Skip to content

arielthomas1/SHEMAT-Suite-Open

Repository files navigation

Open-source SHEMAT-Suite

SHEMAT-Suite (Simulator for HEat and MAss Transport) is a numerical code for computing flow, heat and species transport equations in porous media. The governing equations of the code are the groundwater flow equation, the heat transport equation and the species transport equation.

SHEMAT-Suite includes parameter estimation and data assimilation approaches, both stochastic (Monte Carlo, ensemble Kalman filter) and deterministic (Bayesian inversion using automatic differentiation for calculating derivatives).

SHEMAT-Suite is written in Fortran-95.

SHEMAT-Suite uses finite-difference discretization on a Cartesian grid with x, y, z coordinates and block centered nodes. The system of equations can be solved explicitly, implicitly or semi-implicitly.

More detailed information on the equations

Installation

Guide to installing SHEMAT-Suite: Installation

Tutorial

If you want to run SHEMAT-Suite for the first time you should check the SHEMAT-Suite Tutorial.

For Developers

Fortran-95 styleguide for SHEMAT-Suite.

Doxygen documentation.

Most visited Wiki-pages

Input File

Compilation

Equations and Discretization

SHEMAT-Suite Wiki topics

Outline of the directories in branch master

Important code developments of SHEMAT-Suite

Table: Important code developments of SHEMAT-Suite.

  • ($^{\mathrm{x}}$) Functionalities not available in the open-source package.
  • (*) Simplified functionality available in the open-source package.
  • (**) SHEMAT-Suite functionality available open-source, additional software required.\
Newly implemented functionality Key Reference
Inverse parameter estimation based on automatic differentiation Rath et al., 2006
Latent heat effects due to freezing and melting Mottaghy and Rath, 2006
Monte Carlo techniques for uncertainty quantification and reduction Vogt et al., 2010
Borehole heat exchanger module(*) Mottaghy and Dijkshoorn, 2012
Shared-memory parallelization Wolf, 2011
Data assimilation based on the ensemble Kalman Filter Vogt et al., 2012
Multi-phase flow module using automatic differentiation ($^{\mathrm{x}}$) Büsing et al., 2014
Distributed-memory parallelization ($^{\mathrm{x}}$) Rostami and Bücker, 2014
Heat transfer model for plane thermo-active geotechnical systems($^{\mathrm{x}}$) Kürten et al., 2014
Anisotropic flow module using the full permeability tensor ($^{\mathrm{x}}$) Chen et al., 2016
Supercritical water/steam module using automatic differentiation ($^{\mathrm{x}}$) Büsing et al., 2017
Optimal borehole positioning with respect to reservoir characterization via optimal experimental design (**) Seidler et al., 2016
Halite precipitation model in porous sedimentary rock adjacent to salt diapirs($^{\mathrm{x}}$) Li et al., 2017
Efficient two-phase flow in heterogeneous porous media using exact Jacobians ($^{\mathrm{x}}$) Büsing, 2020
  1. Rath, V., Wolf, A., & Bücker, H. M., Joint three-dimensional inversion of coupled groundwater flow and heat transfer based on automatic differentiation: sensitivity calculation, verification, and synthetic examples, Geophysical Journal International, 167(1), 453–466 (2006). http://dx.doi.org/10.1111/j.1365-246x.2006.03074.x
  2. Mottaghy, D., & Rath, V., Latent heat effects in subsurface heat transport modelling and their impact on palaeotemperature reconstructions, Geophysical Journal International, 164(1), 236–245 (2006). http://dx.doi.org/10.1111/j.1365-246x.2005.02843.x
  3. Vogt, C., Mottaghy, D., Wolf, A., Rath, V., Pechnig, R., & Clauser, C., Reducing temperature uncertainties by stochastic geothermal reservoir modelling, Geophysical Journal International, 181(1), 321–333 (2010). http://dx.doi.org/10.1111/j.1365-246x.2009.04498.x
  4. Mottaghy, D., & Dijkshoorn, L., Implementing an effective finite difference formulation for borehole heat exchangers into a heat and mass transport code, Renewable Energy, 45(), 59–71 (2012). http://dx.doi.org/10.1016/j.renene.2012.02.013
  5. Wolf, A., Ein softwarekonzept zur hierarchischen parallelisierung von stochastischen und deterministischen inversionsproblemen auf modernen ccnuma-plattformen unter nutzung automatischer programmtransformation. (Doctoral dissertation) (2011). RWTH Aachen University.
  6. Vogt, C., Marquart, G., Kosack, C., Wolf, A., & Clauser, C., Estimating the permeability distribution and its uncertainty at the egs demonstration reservoir soultz-sous-forêts using the ensemble Kalman filter, Water Resources Research, 48(8), (2012). http://dx.doi.org/10.1029/2011wr011673
  7. Büsing, H., Willkomm, J., Bischof, C. H., & Clauser, C., Using exact jacobians in an implicit newton method for solving multiphase flow in porous media, International Journal of Computational Science and Engineering, 9(5/6), 499 (2014). http://dx.doi.org/10.1504/ijcse.2014.064535
  8. Rostami, M. A., & H. M. Bücker, Preservation of non-uniform memory architecture characteristics when going from a nested OpenMP to a hybrid MPI/OpenMP approach, In M. S. Obaidat, J. Kacprzyk, & T. Ören, SIMULTECH 2014, Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, Vienna, Austria, August~28--30, 2014 (pp. 286–291) (2014). : SciTePress.
  9. Kürten, S., Mottaghy, D., & Ziegler, M., A new model for the description of the heat transfer for plane thermo-active geotechnical systems based on thermal resistances, Acta Geotechnica, 10(2), 219–229 (2014). http://dx.doi.org/10.1007/s11440-014-0311-6
  10. Chen, T., Clauser, C., Marquart, G., Willbrand, K., & Büsing, H., Modeling anisotropic flow and heat transport by using mimetic finite differences, Advances in Water Resources, 94(), 441–456 (2016). http://dx.doi.org/10.1016/j.advwatres.2016.06.006
  11. Büsing, H., Vogt, C., Ebigbo, A., & Klitzsch, N., Numerical study on co2leakage detection using electrical streaming potential data, Water Resources Research, 53(1), 455–469 (2017). http://dx.doi.org/10.1002/2016wr019803
  12. Seidler, R., Padalkina, K., Bücker, H. M., Ebigbo, A., Herty, M., Marquart, G., & Niederau, J., Optimal experimental design for reservoir property estimates in geothermal exploration, Computational Geosciences, 20(2), 375–383 (2016). http://dx.doi.org/10.1007/s10596-016-9565-4
  13. Li, S., Reuning, L., Marquart, G., Wang, Y., & Zhao, P., Numerical model of halite precipitation in porous sedimentary rocks adjacent to salt diapirs, Journal of Geophysics and Engineering, 14(5), 1160–1166 (2017). http://dx.doi.org/10.1088/1742-2140/aa73f9
  14. H. Büsing, Efficient solution techniques for two-phase flow in heterogeneous porous media using exact Jacobians, Computational Geosciences, In Review (2020).