First, set up the project and download and preprocess the ogbl-biokg
data set
as showed in README.md.
The section Training the Models below lists the commands that trains ComplEx,
ComplEx2 and ComplEx2 with domain constraints that are used in this experiments
Then, running the script shell/eval_consistency.sh
will print out the semantic consistency scores at k (Sem@k)
(see our paper).
Note that you need to specify the directory containing the models and the device, as showed in the following example.
MODELS_PATH=path/to/saved/models DEVICE=cuda:0 bash shell/eval_consistency.sh
Furthermore, to plot the line graph showing how the test Mean Reciprocal Rank (MRR) changes by increasing
the embedding size, run the script shell/eval_rank
, as showed in the following example.
MODELS_PATH=path/to/saved/models DEVICE=cuda:0 bash shell/eval_rank.sh
python -m kbc.experiment --experiment_id PLL --dataset ogbl-biokg --model ComplEx --rank 10 --optimizer Adam --batch_size 5000 --learning_rate 0.001 --score_lhs True --score_rel True --score_rhs True
python -m kbc.experiment --experiment_id PLL --dataset ogbl-biokg --model ComplEx --rank 50 --optimizer Adam --batch_size 5000 --learning_rate 0.001 --score_lhs True --score_rel True --score_rhs True
python -m kbc.experiment --experiment_id PLL --dataset ogbl-biokg --model ComplEx --rank 200 --optimizer Adam --batch_size 5000 --learning_rate 0.001 --score_lhs True --score_rel True --score_rhs True
python -m kbc.experiment --experiment_id PLL --dataset ogbl-biokg --model ComplEx --rank 1000 --optimizer Adam --batch_size 5000 --learning_rate 0.001 --score_lhs True --score_rel True --score_rhs True
python -m kbc.experiment --experiment_id PLL --dataset ogbl-biokg --model SquaredComplEx --rank 10 --optimizer Adam --batch_size 1000 --learning_rate 0.001 --score_lhs True --score_rel True --score_rhs True
python -m kbc.experiment --experiment_id PLL --dataset ogbl-biokg --model SquaredComplEx --rank 50 --optimizer Adam --batch_size 2000 --learning_rate 0.001 --score_lhs True --score_rel True --score_rhs True
python -m kbc.experiment --experiment_id PLL --dataset ogbl-biokg --model SquaredComplEx --rank 200 --optimizer Adam --batch_size 5000 --learning_rate 0.001 --score_lhs True --score_rel True --score_rhs True
python -m kbc.experiment --experiment_id PLL --dataset ogbl-biokg --model SquaredComplEx --rank 1000 --optimizer Adam --batch_size 5000 --learning_rate 0.001 --score_lhs True --score_rel True --score_rhs True
python -m kbc.experiment --experiment_id PLL --dataset ogbl-biokg --model TypedSquaredComplEx --rank 10 --optimizer Adam --batch_size 5000 --learning_rate 0.001 --score_lhs True --score_rel True --score_rhs True
python -m kbc.experiment --experiment_id PLL --dataset ogbl-biokg --model TypedSquaredComplEx --rank 50 --optimizer Adam --batch_size 2000 --learning_rate 0.001 --score_lhs True --score_rel True --score_rhs True
python -m kbc.experiment --experiment_id PLL --dataset ogbl-biokg --model TypedSquaredComplEx --rank 200 --optimizer Adam --batch_size 2000 --learning_rate 0.001 --score_lhs True --score_rel True --score_rhs True
python -m kbc.experiment --experiment_id PLL --dataset ogbl-biokg --model TypedSquaredComplEx --rank 1000 --optimizer Adam --batch_size 2000 --learning_rate 0.001 --score_lhs True --score_rel True --score_rhs True