From 9ca947c4d94bace5690f415abacfc8f0711fede2 Mon Sep 17 00:00:00 2001 From: dcslin <13751447+dcslin@users.noreply.github.com> Date: Tue, 21 Apr 2020 13:54:27 +0000 Subject: [PATCH] alexnet exmaple --- examples/cnn/model/alexnet.py | 103 ++++++++++++++++++++++++++++++++++ examples/cnn/train.py | 6 +- 2 files changed, 108 insertions(+), 1 deletion(-) create mode 100644 examples/cnn/model/alexnet.py diff --git a/examples/cnn/model/alexnet.py b/examples/cnn/model/alexnet.py new file mode 100644 index 0000000000..e13f525cc6 --- /dev/null +++ b/examples/cnn/model/alexnet.py @@ -0,0 +1,103 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. +# + +from singa import autograd +from singa import module + + +class AlexNet(module.Module): + + def __init__(self, num_classes=10, num_channels=1): + super(AlexNet, self).__init__() + self.num_classes = num_classes + self.input_size = 224 + self.dimension = 4 + self.conv1 = autograd.Conv2d(num_channels, 64, 11, stride=4, padding=2) + self.conv2 = autograd.Conv2d(64, 192, 5, padding=2) + self.conv3 = autograd.Conv2d(192, 384, 3, padding=1) + self.conv4 = autograd.Conv2d(384, 256, 3, padding=1) + self.conv5 = autograd.Conv2d(256, 256, 3, padding=1) + self.linear1 = autograd.Linear(1024, 4096) + self.linear2 = autograd.Linear(4096, 4096) + self.linear3 = autograd.Linear(4096, num_classes) + self.pooling1 = autograd.MaxPool2d(2, 2, padding=0) + self.pooling2 = autograd.MaxPool2d(2, 2, padding=0) + self.pooling3 = autograd.MaxPool2d(2, 2, padding=0) + self.avg_pooling1 = autograd.AvgPool2d(3, 2, padding=0) + + def forward(self, x): + y = self.conv1(x) + y = autograd.relu(y) + y = self.pooling1(y) + y = self.conv2(y) + y = autograd.relu(y) + y = self.pooling2(y) + y = self.conv3(y) + y = autograd.relu(y) + y = self.conv4(y) + y = autograd.relu(y) + y = self.conv5(y) + y = autograd.relu(y) + y = self.pooling3(y) + y = self.avg_pooling1(y) + y = autograd.flatten(y) + y = autograd.dropout(y) + y = self.linear1(y) + y = autograd.relu(y) + y = autograd.dropout(y) + y = self.linear2(y) + y = autograd.relu(y) + y = self.linear3(y) + return y + + def loss(self, out, ty): + return autograd.softmax_cross_entropy(out, ty) + + def optim(self, loss, dist_option, spars): + if dist_option == 'fp32': + self.optimizer.backward_and_update(loss) + elif dist_option == 'fp16': + self.optimizer.backward_and_update_half(loss) + elif dist_option == 'partialUpdate': + self.optimizer.backward_and_partial_update(loss) + elif dist_option == 'sparseTopK': + self.optimizer.backward_and_sparse_update(loss, + topK=True, + spars=spars) + elif dist_option == 'sparseThreshold': + self.optimizer.backward_and_sparse_update(loss, + topK=False, + spars=spars) + + def set_optimizer(self, optimizer): + self.optimizer = optimizer + + +def create_model(pretrained=False, **kwargs): + """Constructs a AlexNet model. + + Args: + pretrained (bool): If True, returns a model pre-trained + """ + model = AlexNet(**kwargs) + + return model + + +__all__ = ['AlexNet', 'create_model'] diff --git a/examples/cnn/train.py b/examples/cnn/train.py index 9f7d0afbe3..9f75b12419 100644 --- a/examples/cnn/train.py +++ b/examples/cnn/train.py @@ -133,6 +133,10 @@ def run(global_rank, from model import cnn model = cnn.create_model(num_channels=num_channels, num_classes=num_classes) + elif model == 'alexnet': + from model import alexnet + model = alexnet.create_model(num_channels=num_channels, + num_classes=num_classes) elif model == 'mlp': import os, sys, inspect current = os.path.dirname( @@ -258,7 +262,7 @@ def run(global_rank, parser = argparse.ArgumentParser( description='Training using the autograd and graph.') parser.add_argument('model', - choices=['resnet', 'xceptionnet', 'cnn', 'mlp'], + choices=['resnet', 'xceptionnet', 'cnn', 'mlp', 'alexnet'], default='cnn') parser.add_argument('data', choices=['cifar10', 'cifar100', 'mnist'],