRUZGeeOIJDRs2TJKUn58vSYqJiXG4X0xMjH3d+axWq6xWq/12YWGhJMlms8lmszkdc8kYrhjLk8jDu/hbHpZA4+FInFMSP3k48sTz099eG67Kw9frAQAAAAAAAACAN3N5Y/ydd97RwoULtWjRIl122WXKzc3VmDFjFB8fr7S0tGqNmZmZqWnTppVavmbNGoWFhTkbsl1WVpbLxvIk8vAu/pLHjO7Fng7BJcjD0cqVK10yTnX4y2vDVXmcOnXKJeMAAAAAAAAAAIDSXN4YHzdunCZMmGC/VnjHjh313XffKTMzU2lpaYqNjZUkFRQUKC4uzn6/goICde7cucwxJ06cqIyMDPvtwsJCNW3aVCkpKQoPD3c6ZpvNpqysLPXr10/BwcFOj+cp5OFd/C2PydsDZS0O8HQ41WYJNJrRvZg8zrNraqoLoqoaf3ttuCqPkrOhAAAAAAAAAAAA13N5Y/zUqVMKDHS8dHlQUJCKi88d3ZiQkKDY2FitW7fO3ggvLCzU1q1bNWLEiDLHtFgsslgspZYHBwe7tKni6vE8hTy8i7/kYS0OkLXIdxvKJcjDkSefm/7y2nBVHv5QCwAAAAAAAAAAvJXLG+MDBw7UE088oWbNmumyyy7Tjh079Nxzz+mee+6RJAUEBGjMmDF6/PHH1bp1ayUkJGjy5MmKj4/X4MGDXR0OAAAAAAAAAAAAAKCWc3lj/KWXXtLkyZP14IMP6vDhw4qPj9f999+vxx57zL7NI488opMnT2r48OE6evSoevfurVWrVik0NNTV4QAAAAAAAAAAAAAAajmXN8YbNGigWbNmadasWeVuExAQoOnTp2v69OmufngAAAAAAAAAAAAAABy4vDEOAAAAAABQVR2mrpa1KMDTYZTy7VMDPB0CAAAAAMAFAj0dAAAAAAAAAAAAAAAANYnGOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4Na4xDgAAAMBjWkxY4ekQAAAAAAAAUAtwxDgAAAAAAAAAAAAAwK/RGAcAAAAAAAAAAAAA+DUa4wAAAAAAAAAAAAAAv0ZjHAAAAAAAAAAAAADg12iMAwAAAAAAAAAAAAD8Go1xAAAAAAAAAAAAAIBfozEOAAAAAAAAAAAAAPBrNMYBAAAAAAAAAAAAAH6NxjgAAAAAAAAAAAAAwK/RGAcAAAAAwAdkZmbqiiuuUIMGDRQdHa3Bgwdr7969DtucPn1a6enpatiwoerXr68hQ4aooKDAYZuDBw9qwIABCgsLU3R0tMaNG6ezZ8+6MxUAAAAAANyOxjgAAAAAAD5g48aNSk9P15YtW5SVlSWbzaaUlBSdPHnSvs3YsWP14YcfasmSJdq4caN+/PFH3Xzzzfb1RUVFGjBggM6cOaNPP/1Ub7zxhhYsWKDHHnvMEykBAAAAAOA2dTwdAAAAAAAAqNiqVascbi9YsEDR0dHKycnR1VdfrWPHjmnevHlatGiRrrvuOknS/Pnz1a5dO23ZskU9evTQmjVrtGfPHq1du1YxMTHq3LmzZsyYofHjx2vq1KkKCQnxRGoAAAAAANQ4jhgHAAAAAMAHHTt2TJIUFRUlScrJyZHNZlNycrJ9m7Zt26pZs2bKzs6WJGVnZ6tjx46KiYmxb5OamqrCwkLt3r3bjdEDAAAAAOBeHDEOAAAAAICPKS4u1pgxY9SrVy916NBBkpSfn6+QkBBFRkY6bBsTE6P8/Hz7Nr9vipesL1lXFqvVKqvVar9dWFgoSbLZbLLZbE7nUjKGJdA4PVZNcEWONaUkNm+O0ZtRP+dQP+f4Qv0sQd75viz9b85wVf28eT8AAADXoTEOAAAAAICPSU9P165du7R58+Yaf6zMzExNmzat1PI1a9YoLCzMZY8zo3uxy8ZypZUrV3o6hAplZWV5OgSfRv2cQ/2c4831m3mlpyOomKvqd+rUKZeMAwAAvBuNcQAAAAAAfMjIkSO1fPlybdq0SU2aNLEvj42N1ZkzZ3T06FGHo8YLCgoUGxtr3+azzz5zGK+goMC+riwTJ05URkaG/XZhYaGaNm2qlJQUhYeHO52PzWZTVlaWJm8PlLU4wOnxXG3X1FRPh1Cuktr169dPwcHBng7H51A/51A/5/hC/TpMXe3pEMplCTSa0b3YZfUrORsKAADwbzTGAQAAAADwAcYYjRo1SkuXLtWGDRuUkJDgsL5bt24KDg7WunXrNGTIEEnS3r17dfDgQSUlJUmSkpKS9MQTT+jw4cOKjo6WdO5ou/DwcLVv377Mx7VYLLJYLKWWBwcHu7SZYy0OkLXI+xrj3tqw+j1X74vahvo5h/o5x5vr543vyedzVf28dR8AAADXojEOAAAAAIAPSE9P16JFi/T++++rQYMG9muCR0REqG7duoqIiNC9996rjIwMRUVFKTw8XKNGjVJSUpJ69OghSUpJSVH79u11xx13aObMmcrPz9ekSZOUnp5eZvMbAAAAAAB/QWMcAAAAAAAfMGfOHElSnz59HJbPnz9fd911lyTp+eefV2BgoIYMGSKr1arU1FS9/PLL9m2DgoK0fPlyjRgxQklJSapXr57S0tI0ffp0d6UBAAAAAIBH0BgHAAAAAMAHGGMq3CY0NFSzZ8/W7Nmzy92mefPmWrlypStDAwAAAADA6wV6OgAAAAAAAAAAAAAAAGoSjXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAIAaNGfOHHXq1Enh4eEKDw9XUlKSPvroI/v606dPKz09XQ0bNlT9+vU1ZMgQFRQUOIxx8OBBDRgwQGFhYYqOjta4ceN09uxZd6cCAIDPojEOAAAAAAAAAEANatKkiZ566inl5ORo+/btuu666zRo0CDt3r1bkjR27Fh9+OGHWrJkiTZu3Kgff/xRN998s/3+RUVFGjBggM6cOaNPP/1Ub7zxhhYsWKDHHnvMUykBAOBz6ng6AAAAAAAAAAAA/NnAgQMdbj/xxBOaM2eOtmzZoiZNmmjevHlatGiRrrvuOknS/Pnz1a5dO23ZskU9evTQmjVrtGfPHq1du1YxMTHq3LmzZsyYofHjx2vq1KkKCQnxRFoAAPgUGuMAAADwai0mrPB0CLIEGc28UuowdbWsRQGeDgcAAACADysqKtKSJUt08uRJJSUlKScnRzabTcnJyfZt2rZtq2bNmik7O1s9evRQdna2OnbsqJiYGPs2qampGjFihHbv3q0uXbp4IhUAAHwKjXEAAODghx9+0Pjx4/XRRx/p1KlTuuSSSzR//nx1795dkmSM0ZQpU/Taa6/p6NGj6tWrl+bMmaPWrVt7OHIAAAAAALzXzp07lZSUpNOnT6t+/fpaunSp2rdvr9zcXIWEhCgyMtJh+5iYGOXn50uS8vPzHZriJetL1pXHarXKarXabxcWFkqSbDabbDab0zmVjOGKsWoj6ld91M451M85vlA/S5DxdAjlsgSei81V9avKODTGAQCA3a+//qpevXrp2muv1UcffaTGjRtr3759uuiii+zbzJw5Uy+++KLeeOMNJSQkaPLkyUpNTdWePXsUGhrqwegBAAAAAPBebdq0UW5uro4dO6Z3331XaWlp2rhxY40+ZmZmpqZNm1Zq+Zo1axQWFuayx8nKynLZWLUR9as+aucc6uccb67fzCs9HUHFXFW/U6dOVXpbGuMAAMDu6aefVtOmTTV//nz7soSEBPv/G2M0a9YsTZo0SYMGDZIkvfnmm4qJidGyZcs0dOhQt8cMAAAAAIAvCAkJ0SWXXCJJ6tatm7Zt26YXXnhBt956q86cOaOjR486HDVeUFCg2NhYSVJsbKw+++wzh/EKCgrs68ozceJEZWRk2G8XFhaqadOmSklJUXh4uNM52Ww2ZWVlqV+/fgoODnZ6vNqG+lUftXMO9XOOL9Svw9TVng6hXJZAoxndi11Wv5KzoVQGjXEAAGD3wQcfKDU1VX/605+0ceNGXXzxxXrwwQd13333SZLy8vKUn5/vcN2ziIgIJSYmKjs7m8Y4AAAAAACVVFxcLKvVqm7duik4OFjr1q3TkCFDJEl79+7VwYMHlZSUJElKSkrSE088ocOHDys6OlrSuSPtwsPD1b59+3Ifw2KxyGKxlFoeHBzs0maOq8erbahf9VE751A/53hz/axFAZ4OoUKuql9VxqAxDgC1WIsJK9z+mJYgo5lXnvvFWkWT87dPDXBTVCjxzTffaM6cOcrIyNCjjz6qbdu26a9//atCQkKUlpZmv25ZWdc1K++aZjV9PTN38YVrB9UkT+bvDddEKrn2Ucl/axvy99783fGa5P2vcvnX1voAAIDKmThxovr3769mzZrp+PHjWrRokTZs2KDVq1crIiJC9957rzIyMhQVFaXw8HCNGjVKSUlJ6tGjhyQpJSVF7du31x133KGZM2cqPz9fkyZNUnp6epmNbwAAUBqNcQAAYFdcXKzu3bvrySeflCR16dJFu3bt0ty5c5WWllatMd11PTN38eZrB7mDJ/L3pmsizehe7OkQPIr8vS//lStXuu2xeP+7cP5VuaYZAACofQ4fPqw777xThw4dUkREhDp16qTVq1erX79+kqTnn39egYGBGjJkiKxWq1JTU/Xyyy/b7x8UFKTly5drxIgRSkpKUr169ZSWlqbp06d7KiUAAHwOjXEAAGAXFxdX6hRs7dq10//93/9J+t91ywoKChQXF2ffpqCgQJ07dy5zzJq+npm7+MK1g2qSJ/P3hmsilVz7aPL2QFmLvf9UVK5G/t6b/66pqTX+GLz/VS7/qlzTDAAA1D7z5s274PrQ0FDNnj1bs2fPLneb5s2bu/WHkQAA+JsaaYz/8MMPGj9+vD766COdOnVKl1xyiebPn6/u3btLkowxmjJlil577TUdPXpUvXr10pw5c9S6deuaCAcAAFRSr169tHfvXodlX3/9tZo3by5JSkhIUGxsrNatW2dvhBcWFmrr1q0aMWJEmWO663pm7uKrcbuKJ/L3pmsiWYsDvCoedyN/78vfna9H3v8unH9trg0AAAAAAL4g0NUD/vrrr+rVq5eCg4P10Ucfac+ePXr22Wd10UUX2beZOXOmXnzxRc2dO1dbt25VvXr1lJqaqtOnT7s6HAAAUAVjx47Vli1b9OSTT2r//v1atGiRXn31VaWnp0uSAgICNGbMGD3++OP64IMPtHPnTt15552Kj4/X4MGDPRs8AAAAAAAAAADlcPkR408//bSaNm2q+fPn25clJCTY/98Yo1mzZmnSpEkaNGiQJOnNN99UTEyMli1bpqFDh7o6JAAAUElXXHGFli5dqokTJ2r69OlKSEjQrFmzNGzYMPs2jzzyiE6ePKnhw4fr6NGj6t27t1atWqXQ0FAPRg4AAAAAAAAAQPlcfsT4Bx98oO7du+tPf/qToqOj1aVLF7322mv29Xl5ecrPz1dycrJ9WUREhBITE5Wdne3qcAAAQBXdeOON2rlzp06fPq0vv/xS9913n8P6gIAATZ8+Xfn5+Tp9+rTWrl2rSy+91EPRAgAAAAAAAABQMZcfMf7NN99ozpw5ysjI0KOPPqpt27bpr3/9q0JCQpSWlqb8/HxJUkxMjMP9YmJi7OvOZ7VaZbVa7bcLCwslSTabTTabzemYS8ZwxVieRB7exd/ysAQaD0finJL4ycPzqpKDN79+XP0a9+ZcAQAAAAAAAADwdS5vjBcXF6t79+568sknJUldunTRrl27NHfuXKWlpVVrzMzMTE2bNq3U8jVr1igsLMypeH8vKyvLZWN5Enl4F3/JY0b3Yk+H4BLk4T0qk8PKlSvdEIlzXPUaP3XqlEvGAQAAAAAAAAAApbm8MR4XF6f27ds7LGvXrp3+7//+T5IUGxsrSSooKFBcXJx9m4KCAnXu3LnMMSdOnKiMjAz77cLCQjVt2lQpKSkKDw93OmabzaasrCz169dPwcHBTo/nKeThXfwtj8nbA2UtDvB0ONVmCTSa0b2YPLxAVXLYNTXVTVFVnatf4yVnQwEAAAAAAAAAAK7n8sZ4r169tHfvXodlX3/9tZo3by5JSkhIUGxsrNatW2dvhBcWFmrr1q0aMWJEmWNaLBZZLJZSy4ODg13acHT1eJ5CHt7FX/KwFgfIWuSbjdjfIw/vUZkcfOG146rXuC/kCgAAAAAAAACAr3J5Y3zs2LHq2bOnnnzySd1yyy367LPP9Oqrr+rVV1+VJAUEBGjMmDF6/PHH1bp1ayUkJGjy5MmKj4/X4MGDXR0OAAAAAAAAAAAAAKCWc3lj/IorrtDSpUs1ceJETZ8+XQkJCZo1a5aGDRtm3+aRRx7RyZMnNXz4cB09elS9e/fWqlWrFBoa6upwAAAAAAAAAAAAAAC1nMsb45J044036sYbbyx3fUBAgKZPn67p06fXxMMDAAAAAAAAAAAAAGAX6OkAAAAAAAAAAAAAAACoSTTGAQAAAAAAAAAAAAB+jcY4AAAAAAAAAAAAAMCv0RgHAAAAAAAAAAAAAPg1GuMAAAAAAAAAAAAAAL9GYxwAAAAAAAAAAAAA4NdojAMAAAAAAAAAAAAA/BqNcQAAAAAAAAAAAACAX6MxDgAAAACAD9i0aZMGDhyo+Ph4BQQEaNmyZQ7r77rrLgUEBDj8u/766x22OXLkiIYNG6bw8HBFRkbq3nvv1YkTJ9yYBQAAAAAAnkFjHAAAAAAAH3Dy5Eldfvnlmj17drnbXH/99Tp06JD937/+9S+H9cOGDdPu3buVlZWl5cuXa9OmTRo+fHhNhw4AAAAAgMfV8XQAAAAAAACgYv3791f//v0vuI3FYlFsbGyZ67788kutWrVK27ZtU/fu3SVJL730km644QY988wzio+Pd3nMAAAAAAB4C44YBwAAAADAT2zYsEHR0dFq06aNRowYoV9++cW+Ljs7W5GRkfamuCQlJycrMDBQW7du9US4AAAAAAC4DUeMAwAAAADgB66//nrdfPPNSkhI0IEDB/Too4+qf//+ys7OVlBQkPLz8xUdHe1wnzp16igqKkr5+fnljmu1WmW1Wu23CwsLJUk2m002m83puEvGsAQap8eqCa7IsaaUxObNMXoz6ucc6uccX6ifJcg735el/80ZrqqfN+8HAADgOjTGAQAAAADwA0OHDrX/f8eOHdWpUye1atVKGzZsUN++fas9bmZmpqZNm1Zq+Zo1axQWFlbtcc83o3uxy8ZypZUrV3o6hAplZWV5OgSfRv2cQ/2c4831m3mlpyOomKvqd+rUKZeMAwAAvBuNcQAAAAAA/FDLli3VqFEj7d+/X3379lVsbKwOHz7ssM3Zs2d15MiRcq9LLkkTJ05URkaG/XZhYaGaNm2qlJQUhYeHOx2nzWZTVlaWJm8PlLU4wOnxXG3X1FRPh1Cuktr169dPwcHBng7H51A/51A/5/hC/TpMXe3pEMplCTSa0b3YZfUrORsKAADwbzTGAQAAAADwQ//973/1yy+/KC4uTpKUlJSko0ePKicnR926dZMkrV+/XsXFxUpMTCx3HIvFIovFUmp5cHCwS5s51uIAWYu8rzHurQ2r33P1vqhtqJ9zqJ9zvLl+3viefD5X1c9b9wEAAHAtGuMAAAAAAPiAEydOaP/+/fbbeXl5ys3NVVRUlKKiojRt2jQNGTJEsbGxOnDggB555BFdcsklSk09d8Rzu3btdP311+u+++7T3LlzZbPZNHLkSA0dOlTx8fGeSgsAAAAAALcI9HQAAAAAAACgYtu3b1eXLl3UpUsXSVJGRoa6dOmixx57TEFBQfriiy9000036dJLL9W9996rbt266f/9v//ncLT3woUL1bZtW/Xt21c33HCDevfurVdffdVTKQEAAAAA4DYcMQ4AAAAAgA/o06ePjDHlrl+9uuJrwUZFRWnRokWuDAsAAAAAAJ/AEeMAAAAAAAAAAAAAAL9GYxwAAAAAAAAAAAAA4Nc4lTpqhRYTVrj9MS1BRjOvlDpMXS1rUcAFt/32qQFuigrwLZ547VZWyWscAAAAAAAAAAB4P44YBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPwajXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/VsfTAcA/tJiwwmVjWYKMZl4pdZi6WtaiAJeNCwAAAAAAAAAAAKB24ohxAAAAAAAAAAAAAIBfozEOAAAAAAAAAAAAAPBrNMYBAAAAAAAAAAAAAH6NxjgAAAAAAAAAADUoMzNTV1xxhRo0aKDo6GgNHjxYe/fuddjm9OnTSk9PV8OGDVW/fn0NGTJEBQUFDtscPHhQAwYMUFhYmKKjozVu3DidPXvWnakAAOCzaIwDAAAAAAAAAFCDNm7cqPT0dG3ZskVZWVmy2WxKSUnRyZMn7duMHTtWH374oZYsWaKNGzfqxx9/1M0332xfX1RUpAEDBujMmTP69NNP9cYbb2jBggV67LHHPJESAAA+p46nAwAAAAAAAAAAwJ+tWrXK4faCBQsUHR2tnJwcXX311Tp27JjmzZunRYsW6brrrpMkzZ8/X+3atdOWLVvUo0cPrVmzRnv27NHatWsVExOjzp07a8aMGRo/frymTp2qkJAQT6QGAIDPoDEOAADK9dRTT2nixIkaPXq0Zs2aJencqd0eeughLV68WFarVampqXr55ZcVExPj2WABAAAAAPARx44dkyRFRUVJknJycmSz2ZScnGzfpm3btmrWrJmys7PVo0cPZWdnq2PHjg7fv1NTUzVixAjt3r1bXbp0KfU4VqtVVqvVfruwsFCSZLPZZLPZnM6jZAxXjFUbUb/qo3bOoX7O8YX6WYKMp0MolyXwXGyuql9VxqExDgAAyrRt2za98sor6tSpk8PysWPHasWKFVqyZIkiIiI0cuRI3Xzzzfrkk088FCkAAAAAAL6juLhYY8aMUa9evdShQwdJUn5+vkJCQhQZGemwbUxMjPLz8+3bnP+j9JLbJducLzMzU9OmTSu1fM2aNQoLC3M2FbusrCyXjVUbUb/qo3bOoX7O8eb6zbzS0xFUzFX1O3XqVKW3pTEOAABKOXHihIYNG6bXXntNjz/+uH15ZU7tBgAAAAAAypeenq5du3Zp8+bNNf5YEydOVEZGhv12YWGhmjZtqpSUFIWHhzs9vs1mU1ZWlvr166fg4GCnx6ttqF/1UTvnUD/n+EL9Okxd7ekQymUJNJrRvdhl9Ss5G0pl0BgHAAClpKena8CAAUpOTnZojFfm1G7nq+nTtrmLL5wiqSZ5Mn9vOPVTySmeSv5b25C/9+bvjtck73+Vy7+21gcAAFTNyJEjtXz5cm3atElNmjSxL4+NjdWZM2d09OhRh6PGCwoKFBsba9/ms88+cxivoKDAvq4sFotFFoul1PLg4GCXNnNcPV5tQ/2qj9o5h/o5x5vrZy0K8HQIFXJV/aoyRo03xrk2KQAAvmXx4sX6/PPPtW3btlLrKnNqt/O567Rt7uLNp0hyB0/k702nfprRvdjTIXgU+Xtf/itXrnTbY/H+d+H8q3LqNgAAUPsYYzRq1CgtXbpUGzZsUEJCgsP6bt26KTg4WOvWrdOQIUMkSXv37tXBgweVlJQkSUpKStITTzyhw4cPKzo6WtK5zyjh4eFq3769exMCAMAH1WhjnGuTAgDgW77//nuNHj1aWVlZCg0NdcmYNX3aNnfxhVMk1SRP5u8Np34qOcXT5O2BshZ7/y9uXY38vTf/XVNTa/wxeP+rXP5VOXUbAACofdLT07Vo0SK9//77atCggf3H5REREapbt64iIiJ07733KiMjQ1FRUQoPD9eoUaOUlJRkPztbSkqK2rdvrzvuuEMzZ85Ufn6+Jk2apPT09DKPCgcAAI5qrDHOtUkBAPA9OTk5Onz4sLp27WpfVlRUpE2bNukf//iHVq9eXeGp3c7nrtO2uYuvxu0qnsjfm079ZC0O8Kp43I38vS9/d74eef+7cP61uTYAAKBic+bMkST16dPHYfn8+fN11113SZKef/55BQYGasiQIQ5nWi0RFBSk5cuXa8SIEUpKSlK9evWUlpam6dOnuysNAAB8Wo01xl15bVIAAOAeffv21c6dOx2W3X333Wrbtq3Gjx+vpk2bVnhqNwAAAAAA4MgYU+E2oaGhmj17tmbPnl3uNs2bN3fr5XQAAPAnNdIYd/W1Sa1Wq6xWq/12ySnqbDabbDab0/GWjOGKsTzJk3lYgir+YFfpsQKNw399VVXy8ObnXklstWl/eDN/yMMfcpD+F7+rXr/e8j7QoEEDdejQwWFZvXr11LBhQ/vyik7tBgAAAAAAAACAt3F5Y7wmrk2amZmpadOmlVq+Zs0ahYWFueQxJCkrK8tlY3mSJ/KYeaXrx5zRvdj1g3pAZfLwhV951qb94Qv8IQ9/yEFy3XvuqVOnXDKOO1R0ajcAAAAAAAAAALyNyxvjNXFt0okTJyojI8N+u7CwUE2bNlVKSorCw8OdjtlmsykrK0v9+vXz6evCeTKPDlNXu2wsS6DRjO7Fmrw9UNZi77qGY1VUJY9dU1PdFFXVlTyvatP+8Gb+kIc/5CD9Lw9XveeWnA3FG23YsMHhdmVO7QYAcI8WE1bU+GNYgoxmXnnuM39Vr7H+7VMDaigqAAAAAACAqnF5Y7wmrk1qsVhksVhKLQ8ODnZpA9jV43mKJ/Ko6h/IKjVmcUCNjOtulcnDF553tWl/+AJ/yMMfcpBc957rC+8DAAAAAAAAAAD4Kpc3xrk2KQAAAAAAAAAAAADAm7i8MV4ZXJsUAAAAAAAAAAAAAOAubmmMc21SAAAAAAAAAAAAAICnBHo6AAAAAAAAAAAAAAAAahKNcQAAAAAAAAAAAACAX6MxDgAAAACAD9i0aZMGDhyo+Ph4BQQEaNmyZQ7rjTF67LHHFBcXp7p16yo5OVn79u1z2ObIkSMaNmyYwsPDFRkZqXvvvVcnTpxwYxYAAAAAAHgGjXEAAAAAAHzAyZMndfnll2v27Nllrp85c6ZefPFFzZ07V1u3blW9evWUmpqq06dP27cZNmyYdu/eraysLC1fvlybNm3S8OHD3ZUCAAAAAAAeU8fTAQAAAAAAgIr1799f/fv3L3OdMUazZs3SpEmTNGjQIEnSm2++qZiYGC1btkxDhw7Vl19+qVWrVmnbtm3q3r27JOmll17SDTfcoGeeeUbx8fFuywUAAAAAAHfjiHEAAAAAAHxcXl6e8vPzlZycbF8WERGhxMREZWdnS5Kys7MVGRlpb4pLUnJysgIDA7V161a3xwwAAAAAgDtxxDgAAEAt12LCigq3sQQZzbxS6jB1taxFAW6ICgBQFfn5+ZKkmJgYh+UxMTH2dfn5+YqOjnZYX6dOHUVFRdm3KYvVapXVarXfLiwslCTZbDbZbDanYy8ZwxJonB6rJrgix5pSEps3x+jNqJ9zqJ9zfKF+liDvfF+W/jdnuKp+3rwfAACA69AYBwAAAAAA5crMzNS0adNKLV+zZo3CwsJc9jgzuhe7bCxXWrlypadDqFBWVpanQ/Bp1M851M853ly/mVd6OoKKuap+p06dcsk4AADAu9EYBwAAAADAx8XGxkqSCgoKFBcXZ19eUFCgzp0727c5fPiww/3Onj2rI0eO2O9flokTJyojI8N+u7CwUE2bNlVKSorCw8Odjt1msykrK0uTtwfKWux9ZyXZNTXV0yGUq6R2/fr1U3BwsKfD8TnUzznUzzm+UL8OU1d7OoRyWQKNZnQvdln9Ss6GAgAA/BuNcQAAAAAAfFxCQoJiY2O1bt06eyO8sLBQW7du1YgRIyRJSUlJOnr0qHJyctStWzdJ0vr161VcXKzExMRyx7ZYLLJYLKWWBwcHu7SZYy0O8MrLdXhrw+r3XL0vahvq5xzq5xxvrp83viefz1X189Z9AAAAXIvGOAAAAAAAPuDEiRPav3+//XZeXp5yc3MVFRWlZs2aacyYMXr88cfVunVrJSQkaPLkyYqPj9fgwYMlSe3atdP111+v++67T3PnzpXNZtPIkSM1dOhQxcfHeygrAAAAAADcg8Y4AAAAAAA+YPv27br22mvtt0tOb56WlqYFCxbokUce0cmTJzV8+HAdPXpUvXv31qpVqxQaGmq/z8KFCzVy5Ej17dtXgYGBGjJkiF588UW35wIAAAAAgLvRGAcAAAAAwAf06dNHxphy1wcEBGj69OmaPn16udtERUVp0aJFNREeAAAAAABeLdDTAQAAAAAAAAAAAAAAUJNojAMAAAAAAAAAAAAA/BqNcQAAAAAAAAAAAACAX6MxDgAAAAAAAAAAAADwazTGAQAAAAAAAAAAAAB+jcY4AAAAAAAAAAAAAMCv0RgHAAAAAAAAAAAAAPg1GuMAAAAAAAAAAAAAAL9GYxwAAAAAAAAAAAAA4NdojAMAAAAAAAAAAAAA/BqNcQAAAAAAAAAAAACAX6MxDgAAAAAAAAAAAADwazTGAQAAAAAAAAAAAAB+jcY4AAAAAAAAAAAAAMCv0RgHAAAAAAAAAAAAAPg1GuMAAAAAAAAAAAAAAL9GYxwAAAAAAAAAAAAA4NdojAMAAAAAAAAAAAAA/BqNcQAAAAAAAAAAAACAX6MxDgAAAAAAAAAAAADwazTGAQAAAAAAAAAAAAB+jcY4AAAAAAAAAAAAAMCv0RgHAAAAAAAAAAAAAPg1GuMAAAAAAAAAAAAAAL9Wx9MBAAAAAAD8U4sJKzwdwgV9+9QAT4cAAAAAAADchCPGAQAAAAAAAAAAAAB+jcY4AAAAAAAAAAAAAMCv0RgHAAAAAAAAAKAGbdq0SQMHDlR8fLwCAgK0bNkyh/XGGD322GOKi4tT3bp1lZycrH379jlsc+TIEQ0bNkzh4eGKjIzUvffeqxMnTrgxCwAAfBuNcQAAYJeZmakrrrhCDRo0UHR0tAYPHqy9e/c6bHP69Gmlp6erYcOGql+/voYMGaKCggIPRQwAAAAAgPc7efKkLr/8cs2ePbvM9TNnztSLL76ouXPnauvWrapXr55SU1N1+vRp+zbDhg3T7t27lZWVpeXLl2vTpk0aPny4u1IAAMDn0RgHAAB2GzduVHp6urZs2aKsrCzZbDalpKTo5MmT9m3Gjh2rDz/8UEuWLNHGjRv1448/6uabb/Zg1AAAAAAAeLf+/fvr8ccf1x/+8IdS64wxmjVrliZNmqRBgwapU6dOevPNN/Xjjz/ajyz/8ssvtWrVKr3++utKTExU79699dJLL2nx4sX68ccf3ZwNAAC+qY6nAwAAAN5j1apVDrcXLFig6Oho5eTk6Oqrr9axY8c0b948LVq0SNddd50kaf78+WrXrp22bNmiHj16eCJsAAAAAAB8Vl5envLz85WcnGxfFhERocTERGVnZ2vo0KHKzs5WZGSkunfvbt8mOTlZgYGB2rp1a5kNd0myWq2yWq3224WFhZIkm80mm83mdOwlY7hirNqI+lUftXMO9XOOL9TPEmQ8HUK5LIHnYnNV/aoyjssb45mZmXrvvff01VdfqW7duurZs6eefvpptWnTxr7N6dOn9dBDD2nx4sWyWq1KTU3Vyy+/rJiYGFeHAwAAnHDs2DFJUlRUlCQpJydHNpvN4ct627Zt1axZM2VnZ9MYBwAAAACgivLz8yWp1N/HY2Ji7Ovy8/MVHR3tsL5OnTqKioqyb1OWzMxMTZs2rdTyNWvWKCwszNnQ7bKyslw2Vm1E/aqP2jmH+jnHm+s380pPR1AxV9Xv1KlTld7W5Y3xklOwXnHFFTp79qweffRRpaSkaM+ePapXr56kc6dgXbFihZYsWaKIiAiNHDlSN998sz755BNXhwMAAKqpuLhYY8aMUa9evdShQwdJ576Ih4SEKDIy0mHb339ZP19N/zrdXXzhl6DVVZlfkJb8krPkv7UN+ZP/7/9b2/hz/pV5T6/s+78/zg8AAMD3TZw4URkZGfbbhYWFatq0qVJSUhQeHu70+DabTVlZWerXr5+Cg4OdHq+2oX7VR+2cQ/2c4wv16zB1tadDKJcl0GhG92KX1a/k782V4fLGOKdgBQDAP6Snp2vXrl3avHmzU+O469fp7uLNvwStrqr8gnRG9+KaC8QHkD/512b+mP/KlSsrvW1F7/9V+YU6AADA78XGxkqSCgoKFBcXZ19eUFCgzp0727c5fPiww/3Onj2rI0eO2O9fFovFIovFUmp5cHCwS5s5rh6vtqF+1UftnEP9nOPN9bMWBXg6hAq5qn5VGaPGrzHuilOwch2UyvFkHq68VoG/HJFSlTy8+blXEltt2h/ezB/y8IccJM9eB8UdRo4cqeXLl2vTpk1q0qSJfXlsbKzOnDmjo0ePOhw1XlBQUO4X8Zr+dbq7+MIvQaurMr8gLfkl5+TtgbIWe/8Ha1cjf/Inf//Mf9fU1Aq3qez7f1V+oQ4AAPB7CQkJio2N1bp16+yN8MLCQm3dulUjRoyQJCUlJeno0aPKyclRt27dJEnr169XcXGxEhMTPRU6AAA+pUYb4646BSvXQakaT+RRE9cq8JcjUiqTR1WOVPGU2rQ/fIE/5OEPOUieuQ5KTTLGaNSoUVq6dKk2bNighIQEh/XdunVTcHCw1q1bpyFDhkiS9u7dq4MHDyopKanMMd3163R38dW4L6QqvyC1Fgf4xC9Oawr5kz/5+1f+VXk/r+j939/mBgAA4FonTpzQ/v377bfz8vKUm5urqKgoNWvWTGPGjNHjjz+u1q1bKyEhQZMnT1Z8fLwGDx4sSWrXrp2uv/563XfffZo7d65sNptGjhypoUOHKj4+3kNZAQDgW2q0Me6qU7ByHZTK8WQerrxWgb8ckVKVPCpzpIqnlDyvatP+8Gb+kIc/5CB59jooNSk9PV2LFi3S+++/rwYNGth/tBYREaG6desqIiJC9957rzIyMhQVFaXw8HCNGjVKSUlJXA4FAAAAAIBybN++Xddee639dsnfu9PS0rRgwQI98sgjOnnypIYPH66jR4+qd+/eWrVqlUJDQ+33WbhwoUaOHKm+ffsqMDBQQ4YM0Ysvvuj2XAAA8FU11hh35SlYuQ5K1Xgij5o4csRfjkipTB6+8LyrTfvDF/hDHv6Qg+SZ66DUpDlz5kiS+vTp47B8/vz5uuuuuyRJzz//vP0LuNVqVWpqql5++WU3RwoAAM43derUUmdba9Omjb766itJ0unTp/XQQw9p8eLFDnN4TEyMJ8IFAKBW6dOnj4wp/7JyAQEBmj59uqZPn17uNlFRUVq0aFFNhAcAQK3g8sZ4TZyCFQAAuMeFvqSXCA0N1ezZszV79mw3RAQAAKrisssu09q1a+2369T539f+sWPHasWKFVqyZIkiIiI0cuRI3Xzzzfrkk088ESoAAAAAAG7l8sY4p2AFAAAAAMAz6tSpU+bZ2I4dO6Z58+Zp0aJFuu666ySdOyNMu3bttGXLFr6PAwAAAAD8nssb45yCFQAAAAAAz9i3b5/i4+MVGhqqpKQkZWZmqlmzZsrJyZHNZlNycrJ927Zt26pZs2bKzs6+YGPcarXKarXabxcWFkqSbDabbDab0zGXjGEJrPjMNZ7gihxrSkls3hyjN6N+zqF+zvGF+lmCvPN9WfrfnOGq+nnzfgAAAK5TI6dSrwinYAUAAAAAwLUSExO1YMECtWnTRocOHdK0adN01VVXadeuXcrPz1dISIgiIyMd7hMTE2M/01t5MjMzS127XJLWrFmjsLAwl8U/o3uxy8ZypZUrV3o6hAplZWV5OgSfRv2cQ/2c4831m3mlpyOomKvqd+rUKZeMAwAAvJvLG+MAAAAAAMD9+vfvb///Tp06KTExUc2bN9c777yjunXrVnvciRMnKiMjw367sLBQTZs2VUpKisLDw52KWTp3lF5WVpYmbw+UtTjA6fFcbdfUVE+HUK6S2vXr10/BwcGeDsfnUD/nUD/n+EL9Okxd7ekQymUJNJrRvdhl9Ss5GwoAAPBvNMYBAAAAAPBDkZGRuvTSS7V//37169dPZ86c0dGjRx2OGi8oKCjzmuS/Z7FYZLFYSi0PDg52aTPHWhwga5H3Nca9tWH1e67eF7UN9XMO9XOON9fPG9+Tz+eq+nnrPgAAAK4V6OkAAAAAAACA6504cUIHDhxQXFycunXrpuDgYK1bt86+fu/evTp48KCSkpI8GCUAAAAAAO7BEeMAAAAAAPiBhx9+WAMHDlTz5s31448/asqUKQoKCtJtt92miIgI3XvvvcrIyFBUVJTCw8M1atQoJSUlqUePHp4OHQAAAACAGkdjHAAAAAAAP/Df//5Xt912m3755Rc1btxYvXv31pYtW9S4cWNJ0vPPP6/AwEANGTJEVqtVqampevnllz0cNQAAAAAA7kFjHAAAAAAAP7B48eILrg8NDdXs2bM1e/ZsN0UEAAAAAID34BrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPwajXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODX6ng6AAAAAH/XYsIKT4cAAAAAAAAAALUajXEfUZk/qFuCjGZeKXWYulrWogA3RAUAAAAAAAAAAAAA3o9TqQMAAAAAAAAAAAAA/BqNcQAAAAAAAAAAAACAX6MxDgAAAAAAAAAAAADwazTGAQAAAAAAAAAAAAB+jcY4AAAAAAAAAAAAAMCv0RgHAAAAAAAAAAAAAPg1GuMAAAAAAAAAAAAAAL9GYxwAAAAAAAAAAAAA4NfqeDoAAAAAAAAAAADguzpMXS1rUYCnwyjTt08N8HQIAAAvwRHjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPwajXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4NRrjAAAAAAAAAAAAAAC/RmMcAAAAAAAAAAAAAODXaIwDAAAAAAAAAAAAAPwajXEAAAAAAAAAAAAAgF+jMQ4AAAAAAAAAAAAA8Gs0xgEAAAAAAAAAAAAAfo3GOAAAAAAAAAAAAADAr9EYBwAAAAAAAAAAAAD4NY81xmfPnq0WLVooNDRUiYmJ+uyzzzwVCgAAqAbmcgAAfBfzOAAAvot5HACA6qnjiQf997//rYyMDM2dO1eJiYmaNWuWUlNTtXfvXkVHR3siJAAAUAXeNpe3mLCixh/DEmQ080qpw9TVshYF1PjjAQBQU7xtHgcAAJXHPA4AQPV5pDH+3HPP6b777tPdd98tSZo7d65WrFihf/7zn5owYYInQpLEH7oBAKgsb53LAQBAxZjHAQDwXczjAABUn9sb42fOnFFOTo4mTpxoXxYYGKjk5GRlZ2eXeR+r1Sqr1Wq/fezYMUnSkSNHZLPZnI7JZrPp1KlTqmMLVFGx7zbG6xQbnTpVTB5eoip5/PLLL26Kqup4fXgXf8jDH3KQ/pfHL7/8ouDgYKfHO378uCTJGOP0WDWtqnN5Tc/jklTn7EmXjHPBx/CT5251kT/5kz/5+2P+lfkcXvJ5uKI531fmcr6TV50vfF9z1WfS2ob6OYf6OccX6ueO71nVVVu/kzOPVw9zuX+ids6hfs7xhfoxj5fz2E4/WhX9/PPPKioqUkxMjMPymJgYffXVV2XeJzMzU9OmTSu1PCEhoUZi9GW3ezoAF6lteTR6tkbDwP+vtj2vvJk/5CDVTB7Hjx9XREREDYzsOlWdy/1pHveX5251kX/tRv61m7/mXxOfw719Luc7edXxfQ0AvFNt/E7OPF49zOUA4H08NY975FTqVTVx4kRlZGTYbxcXF+vIkSNq2LChAgKc/xVaYWGhmjZtqu+//17h4eFOj+cp5OFdyMO7kIf38IccJNfnYYzR8ePHFR8f74LovEtNz+Pu4i/P3eoif/Inf/In/wvnz1xefbX9OeYMaucc6ucc6ucc6uccvpNXHvO4d6N+1UftnEP9nEP9nOPJedztjfFGjRopKChIBQUFDssLCgoUGxtb5n0sFossFovDssjISJfHFh4e7hdPYPLwLuThXcjDe/hDDpJr8/DmX6X/XlXncnfN4+7iL8/d6iJ/8id/8q+tKpO/L8zlfCf3T9TOOdTPOdTPOdTPObXtOznzuP+iftVH7ZxD/ZxD/ZzjiXk80CWPVgUhISHq1q2b1q1bZ19WXFysdevWKSkpyd3hAACAKmIuBwDAdzGPAwDgu5jHAQBwjkdOpZ6RkaG0tDR1795dV155pWbNmqWTJ0/q7rvv9kQ4AACgipjLAQDwXczjAAD4LuZxAACqzyON8VtvvVU//fSTHnvsMeXn56tz585atWqVYmJiPBGOLBaLpkyZUuqUMr6GPLwLeXgX8vAe/pCD5D95VJe3zeXuUNv3OfmTP/mTP/n7T/7eNo/7Y43dhdo5h/o5h/o5h/o5pzbXj3ncv1C/6qN2zqF+zqF+zvFk/QKMMcbtjwoAAAAAAAAAAAAAgJu4/RrjAAAAAAAAAAAAAAC4E41xAAAAAAAAAAAAAIBfozEOAAAAAAAAAAAAAPBrNMYBAAAAAAAAAAAAAH6tVjTGN23apIEDByo+Pl4BAQFatmxZhffZsGGDunbtKovFoksuuUQLFiyo8TgrUtU8NmzYoICAgFL/8vPz3RNwGTIzM3XFFVeoQYMGio6O1uDBg7V3794K77dkyRK1bdtWoaGh6tixo1auXOmGaMtXnTwWLFhQal+Ehoa6KeKyzZkzR506dVJ4eLjCw8OVlJSkjz766IL38bZ9IVU9D2/cF+d76qmnFBAQoDFjxlxwO2/cH79XmTy8cX9MnTq1VExt27a94H28fV/gwlq0aFHmnJmenl7uffxpn1c1f2983TqjqKhIkydPVkJCgurWratWrVppxowZMsZc8H7e+HmxOqqTvzd+znTG8ePHNWbMGDVv3lx169ZVz549tW3btgvex1/2v1T1/H15/1f0ncoYo8cee0xxcXGqW7eukpOTtW/fvgrHnT17tlq0aKHQ0FAlJibqs88+q6EMfFNV6+NPc6wrVKV+r732mq666ipddNFFuuiii5ScnFzrn4/VfX0uXrxYAQEBGjx4cM0G6OWqWr+jR48qPT1dcXFxslgsuvTSS2v1a7iq9Zs1a5batGmjunXrqmnTpho7dqxOnz7tpmi9h7/8LdefMJc7h7m8+pjHncM87hzm8erz6rnc1AIrV640f/vb38x7771nJJmlS5decPtvvvnGhIWFmYyMDLNnzx7z0ksvmaCgILNq1Sr3BFyOqubx8ccfG0lm79695tChQ/Z/RUVF7gm4DKmpqWb+/Plm165dJjc319xwww2mWbNm5sSJE+Xe55NPPjFBQUFm5syZZs+ePWbSpEkmODjY7Ny5042RO6pOHvPnzzfh4eEO+yI/P9+NUZf2wQcfmBUrVpivv/7a7N271zz66KMmODjY7Nq1q8ztvXFfGFP1PLxxX/zeZ599Zlq0aGE6depkRo8eXe523ro/SlQ2D2/cH1OmTDGXXXaZQ0w//fRTudt7+75AxQ4fPuywv7Oysowk8/HHH5e5vb/t86rm742vW2c88cQTpmHDhmb58uUmLy/PLFmyxNSvX9+88MIL5d7HWz8vVkd18vfGz5nOuOWWW0z79u3Nxo0bzb59+8yUKVNMeHi4+e9//1vm9v60/42pev6+vP8r+k711FNPmYiICLNs2TLzn//8x9x0000mISHB/Pbbb+WOuXjxYhMSEmL++c9/mt27d5v77rvPREZGmoKCghrOxjdUtT7+Nsc6q6r1u/32283s2bPNjh07zJdffmnuuusuExERUe7r2d9V9/WZl5dnLr74YnPVVVeZQYMGuSdYL1TV+lmtVtO9e3dzww03mM2bN5u8vDyzYcMGk5ub6+bIvUNV67dw4UJjsVjMwoULTV5enlm9erWJi4szY8eOdXPknucvf8v1F8zlzmEurz7mcecwjzuHedw53jyX14rG+O9VZgc88sgj5rLLLnNYduutt5rU1NQajKxqqtIY//XXX90SU3UcPnzYSDIbN24sd5tbbrnFDBgwwGFZYmKiuf/++2s6vEqrTB7z5883ERER7guqmi666CLz+uuvl7nOF/ZFiQvl4c374vjx46Z169YmKyvLXHPNNRdsKHvz/qhKHt64P6ZMmWIuv/zySm/vzfsC1TN69GjTqlUrU1xcXOZ6f9/nFeXvja9bZwwYMMDcc889DstuvvlmM2zYsHLv4wufFyurOvn7wufMyjp16pQJCgoyy5cvd1jetWtX87e//a3M+/jT/q9O/v6y/8//TlVcXGxiY2PN3//+d/uyo0ePGovFYv71r3+VO86VV15p0tPT7beLiopMfHy8yczMrJG4fU1V6+Pvc2xVOfv8Onv2rGnQoIF54403aipEr1ad+p09e9b07NnTvP766yYtLa1W/0G9qvWbM2eOadmypTlz5oy7QvRqVa1fenq6ue666xyWZWRkmF69etVonN7OX/6W68uYy53DXF59zOPOYR53DvO463jbXF4rTqVeVdnZ2UpOTnZYlpqaquzsbA9F5JzOnTsrLi5O/fr10yeffOLpcBwcO3ZMkhQVFVXuNr6wPyqThySdOHFCzZs3V9OmTTVo0CDt3r3bHeFVSlFRkRYvXqyTJ08qKSmpzG18YV9UJg/Je/dFenq6BgwYUKrOZfHm/VGVPCTv3B/79u1TfHy8WrZsqWHDhungwYPlbuvN+wJVd+bMGb399tu65557FBAQUOY2/rzPK5O/5J2v2+rq2bOn1q1bp6+//lqS9J///EebN29W//79y72PPz0HqpN/CW/+nFlZZ8+eVVFRUanLAdStW1ebN28u8z7+tP+rk38Jf9j/v5eXl6f8/HyHfRsREaHExMRy9+2ZM2eUk5PjcJ/AwEAlJyf75PPB1apTH396fTnLFc+vU6dOyWazVfhd1R9Vt37Tp09XdHS07r33XneE6bWqU78PPvhASUlJSk9PV0xMjDp06KAnn3xSRUVF7grba1Snfj179lROTo79NK3ffPONVq5cqRtuuMEtMfsy5o6aw1zuHOby6mMedw7zuHOYx93PnXNHHZeP6Afy8/MVExPjsCwmJkaFhYX67bffVLduXQ9FVjVxcXGaO3euunfvLqvVqtdff119+vTR1q1b1bVrV0+Hp+LiYo0ZM0a9evVShw4dyt2uvP3hLdcwrGwebdq00T//+U916tRJx44d0zPPPKOePXtq9+7datKkiRsjdrRz504lJSXp9OnTql+/vpYuXar27duXua0374uq5OGt+2Lx4sX6/PPPK7ymaQlv3R9VzcMb90diYqIWLFigNm3a6NChQ5o2bZquuuoq7dq1Sw0aNCi1vbfuC1TPsmXLdPToUd11113lbuPP+7wy+Xvj69YZEyZMUGFhodq2baugoCAVFRXpiSee0LBhw8q9j798XpSql7+3f86sigYNGigpKUkzZsxQu3btFBMTo3/961/Kzs7WJZdcUuZ9/Gn/Vyd/f9r/v1fyHl6V9/eff/5ZRUVFZd7nq6++qplAfUh16uPPc2xVueL5NX78eMXHx1f6B6v+pDr127x5s+bNm6fc3Fw3ROjdqlO/b775RuvXr9ewYcO0cuVK7d+/Xw8++KBsNpumTJnijrC9RnXqd/vtt+vnn39W7969ZYzR2bNn9cADD+jRRx91R8g+zZ8+m3kb5nLnMJdXH/O4c5jHncM87n7unMtpjPuxNm3aqE2bNvbbPXv21IEDB/T888/rrbfe8mBk56Snp2vXrl0VHoni7SqbR1JSksMRzD179lS7du30yiuvaMaMGTUdZrnatGmj3NxcHTt2TO+++67S0tK0cePGcpvK3qoqeXjjvvj+++81evRoZWVllTpiy5dUJw9v3B+/P0qyU6dOSkxMVPPmzfXOO+/U+l+c1gbz5s1T//79FR8f7+lQPKIy+Xvj69YZ77zzjhYuXKhFixbpsssuU25ursaMGaP4+HilpaV5OrwaV538vf1zZlW99dZbuueee3TxxRcrKChIXbt21W233aacnBxPh+YWVc3f3/Y/4K+eeuopLV68WBs2bPDp7xjucvz4cd1xxx167bXX1KhRI0+H45OKi4sVHR2tV199VUFBQerWrZt++OEH/f3vf691f1Cvjg0bNujJJ5/Uyy+/rMTERO3fv1+jR4/WjBkzNHnyZE+HB8ADmMsrj3nceczjzmEe9x00xssQGxurgoICh2UFBQUKDw/3+V8YXnnllV7RiB45cqSWL1+uTZs2VXhkWXn7IzY2tiZDrJSq5HG+4OBgdenSRfv376+h6ConJCTEfjRQt27dtG3bNr3wwgt65ZVXSm3rzfuiKnmczxv2RU5Ojg4fPuxwlFVRUZE2bdqkf/zjH7JarQoKCnK4jzfuj+rkcT5v2B/ni4yM1KWXXlpuTN64L1A93333ndauXav33nvvgtv56z6vbP7n88bXbVWMGzdOEyZM0NChQyVJHTt21HfffafMzMxyG8P+9HmxOvmXxVs+Z1ZHq1attHHjRp08eVKFhYWKi4vTrbfeqpYtW5a5vT/tf6nq+ZfFl/d/iZL38IKCAsXFxdmXFxQUqHPnzmXep1GjRgoKCvLLOcEVqlMff51jq8OZ59czzzyjp556SmvXrlWnTp1qMkyvVdX6HThwQN9++60GDhxoX1ZcXCxJqlOnjvbu3atWrVrVbNBepDrPv7i4OAUHBzt852vXrp3y8/N15swZhYSE1GjM3qQ69Zs8ebLuuOMO/eUvf5F07jPZyZMnNXz4cP3tb39TYCBXxCyPv3028ybM5c5hLq8+5nHnMI87h3nc/dw5l7MnypCUlKR169Y5LMvKyrrg9Yp9RW5ursMfedzNGKORI0dq6dKlWr9+vRISEiq8jzfuj+rkcb6ioiLt3LnTo/ujLMXFxbJarWWu88Z9UZ4L5XE+b9gXffv21c6dO5Wbm2v/1717dw0bNky5ubllNpO9cX9UJ4/zecP+ON+JEyd04MCBcmPyxn2B6pk/f76io6M1YMCAC27nr/u8svmfzxtft1Vx6tSpUl9QgoKC7F+iy+JPz4Hq5F8WT3/OdIV69eopLi5Ov/76q1avXq1BgwaVuZ0/7f/fq2z+ZfGH/Z+QkKDY2FiHfVtYWKitW7eWu29DQkLUrVs3h/sUFxdr3bp1Pv98cIXq1MdfX1/VUd3n18yZMzVjxgytWrVK3bt3d0eoXqmq9Wvbtm2p7zI33XSTrr32WuXm5qpp06buDN/jqvP869Wrl/bv3+/wGeLrr79WXFxcrfpjulS9+pX3mUw693colI+5o+YwlzuHubz6mMedwzzuHOZx93Pr3GFqgePHj5sdO3aYHTt2GEnmueeeMzt27DDfffedMcaYCRMmmDvuuMO+/TfffGPCwsLMuHHjzJdffmlmz55tgoKCzKpVqzyVgjGm6nk8//zzZtmyZWbfvn1m586dZvTo0SYwMNCsXbvWUymYESNGmIiICLNhwwZz6NAh+79Tp07Zt7njjjvMhAkT7Lc/+eQTU6dOHfPMM8+YL7/80kyZMsUEBwebnTt3eiIFY0z18pg2bZpZvXq1OXDggMnJyTFDhw41oaGhZvfu3Z5IwRhz7jmzceNGk5eXZ7744gszYcIEExAQYNasWWOM8Y19YUzV8/DGfVGWa665xowePdp+21f2x/kqysMb98dDDz1kNmzYYPLy8swnn3xikpOTTaNGjczhw4eNMb67L3BhRUVFplmzZmb8+PGl1tWGfV6V/L3xdeuMtLQ0c/HFF5vly5ebvLw8895775lGjRqZRx55xL6Nr3xerI7q5O+NnzOdsWrVKvPRRx+Zb775xqxZs8ZcfvnlJjEx0Zw5c8YY49/735iq5+/L+7+i71RPPfWUiYyMNO+//7754osvzKBBg0xCQoL57bff7GNcd9115qWXXrLfXrx4sbFYLGbBggVmz549Zvjw4SYyMtLk5+e7PT9vVFF9asMc64yq1u+pp54yISEh5t1333X4rnr8+HFPpeBRVa3f+dLS0sygQYPcFK33qWr9Dh48aBo0aGBGjhxp9u7da5YvX26io6PN448/7qkUPKqq9ZsyZYpp0KCB+de//mWfk1u1amVuueUWT6XgMf7yt1x/wVzuHOby6mMedw7zuHOYx53jzXN5rWiMf/zxx0ZSqX9paWnGmHNvkNdcc02p+3Tu3NmEhISYli1bmvnz57s97vNVNY+nn37atGrVyoSGhpqoqCjTp08fs379es8E//8rK35JDvW95ppr7DmVeOedd8yll15qQkJCzGWXXWZWrFjh3sDPU508xoz5/9q7Y5xUoigMwL5mcAMGiZFJZhG6ADo3QG+pha83BhpX4CpcAhswVvYm7kFDZzT+dsSnRjOQ8ODyfSWX4t57LnOG+UP4m36/n6qq0u12c3R0lLu7u+VP/oPj4+PUdZ2qqrKzs5PBYDALk5P1qEXSfh2rWIvvfA6U16Uen/22jlWsx3A4TK/XS1VV2dvby3A4zMPDw2x8XWvBzyaTSba2tnJ/f/9lbBNq3mb9q/i5XcR0Os3Z2Vn6/X62t7fTNE3Oz8/z/Pw8e8+63C/OY571r+J95iKur6/TNE2qqsru7m5OT0/z9PQ0Gy+5/kn79a9z/X/7TvX29paLi4t0u910Op0MBoMv18W6rjMajf557erqanZdPDg4yO3t7ZJWtB5+2p9N6LGLarN/dV1/e8Y/n9lN0vb8fbTpD9ST9vt3c3OTw8PDdDqdNE2Ty8vLvL6+LnnWq6PN/r28vGQ8Hs967P7+fk5OTvL4+Lj8if9npTzLLYlevhi9fH76+GL08cXo4/Nb5V7+J/EbfgAAAAAAAADK5T/GAQAAAAAAACiaYBwAAAAAAACAognGAQAAAAAAACiaYBwAAAAAAACAognGAQAAAAAAACiaYBwAAAAAAACAognGAQAAAAAAACiaYBwAAAAAAACAognGAQAAAAAAACiaYBwAAAAAAACAognGAQAAAAAAACiaYBwAAAAAAACAor0D+gTMFUe09dwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "viz = df[['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA', 'Research', 'Admit']]\n", + "fig, axes = plt.subplots(nrows=2, ncols=4, figsize=(20, 7))\n", + "\n", + "axes = axes.flatten()\n", + "\n", + "for i, column in enumerate(viz.columns):\n", + " viz[column].hist(ax=axes[i])\n", + " axes[i].set_title(column)\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "0068030a", + "metadata": {}, + "outputs": [], + "source": [ + "# print(df)\n", + "train, test = train_test_split(df, test_size=0.20, random_state=42)\n", + "# test, evaluate = train_test_split(test, test_size=0.5, random_state=42)" + ] + }, + { + "cell_type": "markdown", + "id": "70a01055", + "metadata": {}, + "source": [ + "## Fit model based on data. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "92f95186", + "metadata": {}, + "outputs": [], + "source": [ + "train_x = np.asanyarray(train[['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA', 'Research']])\n", + "train_y = np.asanyarray(train[['Admit']])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "a3bb7499", + "metadata": {}, + "outputs": [], + "source": [ + "test_x = np.asanyarray(test[['GRE Score', 'TOEFL Score', 'University Rating', 'SOP', 'LOR ', 'CGPA', 'Research']])\n", + "test_y = np.asanyarray(test[['Admit']])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "10d47b93", + "metadata": {}, + "outputs": [], + "source": [ + "# Scale features\n", + "scaler = StandardScaler()\n", + "train_x = scaler.fit_transform(train_x)\n", + "test_x = scaler.transform(test_x)\n", + "\n", + "# Handle class imbalance with SMOTE\n", + "smote = SMOTE(random_state=42)\n", + "train_x_resampled, train_y_resampled = smote.fit_resample(train_x, train_y)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "bce9d88c", + "metadata": {}, + "outputs": [], + "source": [ + "model = RandomForestClassifier(random_state=42)\n", + "model.fit(train_x_resampled, train_y_resampled.ravel())\n", + "test_y_ = model.predict(test_x)\n" + ] + }, + { + "cell_type": "markdown", + "id": "43eafda9", + "metadata": {}, + "source": [ + "## Evaluation" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "c31aad30", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The jaccard score for 0's:\n", + "0.26666666666666666\n", + "\n", + "The jaccard score for 1's:\n", + "0.8854166666666666\n" + ] + } + ], + "source": [ + "print(\"The jaccard score for 0's:\")\n", + "print(jaccard_score(test_y, test_y_, pos_label=0))\n", + "print(\"\\nThe jaccard score for 1's:\")\n", + "print(jaccard_score(test_y, test_y_, pos_label=1))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "150897f7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Accuracy: 0.89\n", + "Precision: 0.96\n", + "Recall: 0.92\n", + "\n", + "Naive Bayes Classification Report:\n", + " precision recall f1-score support\n", + "\n", + " 0 0.36 0.50 0.42 8\n", + " 1 0.96 0.92 0.94 92\n", + "\n", + " accuracy 0.89 100\n", + " macro avg 0.66 0.71 0.68 100\n", + "weighted avg 0.91 0.89 0.90 100\n", + "\n", + "\n", + "Naive Bayes Confusion Matrix:\n", + "[[ 4 4]\n", + " [ 7 85]]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAHHCAYAAABEJtrOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8oUlEQVR4nO3dfVxUZf7/8fegMhAwoKYgiYg3eZN3pa2RmVooWZmutmXZhqa1bWopaeV38z6jtVLTULtxUVtd00pba9MMV81EU8zWykjN0k3B0gUU4yY4vz9c5rcjmjPMjDPDeT17nMfDuc51zvkcHhMfPte5zjkWwzAMAQCAgBTk6wAAAED1kcgBAAhgJHIAAAIYiRwAgABGIgcAIICRyAEACGAkcgAAAhiJHACAAEYiBwAggJHIgXPs379fffr0UWRkpCwWi9asWePR/X/33XeyWCxavHixR/cbyHr27KmePXv6OgwgIJHI4ZcOHjyoP/zhD2rWrJlCQkJks9nUrVs3vfTSS/r555+9euyUlBTt3btXM2bM0BtvvKEuXbp49XiX0tChQ2WxWGSz2c77c9y/f78sFossFoteeOEFl/d/9OhRTZkyRXv27PFAtACcUdvXAQDnev/99/W73/1OVqtV999/v9q1a6fS0lJt3bpV48eP15dffqlXX33VK8f++eeflZWVpT/96U8aNWqUV44RHx+vn3/+WXXq1PHK/i+mdu3aOnPmjNauXau77rrLYd2yZcsUEhKi4uLiau376NGjmjp1qpo2bapOnTo5vd2HH35YreMBIJHDzxw6dEiDBw9WfHy8Nm7cqEaNGtnXjRw5UgcOHND777/vteP/+OOPkqSoqCivHcNisSgkJMRr+78Yq9Wqbt266W9/+1uVRL58+XLddtttevvtty9JLGfOnNFll12m4ODgS3I8oCZiaB1+ZebMmTp9+rQWLVrkkMQrtWjRQo899pj98y+//KLp06erefPmslqtatq0qf7v//5PJSUlDts1bdpUt99+u7Zu3arf/OY3CgkJUbNmzbR06VJ7nylTpig+Pl6SNH78eFksFjVt2lTS2SHpyn//rylTpshisTi0bdiwQTfccIOioqIUHh6uVq1a6f/+7//s6y90jXzjxo3q3r27wsLCFBUVpf79+2vfvn3nPd6BAwc0dOhQRUVFKTIyUsOGDdOZM2cu/IM9x7333qsPPvhA+fn59radO3dq//79uvfee6v0P3nypMaNG6f27dsrPDxcNptNffv21eeff27vs2nTJl177bWSpGHDhtmH6CvPs2fPnmrXrp2ys7N144036rLLLrP/XM69Rp6SkqKQkJAq55+cnKy6devq6NGjTp8rUNORyOFX1q5dq2bNmun66693qv+IESM0adIkXXPNNZo9e7Z69OihtLQ0DR48uErfAwcO6M4771Tv3r314osvqm7duho6dKi+/PJLSdLAgQM1e/ZsSdI999yjN954Q3PmzHEp/i+//FK33367SkpKNG3aNL344ou644479Mknn/zqdh999JGSk5N1/PhxTZkyRampqdq2bZu6deum7777rkr/u+66S6dOnVJaWpruuusuLV68WFOnTnU6zoEDB8piseidd96xty1fvlytW7fWNddcU6X/t99+qzVr1uj222/XrFmzNH78eO3du1c9evSwJ9U2bdpo2rRpkqSHHnpIb7zxht544w3deOON9v2cOHFCffv2VadOnTRnzhz16tXrvPG99NJLatCggVJSUlReXi5JeuWVV/Thhx9q3rx5io2NdfpcgRrPAPxEQUGBIcno37+/U/337NljSDJGjBjh0D5u3DhDkrFx40Z7W3x8vCHJ2LJli73t+PHjhtVqNR5//HF726FDhwxJxvPPP++wz5SUFCM+Pr5KDJMnTzb+93+j2bNnG5KMH3/88YJxVx4jIyPD3tapUyejYcOGxokTJ+xtn3/+uREUFGTcf//9VY73wAMPOOzzt7/9rVG/fv0LHvN/zyMsLMwwDMO48847jZtvvtkwDMMoLy83YmJijKlTp573Z1BcXGyUl5dXOQ+r1WpMmzbN3rZz584q51apR48ehiRj4cKF513Xo0cPh7b169cbkoxnnnnG+Pbbb43w8HBjwIABFz1HwGyoyOE3CgsLJUkRERFO9f/HP/4hSUpNTXVof/zxxyWpyrX0tm3bqnv37vbPDRo0UKtWrfTtt99WO+ZzVV5bf/fdd1VRUeHUNseOHdOePXs0dOhQ1atXz97eoUMH9e7d236e/+vhhx92+Ny9e3edOHHC/jN0xr333qtNmzYpNzdXGzduVG5u7nmH1aWz19WDgs7+uigvL9eJEyfslw12797t9DGtVquGDRvmVN8+ffroD3/4g6ZNm6aBAwcqJCREr7zyitPHAsyCRA6/YbPZJEmnTp1yqv/333+voKAgtWjRwqE9JiZGUVFR+v777x3amzRpUmUfdevW1X/+859qRlzV3XffrW7dumnEiBGKjo7W4MGDtXLlyl9N6pVxtmrVqsq6Nm3a6KefflJRUZFD+7nnUrduXUly6VxuvfVWRURE6M0339SyZct07bXXVvlZVqqoqNDs2bPVsmVLWa1WXX755WrQoIH+9a9/qaCgwOljXnHFFS5NbHvhhRdUr1497dmzR3PnzlXDhg2d3hYwCxI5/IbNZlNsbKy++OILl7Y7d7LZhdSqVeu87YZhVPsYlddvK4WGhmrLli366KOP9Pvf/17/+te/dPfdd6t3795V+rrDnXOpZLVaNXDgQC1ZskSrV6++YDUuSc8++6xSU1N144036q9//avWr1+vDRs26KqrrnJ65EE6+/NxxWeffabjx49Lkvbu3evStoBZkMjhV26//XYdPHhQWVlZF+0bHx+viooK7d+/36E9Ly9P+fn59hnonlC3bl2HGd6Vzq36JSkoKEg333yzZs2apa+++kozZszQxo0b9c9//vO8+66MMycnp8q6r7/+WpdffrnCwsLcO4ELuPfee/XZZ5/p1KlT550gWOmtt95Sr169tGjRIg0ePFh9+vRRUlJSlZ+Js39UOaOoqEjDhg1T27Zt9dBDD2nmzJnauXOnx/YP1BQkcviVJ554QmFhYRoxYoTy8vKqrD948KBeeuklSWeHhiVVmVk+a9YsSdJtt93msbiaN2+ugoIC/etf/7K3HTt2TKtXr3bod/LkySrbVj4Y5dxb4io1atRInTp10pIlSxwS4xdffKEPP/zQfp7e0KtXL02fPl0vv/yyYmJiLtivVq1aVar9VatW6YcffnBoq/yD43x/9LjqySef1OHDh7VkyRLNmjVLTZs2VUpKygV/joBZ8UAY+JXmzZtr+fLluvvuu9WmTRuHJ7tt27ZNq1at0tChQyVJHTt2VEpKil599VXl5+erR48e+vTTT7VkyRINGDDggrc2VcfgwYP15JNP6re//a0effRRnTlzRgsWLNCVV17pMNlr2rRp2rJli2677TbFx8fr+PHjmj9/vho3bqwbbrjhgvt//vnn1bdvXyUmJmr48OH6+eefNW/ePEVGRmrKlCkeO49zBQUF6emnn75ov9tvv13Tpk3TsGHDdP3112vv3r1atmyZmjVr5tCvefPmioqK0sKFCxUREaGwsDB17dpVCQkJLsW1ceNGzZ8/X5MnT7bfDpeRkaGePXtq4sSJmjlzpkv7A2o0H8+aB87rm2++MR588EGjadOmRnBwsBEREWF069bNmDdvnlFcXGzvV1ZWZkydOtVISEgw6tSpY8TFxRkTJkxw6GMYZ28/u+2226oc59zbni50+5lhGMaHH35otGvXzggODjZatWpl/PWvf61y+1lmZqbRv39/IzY21ggODjZiY2ONe+65x/jmm2+qHOPcW7Q++ugjo1u3bkZoaKhhs9mMfv36GV999ZVDn8rjnXt7W0ZGhiHJOHTo0AV/pobhePvZhVzo9rPHH3/caNSokREaGmp069bNyMrKOu9tY++++67Rtm1bo3bt2g7n2aNHD+Oqq6467zH/dz+FhYVGfHy8cc011xhlZWUO/caOHWsEBQUZWVlZv3oOgJlYDMOF2TEAAMCvcI0cAIAARiIHACCAkcgBAAhgJHIAAAIYiRwAgABGIgcAIIAF9ANhKioqdPToUUVERHj00ZAAgEvDMAydOnVKsbGx9jfseUNxcbFKS0vd3k9wcLBCQkI8EJHnBHQiP3r0qOLi4nwdBgDATUeOHFHjxo29su/i4mKFRtSXfjnj9r5iYmJ06NAhv0rmAZ3IK99bfeDQEUX89xWYAIDAcaqwUC0S4uy/z72htLRU+uWMrG1TpFrOv0a3ivJS5X61RKWlpSRyT6kcTo+w2ezvsgYABJ5Lcnm0dogsbiRyw+Kf08oCOpEDAOA0iyR3/mDw06lYJHIAgDlYgs4u7mzvh/wzKgAA4BQqcgCAOVgsbg6t++fYOokcAGAODK0DAAB/Q0UOADAHhtYBAAhkbg6t++kgtn9GBQAAnEJFDgAwB4bWAQAIYMxaBwAA/oaKHABgDgytAwAQwGro0DqJHABgDjW0IvfPPy8AAIBTSOQAAHOoHFp3Z3FBeXm5Jk6cqISEBIWGhqp58+aaPn26DMOw9zEMQ5MmTVKjRo0UGhqqpKQk7d+/36XjkMgBAOZgsbiZyF0bWv/zn/+sBQsW6OWXX9a+ffv05z//WTNnztS8efPsfWbOnKm5c+dq4cKF2rFjh8LCwpScnKzi4mKnj8M1cgAAvGDbtm3q37+/brvtNklS06ZN9be//U2ffvqppLPV+Jw5c/T000+rf//+kqSlS5cqOjpaa9as0eDBg506DhU5AMAcgizuL5IKCwsdlpKSkvMe7vrrr1dmZqa++eYbSdLnn3+urVu3qm/fvpKkQ4cOKTc3V0lJSfZtIiMj1bVrV2VlZTl9WlTkAABz8NDtZ3FxcQ7NkydP1pQpU6p0f+qpp1RYWKjWrVurVq1aKi8v14wZMzRkyBBJUm5uriQpOjraYbvo6Gj7OmeQyAEAcMGRI0dks9nsn61W63n7rVy5UsuWLdPy5ct11VVXac+ePRozZoxiY2OVkpLisXhI5AAAc/DQfeQ2m80hkV/I+PHj9dRTT9mvdbdv317ff/+90tLSlJKSopiYGElSXl6eGjVqZN8uLy9PnTp1cjosrpEDAMzhEt9+dubMGQUFOW5Tq1YtVVRUSJISEhIUExOjzMxM+/rCwkLt2LFDiYmJTh+HihwAAC/o16+fZsyYoSZNmuiqq67SZ599plmzZumBBx6QJFksFo0ZM0bPPPOMWrZsqYSEBE2cOFGxsbEaMGCA08chkQMAzOESP6J13rx5mjhxoh555BEdP35csbGx+sMf/qBJkybZ+zzxxBMqKirSQw89pPz8fN1www1at26dQkJCnA/L+N9HzASYwsJCRUZGKu9EgVPXKwAA/qWwsFDR9SNVUOC93+OVucLaa5ostZ1PkOcyfilWyT8neTXW6qAiBwCYAy9NAQAA/oaKHABgDryPHACAAMbQOgAA8DdU5AAAk3BzaN1Pa18SOQDAHBhaBwAA/oaKHABgDhaLm7PW/bMiJ5EDAMyhht5+5p9RAQAAp1CRAwDMoYZOdiORAwDMoYYOrZPIAQDmUEMrcv/88wIAADiFihwAYA4MrQMAEMAYWgcAAP6GihwAYAoWi0WWGliRk8gBAKZQUxM5Q+sAAAQwKnIAgDlY/ru4s70fIpEDAEyBoXUAAOB3qMgBAKZQUytyEjkAwBRI5AAABLCamsi5Rg4AQACjIgcAmAO3nwEAELgYWgcAAH6HihwAYApn32LqTkXuuVg8iUQOADAFi9wcWvfTTM7QOgAAAYxEDgAwhcrJbu4srmjatOl59zFy5EhJUnFxsUaOHKn69esrPDxcgwYNUl5ensvnRSIHAJiDxQOLC3bu3Kljx47Zlw0bNkiSfve730mSxo4dq7Vr12rVqlXavHmzjh49qoEDB7p8WlwjBwDACxo0aODw+bnnnlPz5s3Vo0cPFRQUaNGiRVq+fLluuukmSVJGRobatGmj7du367rrrnP6OFTkAABzcHdY3Y2JcqWlpfrrX/+qBx54QBaLRdnZ2SorK1NSUpK9T+vWrdWkSRNlZWW5tG8qcgCAKbj7QJjKbQsLCx3arVarrFbrr267Zs0a5efna+jQoZKk3NxcBQcHKyoqyqFfdHS0cnNzXYqLihwAYAqemuwWFxenyMhI+5KWlnbRYy9atEh9+/ZVbGysx8+LihwAABccOXJENpvN/vli1fj333+vjz76SO+88469LSYmRqWlpcrPz3eoyvPy8hQTE+NSPFTkAABz8NCsdZvN5rBcLJFnZGSoYcOGuu222+xtnTt3Vp06dZSZmWlvy8nJ0eHDh5WYmOjSaVGRAwBMwVPXyF1RUVGhjIwMpaSkqHbt/59yIyMjNXz4cKWmpqpevXqy2WwaPXq0EhMTXZqxLpHIAQDwmo8++kiHDx/WAw88UGXd7NmzFRQUpEGDBqmkpETJycmaP3++y8cgkQMATMEXFXmfPn1kGMZ514WEhCg9PV3p6enVjkkikQMATMIXifxSYLIbAAABjIocAGAKNbUiJ5EDAMyhGi8+qbK9H2JoHQCAAEZFDgAwBYbWAQAIYCRyAAACWE1N5FwjBwAggFGRAwDMoYbOWieRAwBMgaF1AADgd0jkcNnzM59TaB2LxqWO8XUogFfwHa+ZKitydxZ/5BeJPD09XU2bNlVISIi6du2qTz/91Nch4QJ27dypRa+9ovbtO/g6FMAr+I7XXBa5mcj99CK5zxP5m2++qdTUVE2ePFm7d+9Wx44dlZycrOPHj/s6NJzj9OnTGpYyRPMXvqaounV9HQ7gcXzHEYh8nshnzZqlBx98UMOGDVPbtm21cOFCXXbZZfrLX/7i69BwjjGjR+qWvrfpppuTfB0K4BV8x2u2mjq07tNZ66WlpcrOztaECRPsbUFBQUpKSlJWVpYPI8O5Vr65Qns+262t23f6OhTAK/iOmwC3n3neTz/9pPLyckVHRzu0R0dH6+uvv67Sv6SkRCUlJfbPhYWFXo8R0pEjRzQ+9TG998EGhYSE+DocwOP4jiOQ+Xxo3RVpaWmKjIy0L3Fxcb4OyRQ+252t48ePK/E31yg8pLbCQ2rr4y2bNf/luQoPqa3y8nJfhwi4he+4OTC07gWXX365atWqpby8PIf2vLw8xcTEVOk/YcIEpaam2j8XFhaSzC+BXjfdrF2f7XVoe2jEMLVq1VqPj39StWrV8lFkgGfwHTeHmvpAGJ8m8uDgYHXu3FmZmZkaMGCAJKmiokKZmZkaNWpUlf5Wq1VWq/USR4mIiAhd1a6dQ1tYWJjq1a9fpR0IRHzHzcFiObu4s70/8vkjWlNTU5WSkqIuXbroN7/5jebMmaOioiINGzbM16EBAOD3fJ7I7777bv3444+aNGmScnNz1alTJ61bt67KBDj4lw8zN/k6BMCr+I7XPGcrcneG1j0YjAf5PJFL0qhRo847lA4AgMe4ObTur7efBdSsdQAA4MgvKnIAALyNWesAAASwmjprnaF1AAACGBU5AMAUgoIsCgqqflltuLGtN5HIAQCmwNA6AADwO1TkAABTYNY6AAABrKYOrZPIAQCmUFMrcq6RAwAQwEjkAABTqKzI3Vlc9cMPP+i+++5T/fr1FRoaqvbt22vXrl329YZhaNKkSWrUqJFCQ0OVlJSk/fv3u3QMEjkAwBQqr5G7s7jiP//5j7p166Y6derogw8+0FdffaUXX3xRdevWtfeZOXOm5s6dq4ULF2rHjh0KCwtTcnKyiouLnT4O18gBAPCCP//5z4qLi1NGRoa9LSEhwf5vwzA0Z84cPf300+rfv78kaenSpYqOjtaaNWs0ePBgp45DRQ4AMAWL3Bxa/+97TAsLCx2WkpKS8x7v73//u7p06aLf/e53atiwoa6++mq99tpr9vWHDh1Sbm6ukpKS7G2RkZHq2rWrsrKynD4vEjkAwBQ8NbQeFxenyMhI+5KWlnbe43377bdasGCBWrZsqfXr1+uPf/yjHn30US1ZskSSlJubK0mKjo522C46Otq+zhkMrQMA4IIjR47IZrPZP1ut1vP2q6ioUJcuXfTss89Kkq6++mp98cUXWrhwoVJSUjwWDxU5AMAUPDVr3WazOSwXSuSNGjVS27ZtHdratGmjw4cPS5JiYmIkSXl5eQ598vLy7OucQSIHAJjCpZ613q1bN+Xk5Di0ffPNN4qPj5d0duJbTEyMMjMz7esLCwu1Y8cOJSYmOn0chtYBAPCCsWPH6vrrr9ezzz6ru+66S59++qleffVVvfrqq5LOjhCMGTNGzzzzjFq2bKmEhARNnDhRsbGxGjBggNPHIZEDAEzhUj+i9dprr9Xq1as1YcIETZs2TQkJCZozZ46GDBli7/PEE0+oqKhIDz30kPLz83XDDTdo3bp1CgkJcT4uwzAMlyLzI4WFhYqMjFTeiQKHiQcAgMBQWFio6PqRKijw3u/xylxxzcT3VCskrNr7KS8u0u7pt3s11uqgIgcAmAIvTQEAAH6HihwAYA5uvo9c/lmQk8gBAObA0DoAAPA7VOQAAFOozkNdzt3eH5HIAQCmwNA6AADwO1TkAABTYGgdAIAAxtA6AADwO1TkAABTqKkVOYkcAGAKXCMHACCA1dSKnGvkAAAEMCpyAIApMLQOAEAAY2gdAAD4HSpyAIApWOTm0LrHIvEsEjkAwBSCLBYFuZHJ3dnWmxhaBwAggFGRAwBMgVnrAAAEsJo6a51EDgAwhSDL2cWd7f0R18gBAAhgVOQAAHOwuDk87qcVOYkcAGAKNXWyG0PrAAAEMCpyAIApWP77nzvb+yMSOQDAFJi1DgAA/A4VOQDAFEz9QJi///3vTu/wjjvuqHYwAAB4S02dte5UIh8wYIBTO7NYLCovL3cnHgAA4AKnEnlFRYW34wAAwKt4jel5FBcXeyoOAAC8qnJo3Z3FFVOmTLFfl69cWrdubV9fXFyskSNHqn79+goPD9egQYOUl5fn8nm5nMjLy8s1ffp0XXHFFQoPD9e3334rSZo4caIWLVrkcgAAAFwK5ybV6iyuuuqqq3Ts2DH7snXrVvu6sWPHau3atVq1apU2b96so0ePauDAgS4fw+VEPmPGDC1evFgzZ85UcHCwvb1du3Z6/fXXXQ4AAICaqnbt2oqJibEvl19+uSSpoKBAixYt0qxZs3TTTTepc+fOysjI0LZt27R9+3aXjuFyIl+6dKleffVVDRkyRLVq1bK3d+zYUV9//bWruwMA4JLw1NB6YWGhw1JSUnLBY+7fv1+xsbFq1qyZhgwZosOHD0uSsrOzVVZWpqSkJHvf1q1bq0mTJsrKynLpvFxO5D/88INatGhRpb2iokJlZWWu7g4AgEuicrKbO4skxcXFKTIy0r6kpaWd93hdu3bV4sWLtW7dOi1YsECHDh1S9+7dderUKeXm5io4OFhRUVEO20RHRys3N9el83L5gTBt27bVxx9/rPj4eIf2t956S1dffbWruwMAIKAcOXJENpvN/tlqtZ63X9++fe3/7tChg7p27ar4+HitXLlSoaGhHovH5UQ+adIkpaSk6IcfflBFRYXeeecd5eTkaOnSpXrvvfc8FhgAAJ5kkXuvFK/c1mazOSRyZ0VFRenKK6/UgQMH1Lt3b5WWlio/P9+hKs/Ly1NMTIxL+3V5aL1///5au3atPvroI4WFhWnSpEnat2+f1q5dq969e7u6OwAALglfzFr/X6dPn9bBgwfVqFEjde7cWXXq1FFmZqZ9fU5Ojg4fPqzExESX9lutZ613795dGzZsqM6mAACYwrhx49SvXz/Fx8fr6NGjmjx5smrVqqV77rlHkZGRGj58uFJTU1WvXj3ZbDaNHj1aiYmJuu6661w6TrVfmrJr1y7t27dP0tnr5p07d67urgAA8LpL/RrTf//737rnnnt04sQJNWjQQDfccIO2b9+uBg0aSJJmz56toKAgDRo0SCUlJUpOTtb8+fNdjsvlRF4Z2CeffGIf18/Pz9f111+vFStWqHHjxi4HAQCAt13qt5+tWLHiV9eHhIQoPT1d6enp1Y5JqsY18hEjRqisrEz79u3TyZMndfLkSe3bt08VFRUaMWKEW8EAAADXuFyRb968Wdu2bVOrVq3sba1atdK8efPUvXt3jwYHAIAn+el7T9ziciKPi4s774NfysvLFRsb65GgAADwtEs9tH6puDy0/vzzz2v06NHatWuXvW3Xrl167LHH9MILL3g0OAAAPKVysps7iz9yqiKvW7euw18iRUVF6tq1q2rXPrv5L7/8otq1a+uBBx7QgAEDvBIoAACoyqlEPmfOHC+HAQCAd9XUoXWnEnlKSoq34wAAwKs89YhWf1PtB8JIUnFxsUpLSx3aqvP8WQAAUD0uJ/KioiI9+eSTWrlypU6cOFFlfXl5uUcCAwDAk/73VaTV3d4fuTxr/YknntDGjRu1YMECWa1Wvf7665o6dapiY2O1dOlSb8QIAIDbLBb3F3/kckW+du1aLV26VD179tSwYcPUvXt3tWjRQvHx8Vq2bJmGDBnijTgBAMB5uFyRnzx5Us2aNZN09nr4yZMnJUk33HCDtmzZ4tnoAADwEF+/xtRbXE7kzZo106FDhyRJrVu31sqVKyWdrdT/9+XoAAD4k5o6tO5yIh82bJg+//xzSdJTTz2l9PR0hYSEaOzYsRo/frzHAwQAABfm8jXysWPH2v+dlJSkr7/+WtnZ2WrRooU6dOjg0eAAAPCUmjpr3a37yCUpPj5e8fHxnogFAACvcXd43E/zuHOJfO7cuU7v8NFHH612MAAAeIupH9E6e/Zsp3ZmsVhI5AAAXEJOJfLKWer+qrisXMFlPFEONVOj6x/zdQiA1xjlpRfv5CFBqsYM73O290duXyMHACAQ1NShdX/9AwMAADiBihwAYAoWixRk1lnrAAAEuiA3E7k723oTQ+sAAASwaiXyjz/+WPfdd58SExP1ww8/SJLeeOMNbd261aPBAQDgKbw05b/efvttJScnKzQ0VJ999plKSkokSQUFBXr22Wc9HiAAAJ5QObTuzuKPXE7kzzzzjBYuXKjXXntNderUsbd369ZNu3fv9mhwAADg17k82S0nJ0c33nhjlfbIyEjl5+d7IiYAADyupj5r3eWKPCYmRgcOHKjSvnXrVjVr1swjQQEA4GmVbz9zZ/FHLifyBx98UI899ph27Nghi8Wio0ePatmyZRo3bpz++Mc/eiNGAADcFuSBxR+5PLT+1FNPqaKiQjfffLPOnDmjG2+8UVarVePGjdPo0aO9ESMAALgAlxO5xWLRn/70J40fP14HDhzQ6dOn1bZtW4WHh3sjPgAAPKKmXiOv9pPdgoOD1bZtW0/GAgCA1wTJvevcQfLPTO5yIu/Vq9ev3hS/ceNGtwICAADOc/nafadOndSxY0f70rZtW5WWlmr37t1q3769N2IEAMBtlUPr7izV9dxzz8lisWjMmDH2tuLiYo0cOVL169dXeHi4Bg0apLy8PJf37XJFPnv27PO2T5kyRadPn3Y5AAAALgVfvTRl586deuWVV9ShQweH9rFjx+r999/XqlWrFBkZqVGjRmngwIH65JNPXIuremFVdd999+kvf/mLp3YHAEDAO336tIYMGaLXXntNdevWtbcXFBRo0aJFmjVrlm666SZ17txZGRkZ2rZtm7Zv3+7SMTyWyLOyshQSEuKp3QEA4FFn30de/YfBVA6tFxYWOiyV7xw5n5EjR+q2225TUlKSQ3t2drbKysoc2lu3bq0mTZooKyvLpfNyeWh94MCBDp8Nw9CxY8e0a9cuTZw40dXdAQBwSXjq9rO4uDiH9smTJ2vKlClV+q9YsUK7d+/Wzp07q6zLzc1VcHCwoqKiHNqjo6OVm5vrUlwuJ/LIyEiHz0FBQWrVqpWmTZumPn36uLo7AAACypEjR2Sz2eyfrVbrefs89thj2rBhg9dHq11K5OXl5Ro2bJjat2/vMNYPAIC/89RkN5vN5pDIzyc7O1vHjx/XNddcY28rLy/Xli1b9PLLL2v9+vUqLS1Vfn6+Q1Wel5enmJgY1+JypXOtWrXUp08f3nIGAAg4Fg/856ybb75Ze/fu1Z49e+xLly5dNGTIEPu/69Spo8zMTPs2OTk5Onz4sBITE106L5eH1tu1a6dvv/1WCQkJrm4KAIDPXMrbzyIiItSuXTuHtrCwMNWvX9/ePnz4cKWmpqpevXqy2WwaPXq0EhMTdd1117kUl8uJ/JlnntG4ceM0ffp0de7cWWFhYQ7rLzbcAAAAzj6XJSgoSIMGDVJJSYmSk5M1f/58l/fjdCKfNm2aHn/8cd16662SpDvuuMPhUa2GYchisai8vNzlIAAA8DZfPRCm0qZNmxw+h4SEKD09Xenp6W7t1+lEPnXqVD388MP65z//6dYBAQDwBYvF8qvvCnFme3/kdCI3DEOS1KNHD68FAwAAXOPSNXJ//WsEAICL8fXQure4lMivvPLKiybzkydPuhUQAADe4Kknu/kblxL51KlTqzzZDQAA+I5LiXzw4MFq2LCht2IBAMBrKl9+4s72/sjpRM71cQBAIKup18idfkRr5ax1AADgP5yuyCsqKrwZBwAA3uXmZDcXHrV+Sbn8iFYAAAJRkCwKciMbu7OtN5HIAQCmUFNvP3PpNaYAAMC/UJEDAEyhps5aJ5EDAEyhpt5HztA6AAABjIocAGAKNXWyG4kcAGAKQXJzaN1Pbz9jaB0AgABGRQ4AMAWG1gEACGBBcm8Y2l+HsP01LgAA4AQqcgCAKVgsFrdeye2vr/MmkQMATMEi915g5p9pnEQOADAJnuwGAAD8DhU5AMA0/LOmdg+JHABgCjX1PnKG1gEACGBU5AAAU+D2MwAAAhhPdgMAAH6HihwAYAoMrQMAEMBq6pPdGFoHACCAUZEDAEyhpg6tU5EDAEwhyAOLKxYsWKAOHTrIZrPJZrMpMTFRH3zwgX19cXGxRo4cqfr16ys8PFyDBg1SXl5etc4LAIAar7Iid2dxRePGjfXcc88pOztbu3bt0k033aT+/fvryy+/lCSNHTtWa9eu1apVq7R582YdPXpUAwcOdPm8GFoHAMAL+vXr5/B5xowZWrBggbZv367GjRtr0aJFWr58uW666SZJUkZGhtq0aaPt27fruuuuc/o4VOQAAFOweGCRpMLCQoelpKTkoscuLy/XihUrVFRUpMTERGVnZ6usrExJSUn2Pq1bt1aTJk2UlZXl0nmRyAEAplD50hR3FkmKi4tTZGSkfUlLS7vgMffu3avw8HBZrVY9/PDDWr16tdq2bavc3FwFBwcrKirKoX90dLRyc3NdOi+G1gEAcMGRI0dks9nsn61W6wX7tmrVSnv27FFBQYHeeustpaSkaPPmzR6Nh0QOADCFIFkU5MZjXSq3rZyF7ozg4GC1aNFCktS5c2ft3LlTL730ku6++26VlpYqPz/foSrPy8tTTEyMi3EBAGACnhpad0dFRYVKSkrUuXNn1alTR5mZmfZ1OTk5Onz4sBITE13aJxU5AABeMGHCBPXt21dNmjTRqVOntHz5cm3atEnr169XZGSkhg8frtTUVNWrV082m02jR49WYmKiSzPWJRI5AMAkLP/9z53tXXH8+HHdf//9OnbsmCIjI9WhQwetX79evXv3liTNnj1bQUFBGjRokEpKSpScnKz58+e7HBeJHABgCu4Oj7u67aJFi351fUhIiNLT05Wenl79oMQ1cgAAAhoVOQDAFCxuzlp3Z1jem0jkAABTuNRD65cKiRwAYAo1NZFzjRwAgABGRQ4AMIVLffvZpUIiBwCYQpDl7OLO9v6IoXUAAAIYFTkAwBQYWgcAIIAxax0AAPgdKnIAgClY5N7wuJ8W5CRyAIA5MGsdAAD4HSpyXFSH1s115PD3VdqHP/RHvTBnng8iAtwTFGTR0w/fqntuvVbR9W069mOB3li7Q8+9ts7e59Wp9+n3d1znsN2Hn3yl/qNcf180/AOz1r1gy5Ytev7555Wdna1jx45p9erVGjBggC9Dwnls/Hi7ysvL7Z/3ffWFfnv7LRowcJAPowKq7/GhvfXgnd314KQ39NXBY+p8VRO9MuU+FZ7+WfP/ttneb/0nX+oPk/9q/1xS+osvwoWH1NRZ6z5N5EVFRerYsaMeeOABDRw40Jeh4Fdc3qCBw+c5L85UQrPm6ta9h48iAtxzXcdmem/zv7Ru65eSpMPHTuquW7qoy1XxDv1KS39R3olTvggRXmCRexPW/DSP+zaR9+3bV3379vVlCHBRaWmpVq5YpkdGj5HFX/88BS5i++ffavigbmrRpKEOHD6u9ldeocROzfTUi+849OvepaW+z0xTfuEZbdr5jaamv6eTBUU+iho4v4C6Rl5SUqKSkhL758LCQh9GY07vr31XBfn5uve+FF+HAlTbCxkbZAsP0eern1Z5uaFatSyanP6eVnywy95nw7Z9enfj5/ruhxNq1vhyTR3dT+++/Ef1SHlRFRWGD6NHdQXJoiA3CpAgP63JAyqRp6WlaerUqb4Ow9T+uuQvSupzixrFxvo6FKDa7uxzjQb3vVZD/2+Jvjp4TB1aXaHnx92pYz8WaNnaHZKkVeuz7f2/PHBUe/f/oH3vTdWNXVpq06ff+Cp0uKGmDq0H1O1nEyZMUEFBgX05cuSIr0MylcOHv9emjZm6f+hwX4cCuOXZMQP0QsYGrVqfrS8PHNXf3t+pecs2avyw3hfc5rsfTujH/5xS87gGF+wD+EJAVeRWq1VWq9XXYZjW8qWL1aBBQ/Xpe6uvQwHcEhoSrAqjwqGtvMJQUNCFa5srGkapfmSYcn/ikl7AqqEleUAlcvhORUWFlr2xRIPv+71q1+Zrg8D2jy179eTwZB059h99dfCYOrVurEfv66Wla7ZLksJCg/WnP9yqNZl7lPtToZrFXa4Zjw3QwSM/acO2fT6OHtXFfeRecPr0aR04cMD++dChQ9qzZ4/q1aunJk2a+DAynGvTxo/07yOHdd/9w3wdCuC21D+v0uRHbtdL/3e3GtQN17EfC7TorU/07KsfSDpbnbdreYWG9OuqqIhQHfuxQB9lfa1p899TaRn3ksO/WAzD8Nn0y02bNqlXr15V2lNSUrR48eKLbl9YWKjIyEh9n3tSNpvNCxECvtfo+sd8HQLgNUZ5qUr2vqaCggKv/R6vzBWZew4rPKL6xzh9qlA3d2ri1Virw6cVec+ePeXDvyMAACZSQy+RB9asdQAA4IhZSwAAc6ihJTmJHABgCsxaBwAggNXUt59xjRwAgABGRQ4AMIUaeomcRA4AMIkamskZWgcAIICRyAEApmDxwH+uSEtL07XXXquIiAg1bNhQAwYMUE5OjkOf4uJijRw5UvXr11d4eLgGDRqkvLw8l45DIgcAmELlrHV3Flds3rxZI0eO1Pbt27VhwwaVlZWpT58+KioqsvcZO3as1q5dq1WrVmnz5s06evSoBg4c6NJxuEYOAIAXrFu3zuHz4sWL1bBhQ2VnZ+vGG29UQUGBFi1apOXLl+umm26SJGVkZKhNmzbavn27rrvuOqeOQ0UOADAFiwcWdxQUFEiS6tWrJ0nKzs5WWVmZkpKS7H1at26tJk2aKCsry+n9UpEDAMzBQ7PWCwsLHZqtVqusVuuvblpRUaExY8aoW7duateunSQpNzdXwcHBioqKcugbHR2t3Nxcp8OiIgcAwAVxcXGKjIy0L2lpaRfdZuTIkfriiy+0YsUKj8dDRQ4AMAVPPWv9yJEjDu8jv1g1PmrUKL333nvasmWLGjdubG+PiYlRaWmp8vPzHaryvLw8xcTEOB0XFTkAwBQ8NWvdZrM5LBdK5IZhaNSoUVq9erU2btyohIQEh/WdO3dWnTp1lJmZaW/LycnR4cOHlZiY6PR5UZEDAEzhUj/YbeTIkVq+fLneffddRURE2K97R0ZGKjQ0VJGRkRo+fLhSU1NVr1492Ww2jR49WomJiU7PWJdI5AAAeMWCBQskST179nRoz8jI0NChQyVJs2fPVlBQkAYNGqSSkhIlJydr/vz5Lh2HRA4AMIdLXJIbhnHRPiEhIUpPT1d6eno1gyKRAwBMwlOT3fwNk90AAAhgVOQAAFOozvPSz93eH5HIAQCmUENfR87QOgAAgYyKHABgDjW0JCeRAwBMgVnrAADA71CRAwBMgVnrAAAEsBp6iZxEDgAwiRqayblGDgBAAKMiBwCYQk2dtU4iBwCYg5uT3fw0jzO0DgBAIKMiBwCYQg2d60YiBwCYRA3N5AytAwAQwKjIAQCmwKx1AAACWE19RCtD6wAABDAqcgCAKdTQuW4kcgCASdTQTE4iBwCYQk2d7MY1cgAAAhgVOQDAFCxyc9a6xyLxLBI5AMAUauglcobWAQAIZFTkAABTqKkPhCGRAwBMomYOrjO0DgBAAKMiBwCYAkPrAAAEsJo5sM7QOgAAAY2KHABgCjV1aJ2KHABgChYP/OeKLVu2qF+/foqNjZXFYtGaNWsc1huGoUmTJqlRo0YKDQ1VUlKS9u/f7/J5kcgBAOZg8cDigqKiInXs2FHp6ennXT9z5kzNnTtXCxcu1I4dOxQWFqbk5GQVFxe7dByG1gEA8IK+ffuqb9++511nGIbmzJmjp59+Wv3795ckLV26VNHR0VqzZo0GDx7s9HGoyAEApuCpgrywsNBhKSkpcTmWQ4cOKTc3V0lJSfa2yMhIde3aVVlZWS7ti0QOADCFyslu7iySFBcXp8jISPuSlpbmciy5ubmSpOjoaIf26Oho+zpnMbQOAIALjhw5IpvNZv9stVp9GA0VOQDAJDw1a91mszks1UnkMTExkqS8vDyH9ry8PPs6Z5HIAQDmcIlnrf+ahIQExcTEKDMz095WWFioHTt2KDEx0aV9MbQOAIAXnD59WgcOHLB/PnTokPbs2aN69eqpSZMmGjNmjJ555hm1bNlSCQkJmjhxomJjYzVgwACXjkMiBwCYwqV+1vquXbvUq1cv++fU1FRJUkpKihYvXqwnnnhCRUVFeuihh5Sfn68bbrhB69atU0hIiEvHIZEDAEzhUj+itWfPnjIM41f2Z9G0adM0bdq06gclrpEDABDQqMgBACbh+vPSz93eH5HIAQCmwNvPAACA3yGRAwAQwBhaBwCYQk0dWieRAwBMweLmZDf3Jsp5D0PrAAAEMCpyAIApMLQOAEAAu9SPaL1UGFoHACCAUZEDAMyhhpbkJHIAgCkwax0AAPgdKnIAgCkwax0AgABWQy+Rk8gBACZRQzM518gBAAhgVOQAAFOoqbPWSeQAAFNgspsfMgxDknTqVKGPIwG8xygv9XUIgNdUfr8rf597U2Ghe7nC3e29JaAT+alTpyRJ7Vo29W0gAAC3nDp1SpGRkV7Zd3BwsGJiYtQyIc7tfcXExCg4ONgDUXmOxbgUfwZ5SUVFhY4ePaqIiAhZ/HXMo4YpLCxUXFycjhw5IpvN5utwAI/i+33pGYahU6dOKTY2VkFB3pt/XVxcrNJS90e3goODFRIS4oGIPCegK/KgoCA1btzY12GYks1m4xcdaiy+35eWtyrx/xUSEuJ3CdhTuP0MAIAARiIHACCAkcjhEqvVqsmTJ8tqtfo6FMDj+H4jEAX0ZDcAAMyOihwAgABGIgcAIICRyAEACGAkcgAAAhiJHE5LT09X06ZNFRISoq5du+rTTz/1dUiAR2zZskX9+vVTbGysLBaL1qxZ4+uQAKeRyOGUN998U6mpqZo8ebJ2796tjh07Kjk5WcePH/d1aIDbioqK1LFjR6Wnp/s6FMBl3H4Gp3Tt2lXXXnutXn75ZUlnn3MfFxen0aNH66mnnvJxdIDnWCwWrV69WgMGDPB1KIBTqMhxUaWlpcrOzlZSUpK9LSgoSElJScrKyvJhZAAAEjku6qefflJ5ebmio6Md2qOjo5Wbm+ujqAAAEokcAICARiLHRV1++eWqVauW8vLyHNrz8vIUExPjo6gAABKJHE4IDg5W586dlZmZaW+rqKhQZmamEhMTfRgZAKC2rwNAYEhNTVVKSoq6dOmi3/zmN5ozZ46Kioo0bNgwX4cGuO306dM6cOCA/fOhQ4e0Z88e1atXT02aNPFhZMDFcfsZnPbyyy/r+eefV25urjp16qS5c+eqa9euvg4LcNumTZvUq1evKu0pKSlavHjxpQ8IcAGJHACAAMY1cgAAAhiJHACAAEYiBwAggJHIAQAIYCRyAAACGIkcAIAARiIHACCAkcgBNw0dOtTh3dU9e/bUmDFjLnkcmzZtksViUX5+/gX7WCwWrVmzxul9TpkyRZ06dXIrru+++04Wi0V79uxxaz8Azo9Ejhpp6NChslgsslgsCg4OVosWLTRt2jT98ssvXj/2O++8o+nTpzvV15nkCwC/hmeto8a65ZZblJGRoZKSEv3jH//QyJEjVadOHU2YMKFK39LSUgUHB3vkuPXq1fPIfgDAGVTkqLGsVqtiYmIUHx+vP/7xj0pKStLf//53Sf9/OHzGjBmKjY1Vq1atJElHjhzRXXfdpaioKNWrV0/9+/fXd999Z99neXm5UlNTFRUVpfr16+uJJ57QuU85PndovaSkRE8++aTi4uJktVrVokULLVq0SN999539+d5169aVxWLR0KFDJZ19u1xaWpoSEhIUGhqqjh076q233nI4zj/+8Q9deeWVCg0NVa9evRzidNaTTz6pK6+8UpdddpmaNWumiRMnqqysrEq/V155RXFxcbrssst01113qaCgwGH966+/rjZt2igkJEStW7fW/PnzXY4FQPWQyGEaoaGhKi0ttX/OzMxUTk6ONmzYoPfee09lZWVKTk5WRESEPv74Y33yyScKDw/XLbfcYt/uxRdf1OLFi/WXv/xFW7du1cmTJ7V69epfPe7999+vv/3tb5o7d6727dunV155ReHh4YqLi9Pbb78tScrJydGxY8f00ksvSZLS0tK0dOlSLVy4UF9++aXGjh2r++67T5s3b5Z09g+OgQMHql+/ftqzZ49GjBihp556yuWfSUREhBYvXqyvvvpKL730kl577TXNnj3boc+BAwe0cuVKrV27VuvWrdNnn32mRx55xL5+2bJlmjRpkmbMmKF9+/bp2Wef1cSJE7VkyRKX4wFQDQZQA6WkpBj9+/c3DMMwKioqjA0bNhhWq9UYN26cfX10dLRRUlJi3+aNN94wWrVqZVRUVNjbSkpKjNDQUGP9+vWGYRhGo0aNjJkzZ9rXl5WVGY0bN7YfyzAMo0ePHsZjjz1mGIZh5OTkGJKMDRs2nDfOf/7zn4Yk4z//+Y+9rbi42LjsssuMbdu2OfQdPny4cc899xiGYRgTJkww2rZt67D+ySefrLKvc0kyVq9efcH1zz//vNG5c2f758mTJxu1atUy/v3vf9vbPvjgAyMoKMg4duyYYRiG0bx5c2P58uUO+5k+fbqRmJhoGIZhHDp0yJBkfPbZZxc8LoDq4xo5aqz33ntP4eHhKisrU0VFhe69915NmTLFvr59+/YO18U///xzHThwQBEREQ77KS4u1sGDB1VQUKBjx445vLq1du3a6tKlS5Xh9Up79uxRrVq11KNHD6fjPnDggM6cOaPevXs7tJeWlurqq6+WJO3bt6/KK2QTExOdPkalN998U3PnztXBgwd1+vRp/fLLL7LZbA59mjRpoiuuuMLhOBUVFcrJyVFERIQOHjyo4cOH68EHH7T3+eWXXxQZGelyPABcRyJHjdWrVy8tWLBAwcHBio2NVe3ajl/3sLAwh8+nT59W586dtWzZsir7atCgQbViCA0NdXmb06dPS5Lef/99hwQqnb3u7ylZWVkaMmSIpk6dquTkZEVGRmrFihV68cUXXY71tddeq/KHRa1atTwWK4ALI5GjxgoLC1OLFi2c7n/NNdfozTffVMOGDatUpZUaNWqkHTt26MYbb5R0tvLMzs7WNddcc97+7du3V0VFhTZv3qykpKQq6ytHBMrLy+1tbdu2ldVq1eHDhy9Yybdp08Y+ca/S9u3bL36S/2Pbtm2Kj4/Xn/70J3vb999/X6Xf4cOHdfToUcXGxtqPExQUpFatWik6OlqxsbH69ttvNWTIEJeOD8AzmOwG/NeQIUN0+eWXq3///vr444916NAhbdq0SY8++qj+/e9/S5Iee+wxPffcc1qzZo2+/vprPfLII796D3jTpk2VkpKiBx54QGvWrLHvc+XKlZKk+Ph4WSwWvffee/rxxx91+vRpRUREaNy4cRo7dqyWLFmigwcPavfu3Zo3b559AtnDDz+s/fv3a/z48crJydHy5cu1ePFil863ZcuWOnz4sFasWKGDBw9q7ty55524FxISopSUFH3++ef6+OOP9eijj+quu+5STEyMJGnq1KlKS0vT3Llz9c0332jv3r3KyMjQrFmzXIoHQPWQyIH/uuyyy7RlyxY1adJEAwcOVJs2bTR8+HAVFxfbK/THH39cv//975WSkqLExERFRETot7/97a/ud8GCBbrzzjv1yCOPqHXr1nrwwQdVVFQkSbriiis0depUPfXUU4qOjtaoUaMkSdOnT9fEiROVlpamNm3a6JZbbtH777+vhIQESWevW7/99ttas2aNOnbsqIULF+rZZ5916XzvuOMOjR07VqNGjVKnTp20bds2TZw4sUq/Fi1aaODAgbr11lvVp08fdejQweH2shEjRuj1119XRkaG2rdvrx49emjx4sX2WAF4l8W40CwdAADg96jIAQAIYCRyAAACGIkcAIAARiIHACCAkcgBAAhgJHIAAAIYiRwAgABGIgcAIICRyAEACGAkcgAAAhiJHACAAEYiBwAggP0/vvBBDd6kui0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "accuracy = accuracy_score(test_y, test_y_)\n", + "precision = precision_score(test_y, test_y_)\n", + "recall = recall_score(test_y, test_y_)\n", + "\n", + "print(f\"\\nAccuracy: {accuracy:.2f}\")\n", + "print(f\"Precision: {precision:.2f}\")\n", + "print(f\"Recall: {recall:.2f}\")\n", + "\n", + "# Classification report and confusion matrix\n", + "print(\"\\nNaive Bayes Classification Report:\")\n", + "print(classification_report(test_y, test_y_))\n", + "\n", + "print(\"\\nNaive Bayes Confusion Matrix:\")\n", + "print(confusion_matrix(test_y, test_y_))\n", + "\n", + "# Plot Confusion Matrix\n", + "skplt.metrics.plot_confusion_matrix(test_y, test_y_)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}