Skip to content

Latest commit

 

History

History
230 lines (191 loc) · 10.5 KB

CHANGELOG.md

File metadata and controls

230 lines (191 loc) · 10.5 KB

v3.6.20181017

  • Feature parity with ArrayFire v3.6. Refer to the release notes for more information regarding upstream library improvements in v3.6.
    • anisotropic_diffusion(): Anisotropic diffusion filter.
    • topk(): Returns top-K elements given an array.
  • Bug fixes:
    • Fixed sift() and gloh(), which were improperly calling the library.
  • Enhancements:
    • Added len() method, which returns array.elements().
  • Documentation:
    • Documented statistics API.
    • Corrected sign() documentation.
    • Modified helloworld example to match C++ lib.

v3.5.20170721

  • Bug fixes when using v3.5 of arrayfire libs + graphics

v3.5.20170721

  • Bug fixes for canny edge detection

v3.5.20170718

  • Feature parity with ArrayFire 3.5.

    • canny: Canny Edge detector
    • Array.scalar: Return the first element of the array
    • dot: Now support option to return scalar
    • print_mem_info: Prints memory being used / locked by arrayfire memory manager.
    • Array.allocated: Returs the amount of memory allocated for the given buffer.
    • set_fft_plan_cache_size: Sets the size of the fft plan cache.
  • Bug Fixes:

    • sort_by_key had key and value flipped in documentation.
  • Improvements and bugfixes from upstream include:

    • CUDA backend uses nvrtc instead of nvvm
    • Performance improvements to arrayfire.reorder
    • Faster unified backend
    • You can find more information at arrayfire's release notes

v3.4.20170222

  • Bugfix: Fixes typo in approx1.
  • Bugfix: Fixes typo in hamming_matcher and nearest_neighbour.
  • Bugfix: Added necessary copy and lock mechanisms in interop.py.
  • Example / Benchmark: New conjugate gradient benchmark.
  • Feature: Added support to create arrayfire arrays from numba.
  • Behavior change: af.print() only prints full arrays for smaller sizes.

v3.4.20161126

  • Fixing memory leak in array creation.
  • Supporting 16 bit integer types in interop.

v3.4.20160925

  • Feature parity with ArrayFire 3.4 libs

  • Bug fixes

    • ArrayFire now has higher priority when numpy for mixed operations. 1 2
    • Numpy interoperability issues on Widnows. 1
    • Switch to a working backend by default. 1
    • Fixed incorrect behavior for Hermitian transpose and QR. 1
    • array[0:0] now returns empty arrays. 1
  • Further Improvements from upstream can be read in the arrayfire release notes.

v3.3.20160624

  • Adding 16 bit integer support
  • Adding support for sphinx documentation

v3.3.20160516

  • Bugfix: Increase arrayfire's priority over numpy for mixed operations

  • Added new library functions

    • get_backend returns backend name

v3.3.20160510

  • Bugfix to af.histogram

  • Added missing functions / methods

    • gaussian_kernel
  • Added new array properties

    • Array.T now returns transpose
    • Array.H now returns hermitian transpose
    • Array.shape now allows easier access individual dimensions

v3.3.20160427

  • Fixes to numpy interop on Windows
  • Fixes issues with occasional double free
  • Fixes to graphics examples

v3.3.20160328

  • Fixes to make arrayfire-python to work on 32 bit systems

v3.3.20160320

  • Feature parity with Arrayfire 3.3 libs

    • Functions to interact with arryafire's internal data structures.
      • Array.offset
      • Array.strides
      • Array.is_owner
      • Array.is_linear
      • Array.raw_ptr
    • Array constructor now takes offset and strides as optional parameters.
    • New visualization functions: scatter and scatter3
    • OpenCL backend specific functions:
      • get_device_type
      • get_platform
      • add_device_context
      • delete_device_context
      • set_device_context
    • Functions to allocate and free memory on host and device
      • alloc_host and free_host
      • alloc_pinned and free_pinned
      • alloc_device and free_device
    • Function to query which device and backend an array was created on
      • get_device_id
      • get_backend_id
    • Miscellaneous functions
      • is_lapack_available
      • is_image_io_available
  • Interopability

    • Transfer PyCUDA GPUArrays using af.pycuda_to_af_array
    • Transfer PyOpenCL Arrays using af.pyopencl_to_af_array
    • New helper function af.to_array added to convert a different array to arrayfire Array.
      • This function can be used in place of af.xyz_to_af_array functions mentioned above.
  • Deprecated functions list

    • lock_device_ptr is deprecated. Use lock_array instead.
    • unlock_device_ptr is deprecated. Use unlock_array instead.
  • Bug Fixes:

v3.2.20151224

  • Bug fixes:

    • A default AF_PATH is set if none is found as an environment variable.
  • Examples:

    • Heston model example uses a smaller data set to help run on low end GPUs.

v3.2.20151214

  • Bug fixes:

    • get_version() now returns ints instead of c_int
    • Fixed bug in tests/simple/device.py
  • The module now looks at additional paths when loading ArrayFire libraries.

    • Link to the wiki is provided when ctypes.cdll.LoadLibrary fails.
  • New function:

    • info_str() returns information similar to info() as a string.
  • Updated README.md with latest instructions

v3.2.20151211

  • Feature parity with ArrayFire 3.2 libs

    • New computer vision functions: sift, gloh, homography
    • New graphics functions: plot3, surface
    • Functions to load and save native images: load_image_native, save_image_native
    • Use unified backend when possible
  • Added missing functions

    • eval, init, convolve2_separable, as_type method
    • cuda backend specific functions
    • opencl backend specific functions
    • timeit function to benchmark arrayfire functions
  • Added new examples

    • getting_started: intro, convolve
    • benchmarks: bench_blas, bench_fft
    • financial: monte_carlo_options, black_scholes, heston_model
    • graphics: fractal, histogram, plot3d, conway, surface
  • Bug fixes

    • Fixed bug when array types were being reported incorrectly
    • Fixed various bugs in graphics functions

v3.1.20151111

  • Feature parity with ArrayFire 3.1 libs
  • Ability to interop with other python libs
  • Ability to extract raw device pointers
  • Load and Save arrays from disk
  • Improved __repr__ support

v3.0.20150914

  • Feature parity with ArrayFire 3.0 libs
  • Ability to switch all backends
  • Supports both python2 and python3