-
Notifications
You must be signed in to change notification settings - Fork 2
/
1st run.html
1009 lines (1009 loc) · 105 KB
/
1st run.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN" "http://www.w3.org/TR/REC-html40/strict.dtd">
<html><head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="qrichtext" content="1" /><style type="text/css">
p, li { white-space: pre-wrap; }
</style></head><body style=" font-family:'DejaVu Sans Mono'; font-size:9pt; font-weight:400; font-style:normal;">
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Python 3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 18:10:19)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Type "copyright", "credits" or "license" for more information.</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">IPython 6.2.1 -- An enhanced Interactive Python.</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br />Restarting kernel... </p>
<hr />
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /> </p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">1</span><span style=" color:#000080;">]:</span> from keras.models import Sequential</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> from keras.layers import Conv2D</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> from keras.layers import MaxPooling2D</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> from keras.layers import Flatten</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> from keras.layers import Dense</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> from keras.layers import Dropout</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> from keras.optimizers import Adam,RMSprop,SGD</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> from keras.applications.vgg16 import VGG16</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> from keras.applications.inception_resnet_v2 import InceptionResNetV2</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> import matplotlib.pylab as plt</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> from keras.preprocessing.image import ImageDataGenerator</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> from keras.callbacks import TensorBoard, LearningRateScheduler, ReduceLROnPlateau</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> #import tensorflow </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> #summary_writer = tensorflow.train.SummaryWriter('/logdir', sess.graph_def)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> tb_callbacks = TensorBoard(log_dir='/logdir', histogram_freq=0, write_graph=True, write_images=True)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> # Using pre-trained model</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> conv_base = VGG16(include_top = False, weights = 'pretrainedModels/vgg16-places365_weights_tf_dim_ordering_tf_kernels_notop.h5', input_shape = (200,200,3))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> #conv_base = InceptionResNetV2(include_top = False, weights = '/home/vanish/prgs/MLandDL/MITTest/Models/inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5', input_shape = (200,200,3))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> conv_base.summary()</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> # build on top of imported model</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> model = Sequential()</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> model.add(conv_base)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> model.add(Flatten())</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> model.add(Dense(512, activation='relu'))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> model.add(Dense(256, activation='relu'))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> model.add(Dense(63, activation='softmax'))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=1e-5)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> #model.compile(SGD(lr=0.01, momentum=0.9, decay=0.0, nesterov=True), loss = 'categorical_crossentropy', metrics = ['accuracy'])</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> model.compile(Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=True), loss = 'categorical_crossentropy', metrics = ['accuracy'])</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> model.summary()</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Using TensorFlow backend.</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Layer (type) Output Shape Param # </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">=================================================================</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">input_1 (InputLayer) (None, 200, 200, 3) 0 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block1_conv1 (Conv2D) (None, 200, 200, 64) 1792 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block1_conv2 (Conv2D) (None, 200, 200, 64) 36928 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block1_pool (MaxPooling2D) (None, 100, 100, 64) 0 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block2_conv1 (Conv2D) (None, 100, 100, 128) 73856 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block2_conv2 (Conv2D) (None, 100, 100, 128) 147584 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block2_pool (MaxPooling2D) (None, 50, 50, 128) 0 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block3_conv1 (Conv2D) (None, 50, 50, 256) 295168 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block3_conv2 (Conv2D) (None, 50, 50, 256) 590080 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block3_conv3 (Conv2D) (None, 50, 50, 256) 590080 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block3_pool (MaxPooling2D) (None, 25, 25, 256) 0 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block4_conv1 (Conv2D) (None, 25, 25, 512) 1180160 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block4_conv2 (Conv2D) (None, 25, 25, 512) 2359808 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block4_conv3 (Conv2D) (None, 25, 25, 512) 2359808 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block4_pool (MaxPooling2D) (None, 12, 12, 512) 0 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block5_conv1 (Conv2D) (None, 12, 12, 512) 2359808 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block5_conv2 (Conv2D) (None, 12, 12, 512) 2359808 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block5_conv3 (Conv2D) (None, 12, 12, 512) 2359808 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">block5_pool (MaxPooling2D) (None, 6, 6, 512) 0 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">=================================================================</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Total params: 14,714,688</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Trainable params: 14,714,688</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Non-trainable params: 0</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Layer (type) Output Shape Param # </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">=================================================================</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">vgg16 (Model) (None, 6, 6, 512) 14714688 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">flatten_1 (Flatten) (None, 18432) 0 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">dense_1 (Dense) (None, 512) 9437696 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">dense_2 (Dense) (None, 256) 131328 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">dense_3 (Dense) (None, 63) 16191 </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">=================================================================</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Total params: 24,299,903</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Trainable params: 24,299,903</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Non-trainable params: 0</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">_________________________________________________________________</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">2</span><span style=" color:#000080;">]:</span> train_data_dir = 'Dataset/trainingset/'</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> img_width = 200</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> img_height = 200</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> batch_size = 8</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> nb_epochs = 10</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> train_datagen = ImageDataGenerator(rescale=1./255,</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> shear_range=0.2,</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> zoom_range=0.2,</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> horizontal_flip=True,</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> validation_split=0.1) # set validation split</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> train_generator = train_datagen.flow_from_directory(</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> train_data_dir,</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> target_size=(img_width, img_height),</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> batch_size=batch_size,</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> class_mode='categorical',</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> subset='training') # set as training data</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> validation_generator = train_datagen.flow_from_directory(</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> train_data_dir, # same directory as training data</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> target_size=(img_width, img_height),</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> batch_size=batch_size,</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> class_mode='categorical',</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> subset='validation') # set as validation data</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> # Start training</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> history = model.fit_generator(</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> train_generator,</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> steps_per_epoch = train_generator.samples // batch_size,</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> validation_data = validation_generator, </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> validation_steps = validation_generator.samples // batch_size,</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> epochs = nb_epochs)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Found 12289 images belonging to 63 classes.</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Found 1335 images belonging to 63 classes.</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Epoch 1/10</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">1536/1536 [==============================] - 1301s 847ms/step - loss: 3.1881 - acc: 0.2139 - val_loss: 2.5695 - val_acc: 0.3200</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Epoch 2/10</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">1536/1536 [==============================] - 1288s 839ms/step - loss: 2.1415 - acc: 0.4254 - val_loss: 1.7872 - val_acc: 0.5162</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Epoch 3/10</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">1536/1536 [==============================] - 1283s 835ms/step - loss: 1.5946 - acc: 0.5474 - val_loss: 1.7481 - val_acc: 0.5177</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Epoch 4/10</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">1536/1536 [==============================] - 1283s 835ms/step - loss: 1.2466 - acc: 0.6453 - val_loss: 1.4556 - val_acc: 0.5855</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Epoch 5/10</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">1536/1536 [==============================] - 1290s 840ms/step - loss: 0.9939 - acc: 0.7068 - val_loss: 1.2988 - val_acc: 0.6134</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Epoch 6/10</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">1536/1536 [==============================] - 1280s 834ms/step - loss: 0.7816 - acc: 0.7623 - val_loss: 1.3836 - val_acc: 0.6240</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Epoch 7/10</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">1536/1536 [==============================] - 1275s 830ms/step - loss: 0.6419 - acc: 0.8000 - val_loss: 1.3609 - val_acc: 0.6503</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Epoch 8/10</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">1536/1536 [==============================] - 1283s 835ms/step - loss: 0.5144 - acc: 0.8428 - val_loss: 1.3521 - val_acc: 0.6699</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Epoch 9/10</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">1536/1536 [==============================] - 1283s 835ms/step - loss: 0.4233 - acc: 0.8701 - val_loss: 1.3656 - val_acc: 0.6511</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Epoch 10/10</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">1536/1536 [==============================] - 1285s 837ms/step - loss: 0.3485 - acc: 0.8890 - val_loss: 1.4837 - val_acc: 0.6639</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">3</span><span style=" color:#000080;">]:</span> model.save('vgg16_63class_89acc_66valacc.h5')</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">4</span><span style=" color:#000080;">]:</span> dict = train_generator.class_indices</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> # Graphs</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> print(history.history.keys())</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> acc = history.history['acc']</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> val_acc = history.history['val_acc']</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> loss = history.history['loss']</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> val_loss = history.history['val_loss']</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> epochs = range(1, len(acc) + 1)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> plt.title('Training and validation accuracy')</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> plt.plot(epochs, acc, 'red', label='Training acc')</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> plt.plot(epochs, val_acc, 'blue', label='Validation acc')</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> plt.legend()</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> plt.figure()</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> plt.title('Training and validation loss')</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> plt.plot(epochs, loss, 'red', label='Training loss')</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> plt.plot(epochs, val_loss, 'blue', label='Validation loss')</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> plt.legend()</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> plt.show()</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">dict_keys(['val_loss', 'val_acc', 'loss', 'acc'])</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><img src="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAACXBIWXMAAAsS
AAALEgHS3X78AAAAO3pUWHRTb2Z0d2FyZQAACJnLTSwpyMkvyclMUihLLSrO
zM9TMNIz0jPWUcgoKSmw0tfPhSvQyy9K1wcApzcQ854efX0AACAASURBVHic
7d15WFTVGwfwL7K4y44ogyKiyCKiDuKCW25pOqGS4r6kmFFaVqZmRLlm7mIm
alqpUKkJLlCg5VZK4+4PF1QwBpAAdwGR4fz+ODEwMjgwDNyZ4f08Dw/MzJl7
Xy7yejj3nPcYMcYYCCGEGJQ6QgdACCFE+yi5E0KIAaLkTgghBoiSOyGEGCBK
7oQQYoAouRNCiAGi5G7A5HI5GjVqhH/++UerbYV08+ZNGBkZaf248fHxcHJy
Ujx2dXXFiRMnKtS2sqZNm4alS5dq/H5CKsJE6ABIiUaNGim+zs3NRd26dWFs
bAwA2Lx5M8aNG1ep4xkbG+PJkydab1sbXL9+XSvH2bp1K3bu3Ik//vhD6TlC
qhsldx1SOrk6OTlh69at6N+/f7ntCwsLYWJCP0KiG+jfo26hYRk9snDhQowe
PRpjxoxB48aNsXPnTvz111/o2rUrLCws0KxZM8yaNQvPnz8HwH/ZjIyMkJKS
AgAYP348Zs2ahcGDB6Nx48bo1q0bkpOTK90WAGJiYtC2bVuYm5vj3XffRY8e
PbBjxw6VcVckxs2bN8PFxQWWlpaYNWuW4r1yuRzvv/8+rK2t0bp1a8TGxpZ7
fRYvXozAwECl54KDgzFnzhwAvMfs5uaGxo0bo3Xr1i/tQYtEIkVvOzc3FxMm
TIClpSU8PDxw9uzZMud1dnZG48aN4eHhgejoaADA5cuX8c477+DEiRNo1KgR
bGxsFNc2NDRU8f5vvvkGLi4usLa2hr+/PzIyMip0bSpznYvj6d+/P6ysrGBv
b48VK1YozrNo0SK0bt0aTZo0gVgsRnp6usohMD8/P8XPeevWrejVqxdmzZoF
KysrLF68GElJSejbty+sra1hY2ODCRMm4OHDh4r337lzB/7+/rC1tYWNjQ1m
z56N/Px8WFhY4OrVq4p2GRkZaNCgAXJycsr9fokajOikli1bsri4OKXnPvnk
E2Zqasqio6OZXC5nubm5LCEhgZ0+fZo9f/6c3bp1i7Vp04Zt2LCBMcbY8+fP
GQCWnJzMGGNs3LhxzNramv3999+soKCAjRo1io0bN67SbTMzM1mjRo3Y/v37
WUFBAVu1ahUzMTFh27dvV/m9VCRGiUTCHjx4wJKTk5mlpaXie9+wYQNzd3dn
qampLDs7m/Xs2ZOV98/21q1brGHDhuzJkyeKY9va2rK///6bMcZYdHQ0u3Xr
FisqKmJHjhxh9erVYxcvXmSMMRYXF8datmypOJaDgwP7/fffGWOMffDBB6x3
797s3r17LCUlhbm5uSm1/fHHH1l6ejqTy+Vs165drGHDhuzu3buMMca2bNnC
evfurRTnuHHj2GeffcYYY+zXX39ltra27Pz58ywvL4/NnDmT9e3bt0LXpjLX
+cGDB8zOzo6tXbuW5efns4cPH7IzZ84wxhhbunQp8/LyYjdu3GByuZydP3+e
5eTksKSkpDLXukePHoqf85YtW5ixsTH7+uuvWWFhIcvNzWXXr19n8fHx7Nmz
ZywzM5N1796dffDBB4rvx8PDg33wwQfsyZMnLDc3l508eZIxxtj06dPZggUL
FOdZuXIl8/f3V/l9koqh5K6jykvuxb/45fnqq69YQEAAY0x1wp4xY4aibVRU
FPPw8Kh0223btjE/Pz/Fa0VFRcze3r7c5F6RGP/66y/F68OHD2dfffUVY4yx
nj17si1btiheO3ToULnJnTHGfH192a5duxhjjB0+fJi1adOm3LavvfYaCwsL
Y4y9PLk7Ojoq/Sw2btyo1PZFHh4e7ODBg4wx9cl94sSJbP78+YrXHj58yOrU
qcNSU1PVXht1Sl/n77//nnXu3FllO2dnZ0W8pVUkubdq1eqlMfz8889MLBYz
xhg7fvw4a9q0KSssLCzT7uTJk8zJyYkVFRUxxhjr0KED27t378u/QfJSNCyj
ZxwdHZUeX7t2Da+99hrs7e3RpEkThISEIDs7u9z329vbK75u0KDBS2+iltc2
PT1dKQ4jIyOIRKJyj1ORGCt6rpYtW5Z7HgAYO3YsIiIiAAC7d+9Wugl98OBB
+Pr6wsrKChYWFvjtt99eeq2KZWRkvDSGHTt2oEOHDrCwsICFhQWuXbtWoeMW
f3+lj9ekSRNYWloiLS1N8VxFf2Yvu86pqalwcXFR+b7U1FS0bt26QvG+6MV/
j3fv3sWoUaPg4OCAJk2aYPLkyUoxODk5KSYJlNajRw+YmJjg5MmTuHLlCv75
5x+89tprGsVEOErueubFMdAZM2bA09MTN2/exKNHj/DFF1+AVXOhz2bNmkEm
kykeM8aUktGLqhJjs2bNkJqaqnisbqrm6NGjER8fD5lMhqioKIwdOxYAkJeX
h4CAAMyfPx+ZmZl48OABBg4cWKE47O3ty43h9u3bmDlzJjZt2oScnBw8ePAA
7dq1UxxX3bTN5s2b486dO4rHjx8/xv379+Hg4KA2rhe97Do7Ojri1q1bKt9X
3msNGzYEwO85FLt7965Smxe/v48//hh169bF5cuX8ejRI+zYsUMphjt37kAu
l6uMY+LEidi5cyd++OEHjBo1CnXr1q3gd05UoeSu5x4/fgxzc3M0bNgQV69e
xebNm6v9nEOHDsW5c+dw4MABFBYWYt26dcjKyqqWGEeNGoW1a9ciLS0NOTk5
+PLLL1/avmnTpvDz88OUKVPg6uqKNm3aAACePXuGgoIC2NrawtjYGAcPHsSR
I0cqHMPSpUvx4MED/PPPPwgLC1O89uTJExgZGcHW1haMMWzduhXXrl1Tikcm
kynd2CxtzJgx2LZtGy5duoRnz55h/vz56Nmz50v/EirPy66zRCJRxF5QUIBH
jx4hISEBAJ93v3DhQty6dQuMMVy4cAH37t2Dvb097O3tsXPnTsjlcoSHhyv9
R1ReDA0bNoS5uTlSU1OxcuVKxWvdunWDtbU1FixYgNzcXOTl5eHUqVOK1ydM
mIA9e/Zg9+7dmDhxYqW/f6KMkrueW7VqFb777js0btwYM2bMwOjRo6v9nE2b
NsWPP/6IOXPmwNraGrdu3ULHjh3L7WlVJcaZM2eiX79+aN++PXx8fBAQEKD2
PWPHjkV8fLyi1w4AFhYWWLNmDYYPHw4rKyvs2bMHQ4cOrVAMn3/+OZo1awYn
JycMHjxYKfF4eXlh1qxZ6NKlC5o1a4Zr167B19dX8fqAAQPQpk0bNG3aVGl4
pdirr76KkJAQDB8+HM2aNcM///yDXbt2VSiuF73sOpubmyMuLg579+6FnZ0d
2rZti2PHjgEAPvroI/j7+6Nfv35o0qQJgoKCkJ+fDyMjI2zZsgVLly6FjY0N
bt68qfS9lXetEhISYG5uDolEgpEjRypeMzExwcGDB3H16lU4OjqiRYsW2LNn
j+J1JycntG/fHmZmZujevbtG14CUMGLV/Tc8MXhyuRzNmzfHnj170LNnT6HD
IXps4sSJcHZ2VpoqSjRDKw6IRmJjY9GtWzfUq1cPy5Ytg4mJCbp06SJ0WESP
3b59G1FRUbh8+bLQoRgEGpYhGjl58iScnZ1hY2OD2NhY7N+/n26AEY3Nnz8f
HTp0wIIFC9CiRQuhwzEINCxDCCEGiHruhBBigAQbc7exsalS2VRCCKmNUlJS
KrRITrDk7uTkBKlUKtTpCSFEL4nF4gq1o2EZQggxQJTcCSHEAFUoucfGxsLV
1RUuLi5Yvnx5mdfv3LmDfv36wcvLC3369FGqO0IIIaTmqR1zl8vlCA4ORlxc
HEQiEXx8fCCRSODu7q5o8+GHH2LixImYNGkSjh49ivnz5+OHH36odDDPnz+H
TCZDfn5+pd9Lak69evUgEolgamoqdCiEkHKoTe4JCQlwcXGBs7MzACAwMBBR
UVFKyT0xMRFr1qwBAPTt2xf+/v4aBSOTydC4cWM4OTlVyybIpOoYY8jJyYFM
JkOrVq2EDocQUg61wzJpaWlKNZtFIlGZ8q4dOnTA3r17AQC//PILHj9+rHJ7
rPDwcIjFYojFYpVVBPPz82FtbU2JXYcZGRnB2tqa/roiRMepTe6qFrC+mHxX
rlyJY8eOoWPHjjh27BgcHBxUbpQbFBQEqVQKqVQKW1tbleejxK776GdEiO5T
OywjEomUNiqQyWRo3ry5UpvmzZtj3759AHh9671798Lc3FzLoRJCiJ7KzweS
koBr14CrV4GhQ4FOnar1lGqTu4+PD5KSkpCcnAwHBwdERkZi9+7dSm2ys7Nh
ZWWFOnXqYNmyZZg6dWq1BVydcnJy0K9fPwB8xxljY2PFXxgJCQkwMzNTe4wp
U6Zg3rx5cHV1LbfNxo0bYWFhobQFHCHEANy/X5LAiz9fvQokJwNFRbyNkRFg
ayt8cjcxMUFYWBgGDRoEuVyOqVOnwsPDAyEhIRCLxZBIJPjjjz8wf/58GBkZ
oVevXti4cWO1Bl1drK2tceHCBQBAaGgoGjVqhA8//FCpDeObiqNOHdUjWtu3
b1d7nuDg4KoHSwgRBmOATKacvIu/zswsaVe3LtC2LdC5MzBuHODmBrRrx59r
0KDaw6xQ+YEhQ4ZgyJAhSs998cUXiq8DAgIqtEOOvrp58yb8/f3h5+eHM2fO
4ODBg/j8889x7tw55OXlYfTo0QgJCQEA+Pn5ISwsDJ6enrCxscFbb72FmJgY
NGjQAFFRUbCzs8PChQthY2OD9957D35+fvDz88PRo0fx8OFDbN++Hd27d8fT
p08xceJE3Lx5E+7u7khKSsLWrVvh7e2tFNtnn32Gw4cPIy8vD35+fti0aROM
jIxw48YNvPXWW8jJyYGxsTH27dsHJycnLF26FBEREahTpw6GDh2KJUuWCHFJ
CdF9z58DN2+W7YVfuwY8fVrSzsKCJ+7XXuPJ282Nfzg5ASo2A68purtZx3vv
Af/1orXG2xtYu1ajtyYmJmL79u345ptvAADLly+HlZUVCgsL0bdvXwQEBChN
DwWAhw8fonfv3li+fDnmzJmDb7/9FvPmzStzbMYYEhISEB0djS+++AKxsbHY
sGED7O3tsXfvXly8eBGdyvkTbvbs2fj888/BGMPYsWMRGxuLwYMHY8yYMQgN
DcWwYcOQn5+PoqIiHDhwADExMUhISED9+vVx7949ja4FIQbl0SPg+vWyvfBb
t4DCwpJ2jo48eb/5Zkkv3M0NsLPjQy06RneTu45p3bo1fHx8FI8jIiKwbds2
FBYWIj09HYmJiWWSe/369TF48GAAQOfOnXHixAmVxx4xYoSiTUpKCgC+GcbH
H38MgE819fDwUPneI0eO4KuvvkJ+fj6ys7PRuXNndO3aFdnZ2Rg2bBgAvugI
AOLj4zF16lTUr18fAGBlZaXJpSBEP2VlAZcvl+2Fl57abWICtGkDeHgAI0eW
JPF27YBGjYSLXQO6m9w17GFXl4YNGyq+TkpKwrp165CQkAALCwuMHz9e5bzv
0jdgjY2NUVi6F1BK8Q5GpdtUZA+V3NxcvPPOOzh37hwcHBywcOFCRRyqpisy
xmgaI6k9UlOB48dLPq5dK3mtcWOesPv1Ux5KcXYGDGTlNRUO08CjR4/QuHFj
NGnSBBkZGfj111+1fg4/Pz/89NNPAIDLly8jMTGxTJu8vDzUqVMHNjY2ePz4
sWIhmaWlJWxsbHDgwAEAfHFYbm4uBg4ciG3btiEvLw8AaFiGGA7G+FTDbduA
SZOAVq2AFi2A8eOBH38EWrcGli8H4uL4zdCHD4GEBOC774D58wF/f8DV1WAS
O6DLPXcd1qlTJ7i7u8PT0xPOzs7o0aOH1s/x7rvvYuLEifDy8kKnTp3g6elZ
Zu2AtbU1Jk2aBE9PT7Rs2RK+vr6K13bt2oUZM2bgk08+gZmZGfbu3YuhQ4fi
4sWLEIvFMDU1xbBhw7Bo0SKtx05ItSsqAq5cKemVnzgB3L3LX7O1BXr1At5/
n39u317QG5tCEWwPVbFYXGazjqtXr8LNzU2IcHROYWEhCgsLUa9ePSQlJWHg
wIFISkpSufJXCPSzIjXq+XPg/PmSZH7yJJ9TDvAbnb16lXy4uurkDU5tUZU7
VdGNTEHKePLkCfr164fCwkIwxrB582adSeyEVLv8fD5sUpzM//yzZPph27b8
ZmdxMm/ZUthYdRRlCx1lYWGBs2fPCh0GITXj8WOewIuHWM6cAQoKeA+8fXtg
yhSeyHv2BOzthY5WL1ByJ4TUvJwcPrRS3DM/fx6Qy/nYuFgMzJ7Nk3mPHoCl
pdDR6iVK7oSQ6peeznvkxcn8yhX+fN26QNeuwIIFPJl37ap388l1FSV3Qkj1
yMgAdu8Gvv8euHSJP9eoEe+NjxnDk7mPD0/wROsouRNCtCc/H4iK4vPHf/2V
T1n09QVWrgT69AE6dOCrQEm1o0VMpfTp06fMgqS1a9fi7bfffun7Gv33Z2R6
enq5BdT69OmjdvrS2rVrkZubq3g8ZMgQPHjwoCKhEyIcxoBTp4CgIH6zMzCQ
D7vMm8dXhZ4+DXzwAa+OSIm9xlByL2XMmDGIjIxUei4yMhJjxoyp0PubN2+O
PXv2aHz+F5P74cOHYWFhofHxCKlWKSnAokV8aqKfH7BrFyCRAPHx/LUlS/ic
cyIISu6lBAQE4ODBg3j27BkAICUlBenp6fDz81PMO+/UqRPat2+PqKioMu9P
SUmBp6cnAF4aIDAwEF5eXhg9erRiyT8AzJw5E2KxGB4eHvjss88AAOvXr0d6
ejr69u2Lvn37AgCcnJyQnZ0NAFi9ejU8PT3h6emJtf/V3UlJSYGbmxumT58O
Dw8PDBw4UOk8xQ4cOABfX1907NgR/fv3R+Z/NaefPHmCKVOmoH379vDy8lKU
L4iNjUWnTp3QoUMHxeYlhADgUxa3b+dDLK1aASEhfBHRjh18hej33/N6LeXs
d0Bqjs7+jSRExV9ra2t06dIFsbGxeP311xEZGYnRo0fDyMgI9erVwy+//IIm
TZogOzsbXbt2hUQiKbcQ16ZNm9CgQQNcunQJly5dUirZu2TJElhZWUEul6Nf
v364dOkSZs2ahdWrV+P333+HjY2N0rHOnj2L7du348yZM2CMwdfXF71794al
pSWSkpIQERGBLVu2YNSoUdi7dy/Gjx+v9H4/Pz+cPn0aRkZG2Lp1K1asWIFV
q1Zh0aJFMDc3x+XLlwEA9+/fR1ZWFqZPn47jx4+jVatWVH+G8CmKR4/yxL1v
H5CbyysnLloETJhAi4h0lM4md6EUD80UJ/dvv/0WAK+ouGDBAhw/fhx16tRB
WloaMjMzYV/Ogorjx49j1qxZAAAvLy94eXkpXvvpp58QHh6OwsJCZGRkIDEx
Uen1F508eRLDhw9XVKYcMWIETpw4AYlEglatWik28ChdMrg0mUyG0aNHIyMj
AwUFBWjVqhUAXgK49DCUpaUlDhw4gF69einaUFngWuzaNX5jdOdOXmzLwoIn
80mT+JRFA17ibwh0NrkLVfHX398fc+bMUeyyVNzj3rVrF7KysnD27FmYmprC
yclJZZnf0lT16pOTk7Fy5Ur8/fffsLS0xOTJk9Ue52Xlf+qWmkZmbGyscljm
3XffxZw5cxRbIoaGhiqO+2KMVBa4lsvJASIjeS89IYEvKnr1VWDVKj6e/t/e
AET30cDYCxo1aoQ+ffpg6tSpSjdSHz58CDs7O5iamuL333/HnTt3XnqcXr16
YdeuXQCAK1eu4NJ/83wfPXqEhg0bwtzcHJmZmYiJiVG8p3Hjxnj8+LHKY+3f
vx+5ubl4+vQpfvnlF/Ts2bPC39PDhw/h4OAAAPjuu+8Uzw8cOBBhYWGKx/fv
30e3bt1w7NgxJCcnA6CywLXC8+dAdDSv19KsGfDOO3xK46pVvMd+8CAwahQl
dj1DyV2FMWPG4OLFiwgMDFQ8N27cOEilUojFYuzatQvt2rV76TFmzpyJJ0+e
wMvLCytWrECXLl0A8F2VOnbsCA8PD0ydOlWpXHBQUBAGDx6suKFarFOnTpg8
eTK6dOkCX19fTJs2DR07dqzw9xMaGoo33ngDPXv2VBrPX7hwIe7fvw9PT090
6NABv//+O2xtbREeHo4RI0agQ4cOGD16dIXPQ/QIY8C5c3yZf/PmwOuv83IA
77zDSwFcvAjMmUN1XPQZq4CYmBjWtm1b1rp1a7Zs2bIyr9+5c4f16dOHeXt7
s/bt27NDhw6pPWbnzp3LPJeYmFiRcIgOoJ+VnkpPZ2zFCsY8PRkDGDMzYywg
gLEDBxgrKBA6OlIBqnKnKmrH3OVyOYKDgxEXFweRSAQfHx9IJBKl/UIXL16M
UaNGYebMmUhMTMSQIUNU3tgjhAggL69k1ehvv/FVo127Aps28eEWumlukNQm
94SEBLi4uMDZ2RkAEBgYiKioKKXkbmRkhEePHgHg47vNmzevpnAJIRVSWMgL
de3eDfz0E/DoEZ+PPm8eMHEiLS6qBdQm97S0NDg6Oioei0QinDlzRqlNaGgo
Bg4ciA0bNuDp06eIj49Xeazw8HCEh4cDALKyslS2YTRbQ+cxYTbvIuo8ewYc
OcLnokdFAdnZQMOG/EbppEl84REtLqo11P6kVf0iv5h8IyIiMHnyZMhkMhw+
fBgTJkxAUVFRmfcFBQVBKpVCKpXC1ta2zOv16tVDTk4OJQ8dxhhDTk4O6tHM
Cd3w9ClP5uPGAXZ2wGuv8Z76gAHAnj1AZiYfjnnlFUrstYzanrtIJEJqaqri
sUwmKzPssm3bNsTGxgIAunXrhvz8fGRnZ8POzq5SwYhEIshksnJ79UQ31KtX
DyKRSOgwaq+HD/n0xH37gJgYPqZubQ0EBAAjRgD9+1MZXaI+ufv4+CApKQnJ
yclwcHBAZGQkdu/erdSmRYsWOHLkCCZPnoyrV68iPz9fZc9cHVNTU8XKSEJI
KVlZfC763r28MNfz53xO+pQpJfuJUsVFUorafw0mJiYICwvDoEGDIJfLMXXq
VHh4eCAkJARisRgSiQSrVq3C9OnTsWbNGhgZGWHHjh00bk5IVaWlAb/8wnvo
x47xWS5OTsCsWbyH3rUrDbWQchkxgQa4xWKx2vrmhNQ6t2/zZL53L6+DDgBu
bjyZjxzJq99Rx6lWq2jupL/jCBFaYiJP5vv2lZRC7dgRWLyYJ3U3N2HjI3qJ
kjshNa146f++ffzj2jX+fPfufDu6ESN4rXRCqoCSOyE1oagI+Ouvkh76nTu8
4mLv3sC77wL+/rzGCyFaQsmdkOry/Dm/EbpvH78xevcuYGbG56CHhPASui9s
zEKItlByJ0Tbzp4FNm7kq0Tv3QMaNAAGD+Y3RIcMAczNhY6Q1AKU3AnRlr/+
4jdBDx8GGjfmPfORI4FBg3iCJ6QGUXInpCoY40MvixbxfUZtbIClS4G336Ye
OhEUJXdCNMEY8OuvvKd+6hTf1GLVKmDGDF6sixCBUXInpDKKioADB3hSl0p5
Gd2wMODNN2kbOqJTaO0yIRUhl/Nqix078mmL9+4BW7YAN28CwcGU2InOoeRO
yMsUFgI//AB4egKjRwMFBfzx9evAtGl8aiMhOoiSOyGqFBQAW7fyHYsmTuRJ
/KefgCtXgPHjqQIj0XmU3AkpLS+Pj6G7uADTp/P9RaOigPPngTfe4KtKCdED
1P0gBOA7Gn3zDa/tcvcu0KMHH1MfOJCqMBK9RMmd1G4PH/LVpKtXAzk5QL9+
QGQk3/yCkjrRY5TcSe107x6wbh2wfj3w4AHfe/STT4Bu3YSOjBCtoOROapd/
/+WLjb7+GnjyBBg+HFi4EOjUSejICNEqSu6kdkhL4+PpmzcDz57xaY0LFvAp
joQYIEruxLClpABffgl8+y1fiDRhAjB/PtC2rdCREVKtKLkTw5SUBCxbxhcc
1akDTJkCfPwx7XBEao0KzXOPjY2Fq6srXFxcsHz58jKvv//++/D29oa3tzfa
tm0LCwsLrQdKSIX873/AuHFAu3ZARAQvDXDrFp/mSImd1CJqe+5yuRzBwcGI
i4uDSCSCj48PJBIJ3N3dFW3WrFmj+HrDhg04f/589URLSHlu3+a7G+3ezWun
f/ghMGcO0LSp0JERIgi1PfeEhAS4uLjA2dkZZmZmCAwMRFRUVLntIyIiMGbM
GK0GSUi5MjP5HqTt2vHt7ObO5fuTfvklJXZSq6ntuaelpcHR0VHxWCQS4cyZ
Myrb3rlzB8nJyXjllVe0FyEhqjx6xGe/rF4N5OfzIl4hIbTJNCH/UZvcGWNl
njMqZ+VeZGQkAgICYFxO/Y3w8HCEh4cDALKysioTJyFcfj6waROwZAlfUTpq
FK+t3qaN0JERolPUDsuIRCKkpqYqHstkMjQvp3cUGRn50iGZoKAgSKVSSKVS
2NraahAuqbXkcmDHDl6lcc4cvuhIKgV+/JESOyEqqE3uPj4+SEpKQnJyMgoK
ChAZGQmJRFKm3fXr13H//n10o+XbRJsY41UZvbz4dMamTYH4eOC334DOnYWO
jhCdpTa5m5iYICwsDIMGDYKbmxtGjRoFDw8PhISEIDo6WtEuIiICgYGB5Q7Z
EFJpx4/z6oz+/nzTjJ9/Bs6c4cW9CCEvZcRUDarXALFYDKlUKsSpia67eJGv
Io2J4TdIQ0N5r502yCCkwrmTNusguuP2bb7LUceOwF9/8emMN2/yTTMosRNS
KfQbQ4SXmclnvGzezJP4xx/z+eqWlkJHRojeouROhENz1Q0aY4BMxredZQxw
cwNatuSlfkj1o+ROah7NVTcojPGdCf/3P57I//e/ko9Hj5Tb1q/Pk7ybG+Du
XvLh7Ewjb9pGl5PUHLmcV2n87DPgn3/4/qRLl9KURj2Sna2cxIs/37tX0sba
mpfJnzAB8PDgH8bGwNWrQGIi/zh+HNi1q+Q9Zma8CnPphO/mxv+/r1u35r9P
bcnP53+9yGRAamrJ12PGAH5+1XtuSu6k+jEGREfzzTESEwEfH2D7doDKVOis
Bw9Ket+lE/m//5a0MTfnSTwggCdwT0/+2c5O9fazPXooP378GLh2rSThX70K
Csf5OQAAHSdJREFUnD3LZ7wWz+EzNgZcXEqSfXHid3Xl9eGElJfH94ApnbSL
vy7+nJ1d9n2WlvxXgJI70W/HjwPz5vHZL66uwJ49wIgRtPm0jnjyhCfWF3vi
aWklbRo25En7tddKErinJ781UpUfY+PGPMn5+Cg/n5cHXL+u3NNPTAQOHODL
HQB+Xiensj19NzegSRPNYyodQ+nErSqBq0rcVlaASAQ4OgK+viVfF392cODX
syZQcifV48IF3lOPieH/ordsASZPpoFVgeTl8V7yi0k8JaWkTb16PDm+8opy
T7xFi5q9CVq/PuDtzT9KKyjgM2NLJ/yrV4G4OP5aMZGobE/f3Z0nXoBfC1VD
JaUTeU5O2bheTNzFSVuIxF0R9JtGtOv2beDTT3lddUtLYMUK4J13+G8sqRFP
nwIJCcCff/LyO1eu8B9LURF/3dSUV0ju2hV4882SJO7szIdBdJWZWUmiLq2w
EEhOLkn2xYl/yxYgN7eknZ0dv+1TXuIuTtalE3fpBC70MFBlUXIn2pGZCSxa
xOeqm5ryFaZz5wK0K1e1S03lifzUKf75wgWexAB+k7JDB745VXFv3MWF/4gM
hYkJv/Hapg3w+uslzxcV8WtTupdvalo2aetj4q4ISu6k6uLigDfe4AO406fz
njvNVa8WhYW8OkPpZF5ctLVBA6BLF36Lo3t3oFu32r0OrE4dPq++ZUtg8GCh
o6l5lNxJ1XzzDR92cXfn0xxcXYWOyKA8eMDvRRcn8zNnSoYaRCI+A6V7d/7R
oYNh9chJ1VByJ5qRy/k+pWvXAkOG8M2otTFNoRZjjO/lXdwjP3WKDycwxsfC
O3TgY+Tdu/OkXmqDNELKoOROKu/xY2DsWODgQWDWLGDVKpoFo4H8fODcuZJk
/uefJfPIzc35sEpgIE/mXboAjRoJGy/RL/QbSSonNRUYNoxPwdi4EXj7baEj
0huZmXyIpTiZS6UlU/hcXIBXXy0ZZnF3pxospGoouZOKk0oBiYTfOD14kGcj
olJRER9SKT3EcusWf83MDBCLgdmzS8bL7eyEjZcYHkrupGL27eO11u3seLby
9BQ6IkHI5XxlYmYmL5aVman8dfHnO3dKimbZ2fEE/tZb/HPnzvpdL4XoB0ru
5OUY45tmzJ/PV73s38/3MTUgRUV8YcuLCVpV0s7KKlkMVFr9+vyy2NvzxUA9
e/LFMN27A61bU7UFUvMouZPyFRTw7ub27fzO3rff6s1K06IiXqlQVYJ+8bms
rJJFP6XVrcuTddOmvI6Jr29JAi/9uWlTXieFEjjRJZTciWr37gEjRwJ//ME3
0AgN1dnsdfcucOIEr1F25gwv+PTvvyVFpkozMytJzCIRH/suTtAvJu0mTXT2
WyZELUrupKykJF4C8M4dXn99/HihI1JgjId1/HhJQr9xg7/WoAHvXb/6qnKv
unTSNjenhE1qhwol99jYWMyePRtyuRzTpk3DvHnzyrT56aefEBoaCiMjI3To
0AG7d+/WerCkBhw7xkvy1qkDHDlS/UWn1WCMl389frzko3i5vYUFH9uePp1/
7tSJVmgSUkxtcpfL5QgODkZcXBxEIhF8fHwgkUjgXqo0W1JSEpYtW4ZTp07B
0tIS/5au6E/0x44dQFAQvwN46BC/M1jD5HLg0qWSRH7iBB8TB3jvu1cvXo+s
Vy8+YYfmghOimtrknpCQABcXFzj/94seGBiIqKgopeS+ZcsWBAcHw/K/KkV2
NGlXvxQVAZ98AixfDvTvz2vE1FA1x4ICPn2+OJGfPFkyhdDJiRd86tWLf7i4
0JAKIRWlNrmnpaXBsVQRC5FIhDNnzii1ufHfoGePHj0gl8sRGhqKV1UscAkP
D0d4eDgAIKu4O0aElZsLTJwI7N3Le+1hYdU6tvH0KXD6dMl4+enTfPMEgG+u
MGYMH2Lp2ZNvEkEI0Yza5M6KNzMsxeiF7lNhYSGSkpLwxx9/QCaToWfPnrhy
5QosXuj9BQUFISgoCAAgFourEjfRhowMvuL07FleH+b997XeNX7wgK/OLB5m
kUr5LJY6dXghrKAg3iv386NVmoRok9rkLhKJkFp8BwuATCZD8xdqdYtEInTt
2hWmpqZo1aoVXF1dkZSUBJ8XN0ckuuPiRV4j5t49vjBJItHKYTMzS3rlx4/z
8XPG+B8DPj68kGSvXnxxj7m5Vk5JCFFBbXL38fFBUlISkpOT4eDggMjIyDIz
Yfz9/REREYHJkycjOzsbN27cUIzREx108CAf/zA354PcL25WWUmZmcCyZUBs
LJ/ZAvC1Tt278+nxxas1DXG3G0J0ldrkbmJigrCwMAwaNAhyuRxTp06Fh4cH
QkJCIBaLIZFIMGjQIPz2229wd3eHsbExvvrqK1hbW9dE/KQyGAPWrQM++ADo
2BGIjq7SjknPn/Mh+tBQPm4+cCAwdSrvmXfqxBcMEUKEYcRUDarXALFYDKlU
KsSpa6fCQl57fdMmYPhwvjipClu1x8fzw129yhcNrV1LmzARUhMqmjtplnBt
8PAhX3G6aRPw8cfAnj0aJ/bkZL7GacAA4Nkz3vk/fJgSOyG6hsoPGLrkZGDo
UL5Gf9s2Pm6igdxcXhxyxQo+02XJEmDOHKBePS3HSwjRCkruhuzPPwF/fz4k
89tvQN++lT4EY3wK/AcfAP/8w+/DrljBi24RQnQXDcsYqogI4JVX+IyY06c1
SuxXrvAFq2+8wResHjsG7N5NiZ0QfUDJ3dAwBnz+Od/A2teXJ/a2bSt1iPv3
+RZw3t7A+fN8q9SzZ/ksGEKIfqBhGUOSnw+8+SbvXk+aBISHV2o+olzO9+WY
P5/vTDRjBrB4MUCzWgnRP9RzNxRZWUC/fjyxL13Ks3QlEvtff/GO/vTpQLt2
vKe+aRMldkL0FfXcDUFiIp8Rk5HBKzoGBFT4rRkZwLx5wPff8/VMu3fzHfWo
+iIh+o167vouPh7o1o0vET1+vMKJvaAAWLmSz0+PjORDMdev89kwlNgJ0X/U
c9dn8fF8cZKrK68XU8EaubGx/IbpjRu8w79mDa+VTggxHNRz11d//gm8/jqf
CfPHHxVK7Ldu8bcMHswn1Rw6BBw4QImdEENEyV0fnT8PDBkCODgAcXGAldVL
mz99yjdacncHjh7lK00vX+aHIIQYJhqW0TdXr/Lyi02a8GEZe/tymzIG/Pgj
8NFHgEwGjB/PE3sVCkESQvQE9dz1SXIyr9hlbAwcOfLSoZiLF4E+ffgNUltb
Xrb9hx8osRNSW1By1xfp6bwWQG4urxPTpo3KZvfuAcHBvJ76//4HbN4M/P03
0KNHDcdLCBEUDcvog+xs3mP/918+FOPlVaaJXA5s2cLH1h88AN5+G/jiC8DS
UoB4CSGCo+Su6x4+5Lth3L4NxMTwZaQvOHkSePdd4MIFoHdvYP16lfmfEFKL
UHLX0P37fKJKYSH/kMv5h1a/flYI+R9nUZjzCeRdukG+0h6Fy5Xb5OUBUimv
1Pjjj7yCIy1CIoRQcteAXM6Hv8+d0+z9Jib8nmjxZ5Vf12EwycyAca49jB07
weSZBYzvlm1rbs73MP3wwyrtmkcIMTCU3DWwbRtP7Bs38lpdqpJ0eYm7TkVu
YRcWAqNGAb/8UqXdkwghtVeFZsvExsbC1dUVLi4uWL58eZnXd+zYAVtbW3h7
e8Pb2xtbt27VeqC64t49YMECXtt85ky+8r91a8DJCXB0BJo1A+zs+Loic3Og
USO+FZ2paQUTe1ERT+a//MJ3nabETgjRgNqeu1wuR3BwMOLi4iASieDj4wOJ
RAJ3d3eldqNHj0ZYWFi1BaorPvuMj7evX18NY9uM8TujP/wALFrEC8AQQogG
1PYlExIS4OLiAmdnZ5iZmSEwMBBRUVE1EZvOuXQJ+Ppr3mPv0KEaTrBgAT/B
Rx/xOY2EEKIhtck9LS0Njo6OiscikQhpaWll2u3duxdeXl4ICAhAamqqymOF
h4dDLBZDLBYjKyurCmHXvOJOtaUlnz+udcuWAcuXA2+9xWsE0JQXQkgVqE3u
jLEyzxm9kHiGDRuGlJQUXLp0Cf3798ekSZNUHisoKAhSqRRSqRS2trYahiyM
n37i5dKXLFFbp6vywsJ4r33cOH6XlhI7IaSK1CZ3kUik1BOXyWRo/kKBEmtr
a9StWxcAMH36dJw9e1bLYQrr6VM+1bBjR2DaNC0ffMcO/ifB66/zrfEqdNeV
EEJeTm0m8fHxQVJSEpKTk1FQUIDIyEhIJBKlNhkZGYqvo6Oj4ebmpv1IBbR0
Ka+quGEDn86oNXv28A2tBwzgK5BMTbV4cEJIbaZ2toyJiQnCwsIwaNAgyOVy
TJ06FR4eHggJCYFYLIZEIsH69esRHR0NExMTWFlZYceOHTUQes24dYtvRzd+
vJaLb8XEAGPHAl278mmP//3lQwgh2mDEVA2q1wCxWAypVCrEqStFIgF+/53v
L6q1crnHjvF6MW5ufPcMCwstHZgQYugqmjtphepLxMTwbei0usHF338Dw4bx
VU+//kqJnRBSLejuXTkKCvgaorZtgffe09JBr1zhPXYbG166V89mDBFC9Af1
3Muxdi2QlMR772ZmWjjgzZv8xmndujyxOzho4aCEEKIaJXcV0tP56v9hw3hH
u8pSU3kZycJCPt7u7KyFgxJCSPkouavw8cfA8+fAmjVaOFhmJk/s9+/zO7Mv
1OQhhJDqQGPuLzh1Cti5ky9aat26ige7fx8YOJBPkj98mG9sSgghNYB67qXI
5cA77/BdjebPr+LBHj8GBg8Grl0DDh6kHaoJITWKknspW7fyfUgjI6u4q1F+
Pi8nIJUCP//Mb6QSQkgNouT+n3v3eJXdPn34Jkgae/6cb2T6+++8Lvvw4doK
kRBCKozG3P/z6ada2IRDLgcmTuTDMF9/zWsWEEKIACi5A7h4EfjmG+Dtt4H2
7TU8CGO8FntkJF/SOnOmVmMkhJDKqPXJvXgTDiurKmzCwRjwwQd80H7hQmDu
XK3GSAghlVXrx9wjI4ETJ4DwcL7LkkY+/5xPip81q5q2aSKEkMqp1T33J0/4
dqWdOgFTp2p4kFWreHKfMoUneNpFiRCiA2p1z33pUiAtjc9W1GgTjvBwvtrp
jTeALVtoFyVCiM6otdno5k3e6Z44EejWTYMD7N3Lb6AOHsyXtGp1iyZCCKma
Wpvc33+fF2hcvlyDNz9+zKfWiMU8yWulbCQhhGhPrRyWOXyYT0X/6iugWTMN
DrByJfDvv0B0NFC/vtbjI4SQqqp1Pfdnz/gmHK6ufHJLpWVk8OT+xhuAr6/W
4yOEEG2odT33NWv4eHtsrIajKaGhvMTA0qXaDo0QQrSmQj332NhYuLq6wsXF
BctfMki9Z88eGBkZ6ezG12lpwOLFvKbXoEEaHODqVb5QaeZMwMVF6/ERQoi2
qE3ucrkcwcHBiImJQWJiIiIiIpCYmFim3ePHj7F+/Xr46vBQxdy5fDOk1as1
PMC8eUCjRnwVKiGE6DC1yT0hIQEuLi5wdnaGmZkZAgMDERUVVabdp59+irlz
56JevXrVEmhVnTgB7N7NFy1ptMvd8eP8Buq8ebSxNSFE56lN7mlpaXB0dFQ8
FolESEtLU2pz/vx5pKamYujQoS89Vnh4OMRiMcRiMbKysjQMufLkcl4/xtFR
w004GOP/Kzg48LuxhBCi49TeUGWMlXnOqNQS+6KiIrz//vvYsWOH2pMFBQUh
KCgIACAWiysRZtWEh/PKjz/9BDRooMEB9uwBEhKAb7/V8ACEEFKz1PbcRSIR
UlNTFY9lMhmaN2+uePz48WNcuXIFffr0gZOTE06fPg2JRKIzN1VzcvgQed++
QECABgcoKODdfU9PvpyVEEL0gNqeu4+PD5KSkpCcnAwHBwdERkZi9+7ditfN
zc2RnZ2teNynTx+sXLmyRnvmL/Ppp8DDh1XYhGPzZuDWLb7yiUoMEEL0hNqe
u4mJCcLCwjBo0CC4ublh1KhR8PDwQEhICKKjo2siRo1duMBzc3Aw73hX2sOH
vOLjK68Ar76q9fgIIaS6GDFVg+o1QCwWV+vQDWNAr17AtWvAjRsa1mpfsABY
toxvdN25s9ZjJISQyqpo7jTYFaoREcDJk7wSr0aJXSbjy1nHjaPETgjROwZZ
W6Z4Ew6xuAqbcISEAEVFfEkrIYToGYPsuS9eDKSn82q8Gu2fcfkysGMHMGcO
4OSk5egIIaT6GVzPPSmJlxeYNAno2lXDg3z8MWBuzsfcCSFEDxlcz/2994B6
9TTchAMAjhwBYmJ4sXcrK63GRgghNcWgkvvBg3w6+sqVgL29BgcoKuLVxVq0
AN55R+vxEUJITTGY5P7sGe+1t2vH68hoJDISOHcO+OEH3v0nhBA9ZTDJffVq
vpD0t9803ITj2TM+xu7tDYwdq/X4CCGkJhlEcpfJ+AwZf39gwAANDxIWBty5
wzfj0GiKDSGE6A6DyGJz5/Lhco034bh3j//vMGgQ0L+/VmMjhBAh6H1yP36c
r0adOxdo1UrDgyxbxuvIrFih1dgIIUQoep3cCwv5zdMWLfjUdI2kpPCSkZMm
AV5e2gyPEEIEo9dj7uHhwKVLwM8/V2EPjU8/5WPsX3yh1dgIIURIettzz87m
m3C88gowcqSGBzl/Hti5k8+hLLWVICGE6Du9Te4LFwKPHlVhE47ifVGtrfmm
14QQYkD0cljm/Hk+JDNrFuDhoeFBfvuNlxpYu5bXkSGEEAOidz13xvhNVBsb
IDRUw4PI5Xx6jbMzMHOmNsMjhBCdoHc99127gFOn+FojCwsND7JzJ78TGxmp
4XJWQgjRbXrXc2/WDBgzBpgyRcMD5OXxAXsfH2DUKK3GRgghukLveu79+vEP
ja1bx+sV7Nyp4Z1YQgjRfXrXc6+S7Gy+GnXYMKB3b6GjIYSQalOh5B4bGwtX
V1e4uLhguYpdML755hu0b98e3t7e8PPzQ2JiotYD1YrFi/kGqxrv5EEIIfpB
bXKXy+UIDg5GTEwMEhMTERERUSZ5jx07FpcvX8aFCxcwd+5czJkzp9oC1tit
W8DXXwNvvgm4uwsdDSGEVCu1yT0hIQEuLi5wdnaGmZkZAgMDERUVpdSmSZMm
iq+fPn0KI10cy/7kE8DUtArzJwkhRH+ovaGalpYGx1JL80UiEc6cOVOm3caN
G7F69WoUFBTg6NGjKo8VHh6O8PBwAEBWVpamMVdeQgLw44+8jkzz5jV3XkII
EYjanjtjrMxzqnrmwcHBuHXrFr788kssXrxY5bGCgoIglUohlUpha2urQbga
YIwvWLK15eUGCCGkFlCb3EUiEVJTUxWPZTIZmr+k9xsYGIj9+/drJzptOHQI
OHaMD8c0bix0NIQQUiPUJncfHx8kJSUhOTkZBQUFiIyMhEQiUWqTlJSk+PrQ
oUNo06aN9iPVRGEhL/Tepg0wfbrQ0RBCSI1RO+ZuYmKCsLAwDBo0CHK5HFOn
ToWHhwdCQkIgFoshkUgQFhaG+Ph4mJqawtLSEt99911NxK7ejh1AYiKwdy+/
mUoIIbWEEVM1qF4DxGIxpFJp9Z3g6VPeY2/VCjh5klajEkIMQkVzp96VH6iw
1auBjAxgzx5K7ISQWscwyw9kZvLNrkeMALp3FzoaQgipcYaZ3L/4gld/XLZM
6EgIIUQQhpfcr18HNm8GZswA2rYVOhpCCBGE4SX3BQuA+vWBkBChIyGEEMEY
VnL/809g3z6+IrVpU6GjIYQQwRhOcmeMlxewtwd0sSolIYTUIMOZCrl/P++5
h4cDDRsKHQ0hhAjKMHruz58D8+bxOu0ab65KCCGGwzB67lu2ADduAAcOACaG
8S0RQkhV6H/P/fFjXvGxd2/gtdeEjoYQQnSC/if3r74CsrL4ilQqM0AIIQD0
PbmnpwOrVgGjRwNduggdDSGE6Az9Tu6hofxm6pIlQkdCCCE6RX+Te2IisG0b
8PbbQOvWQkdDCCE6RX+T+7x5QKNGwMKFQkdCCCE6Rz+T+7FjfNrj/PmAjY3Q
0RBCiM7Rv+ReXGZAJAJmzxY6GkII0Un6t+Ln55+Bv//m+6PWry90NIQQopP0
r+feqBHg7w+MHy90JIQQorMqlNxjY2Ph6uoKFxcXLF++vMzrq1evhru7O7y8
vNCvXz/cuXNH64EqDBkC/PILYGxcfecghBA9pza5y+VyBAcHIyYmBomJiYiI
iEBiYqJSm44dO0IqleLSpUsICAjA3Llzqy1gQggh6qlN7gkJCXBxcYGzszPM
zMwQGBiIqKgopTZ9+/ZFgwYNAABdu3aFTCarnmgJIYRUiNrknpaWBkdHR8Vj
kUiEtLS0cttv27YNgwcPVvlaeHg4xGIxxGIxsrKyNAiXEEJIRaidLcMYK/Oc
UTkFunbu3AmpVIpjx46pfD0oKAhBQUEAALFYXJk4CSGEVILa5C4SiZCamqp4
LJPJ0Lx58zLt4uPjsWTJEhw7dgx169bVbpSEEEIqRe2wjI+PD5KSkpCcnIyC
ggJERkZCIpEotTl//jxmzJiB6Oho2NnZVVuwhBBCKkZtcjcxMUFYWBgGDRoE
Nzc3jBo1Ch4eHggJCUF0dDQA4KOPPsKTJ0/wxhtvwNvbu0zyJ4QQUrOMmKpB
9RogFoshlUqFODUhhOitiuZOwZK7jY0NnJychDi11mRlZcHW1lboMHQGXY8S
dC2U0fVQVpXrkZKSguzsbLXtBEvuhoD++lBG16MEXQtldD2U1cT10L/aMoQQ
QtSi5E4IIQbIODQ0NFToIPRZ586dhQ5Bp9D1KEHXQhldD2XVfT1ozJ0QQgwQ
DcsQQogBouROCCEGiJK7BlJTU9G3b1+4ubnBw8MD69atEzokwcnlcnTs2BFD
hw4VOhTBPXjwAAEBAWjXrh3c3Nzw119/CR2SoNasWQMPDw94enpizJgxyM/P
FzqkGjN16lTY2dnB09NT8dy9e/cwYMAAtGnTBgMGDMD9+/er5dyU3DVgYmKC
VatW4erVqzh9+jQ2btxYZgOT2mbdunVwc3MTOgydMHv2bLz66qu4du0aLl68
WKuvS1paGtavXw+pVIorV65ALpcjMjJS6LBqzOTJkxEbG6v03PLly9GvXz8k
JSWhX79+Kne30wZK7hpo1qwZOnXqBABo3Lgx3NzcXlrj3tDJZDIcOnQI06ZN
EzoUwT169AjHjx/Hm2++CQAwMzODhYWFwFEJq7CwEHl5eSgsLERubq7KqrKG
qlevXrCyslJ6LioqCpMmTQIATJo0Cfv376+Wc1Nyr6KUlBScP38evr6+Qoci
mPfeew8rVqxAnTr0z+n27duwtbXFlClT0LFjR0ybNg1Pnz4VOizBODg44MMP
P0SLFi3QrFkzmJubY+DAgUKHJajMzEw0a9YMAO8o/vvvv9VyHvptrIInT55g
5MiRWLt2LZo0aSJ0OII4ePAg7OzsaA7zfwoLC3Hu3DnMnDkT58+fR8OGDavt
z259cP/+fURFRSE5ORnp6el4+vQpdu7cKXRYtQIldw09f/4cI0eOxLhx4zBi
xAihwxHMqVOnEB0dDScnJwQGBuLo0aMYP3680GEJRiQSQSQSKf6SCwgIwLlz
5wSOSjjx8fFo1aoVbG1tYWpqihEjRuDPP/8UOixBNW3aFBkZGQCAjIyMatsD
g5K7BhhjePPNN+Hm5oY5c+YIHY6gli1bBplMhpSUFERGRuKVV16p1T0ze3t7
ODo64vr16wCAI0eOwN3dXeCohNOiRQucPn0aubm5YIzhyJEjtfoGMwBIJBJ8
9913AIDvvvsOr7/+erWch5K7Bk6dOoUffvgBR48ehbe3N7y9vXH48GGhwyI6
YsOGDRg3bhy8vLxw4cIFLFiwQOiQBOPr64uAgAB06tQJ7du3R1FRkWIf5dpg
zJgx6NatG65fvw6RSIRt27Zh3rx5iIuLQ5s2bRAXF4d58+ZVy7mp/AAhhBgg
6rkTQogBouROCCEGiJI7IYQYIEruhBBigCi5E0KIAaLkTgghBoiSOyGEGKD/
A7N7dYZZSuFOAAAAAElFTkSuQmCC
" /></p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><img src="data:image/png;base64,
iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAACXBIWXMAAAsS
AAALEgHS3X78AAAAO3pUWHRTb2Z0d2FyZQAACJnLTSwpyMkvyclMUihLLSrO
zM9TMNIz0jPWUcgoKSmw0tfPhSvQyy9K1wcApzcQ854efX0AACAASURBVHic
7d17fM7l/8Dx171Dpm02dmBMhokdzKzboa8zUYRiK2YqIeVLChUilfpKSQ6l
5KuvJKV+FMth5RjKYjHl2LCVzWlbhjHscP3+uNpmjJ3ue/d27/18PD6Pbff9
ua/Pe7d677qvz3W9L4NSSiGEEMKq2Fg6ACGEEKYnyV0IIayQJHchhLBCktyF
EMIKSXIXQggrJMldCCGskCR3Uajs7GycnJz466+/THquJR09ehSDwWDydjdu
3IiPj0/ez02bNmX79u3FOrekhg8fzvTp00v9+luZMmUKQ4YMMXm7wnLsLB2A
MA0nJ6e87y9fvky1atWwtbUF4OOPPyYiIqJE7dna2pKenm7yc6uCI0eOmKSd
RYsW8fnnn7N169YCjwlRHJLcrcT1ydXHx4dFixZx33333fL8rKws7Ozkn18I
ayXDMlXElClTGDBgAOHh4Tg7O/P555+zc+dO2rZti6urK15eXowZM4bMzExA
J3+DwUBCQgIAgwcPZsyYMfTs2RNnZ2fuvfde4uPjS3wuwPr167n77rtxcXHh
2WefpV27dnz66aeFxl2cGD/++GN8fX2pWbMmY8aMyXttdnY2Y8eOxc3NjcaN
GxMVFXXL9+fNN99k4MCBBR4bNWoU48aNA3SP2c/PD2dnZxo3bnzbHrS3t3de
b/vy5cs89thj1KxZk4CAAH799debrtuoUSOcnZ0JCAggMjISgN9//53Ro0ez
fft2nJyccHd3z3tvX3vttbzXL1iwAF9fX9zc3Hj44Yc5depUsd6boqxatYqA
gABcXV3p2rVrgU8j06dPp27dutSoUYNmzZrl/a7R0dGEhIRQo0YNateuzYsv
vljs6wkzUMLqNGjQQG3YsKHAY5MnT1b29vYqMjJSZWdnq8uXL6tdu3ap6Oho
lZmZqY4dO6aaNGmi3n//faWUUpmZmQpQ8fHxSimlIiIilJubm9q9e7e6du2a
evTRR1VERESJzz1z5oxycnJSq1atUteuXVOzZs1SdnZ2avHixYX+LsWJsW/f
viotLU3Fx8ermjVr5v3u77//vvL391cnTpxQKSkpqkOHDupW/8kfO3ZMOTo6
qvT09Ly2PTw81O7du5VSSkVGRqpjx46pnJwctWnTJuXg4KD27dunlFJqw4YN
qkGDBnlt1atXT23ZskUppdT48eNVp06d1N9//60SEhKUn59fgXO/+uordfLk
SZWdna2WLVumHB0d1enTp5VSSv33v/9VnTp1KhBnRESEevXVV5VSSn3//ffK
w8ND7d27V2VkZKiRI0eqLl26FOu9udHkyZPVE088oZRS6uDBg8rR0VFt2rRJ
Xbt2Tf3nP/9RTZo0UdeuXVP79+9Xd911lzp16pRSSqnjx4+rY8eOKaWUMhqN
6osvvlBKKXXhwgUVHR1d6LVE+ZCeexXSvn17+vTpg42NDdWrV6dVq1a0adMG
Ozs7GjVqxIgRI/jxxx9v+fqwsDCMRiP29vZEREQQGxtb4nPXrFlDcHAwDz30
EPb29owdOzavV1qY4sQ4adIkXFxc8PHxoXPnznnX+vrrrxk7dize3t64ubkx
ceLEW16nUaNGBAYGsnr1agA2bNiAq6srRqMRgD59+tCoUSMMBgNdu3alW7du
t7xper2vv/6aKVOmULNmTRo0aMDo0aMLPP/oo4/i5eWFjY0NgwYNwsfHh5iY
mCLbBVi2bBnDhw8nODgYBwcHZsyYwY8//khiYmKR783tLF++nL59+9K1a1fs
7e2ZOHEiFy5c4JdffsHOzo4rV65w4MABsrKyaNiwIY0aNQLA3t6euLg4UlNT
cXZ2pk2bNsX6PYR5SHKvQurXr1/g58OHD/Pggw9Sp04datSowdSpU0lJSbnl
6+vUqZP3/Z133nnbm6i3OvfkyZMF4jAYDHh7e9+yneLEWNxrNWjQ4JbXARg0
aBBffvklAF988UWBm9Br1qyhTZs21KpVC1dXV3744Yfbvle5Tp06ddsYPv30
U1q0aIGrqyuurq4cPny4WO3m/n7Xt1ejRg1q1qxJUlJS3mMl+Te7Vbs2NjZ4
e3uTlJRE06ZNmTVrFlOnTsXT05Pw8HBOnz4NwOLFizl48CBNmzaldevWrFu3
rli/hzAPSe5VyI3TAJ9++mkCAwM5evQoFy5cYNq0aSgzFwn18vIq0LNUShVI
RjcqS4xeXl6cOHEi7+eipmoOGDCAjRs3kpiYyOrVqxk0aBAAGRkZhIWFMWnS
JM6cOUNaWho9evQoVhx16tS5ZQzHjx9n5MiRfPTRR6SmppKWlkazZs3y2i1q
2mbdunX5888/836+ePEi586do169ekXGVZJ2c3JySExMzGt38ODB/PTTT8TH
x5Odnc2kSZMAPQV0+fLlnD17lvHjxxMaGsqVK1fKFIsoPUnuVdjFixdxcXHB
0dGRQ4cO8fHHH5v9mr1792bPnj189913ZGVlMXfuXJKTk80S46OPPsqcOXNI
SkoiNTWVt99++7bn165dm/bt2/Pkk0/StGlTmjRpAsDVq1e5du0aHh4e2Nra
smbNGjZt2lTsGKZPn05aWhp//fUXH3zwQd5z6enpGAwGPDw8UEqxaNEiDh8+
XCCexMTEvBvINwoPD+eTTz7ht99+4+rVq0yaNIkOHTrc9pNQcWOOjIxk69at
ZGZmMnPmzLxhlkOHDrFlyxauXr1K9erVqV69et6U26VLl5KSkoKNjQ0uLi4Y
DAZsbCTFWIq881XYrFmzWLJkCc7Ozjz99NMMGDDA7NesXbs2X331FePGjcPN
zY1jx47RsmVLqlWrZvIYR44cSbdu3WjevDmtWrUiLCysyNcMGjSIjRs35vXa
AVxdXZk9ezb9+vWjVq1arFixgt69excrhtdffx0vLy98fHzo2bMnjz/+eN5z
QUFBjBkzhtatW+Pl5cXhw4cLjFN3796dJk2aULt27QLDK7keeOABpk6dSr9+
/fDy8uKvv/5i2bJlxYrrdgICAliyZAkjR47Ew8ODqKgoIiMjsbe35+rVq7z0
0ku4u7tTp04dzp07x5tvvgnAunXr8mYUvfDCC3z11VfccccdZY5HlI5Bmftz
uBC3kZ2dTd26dVmxYgUdOnSwdDhCWA3puYtyFxUVxfnz57l69SpvvPEGdnZ2
tG7d2tJhCWFVJLmLcrdjxw4aNWqEu7s7UVFRrFq16pbDMkKI0pFhGSGEsELS
cxdCCCtkscpR7u7uZSp9KoQQVVFCQkKxFrpZLLmXZJm1EEIILbckRlFkWEYI
IayQJHchhLBCktyFEMIKyVY8QlQRmZmZJCYmSjGvSsLBwQFvb2/s7e1L9XpJ
7kJUEYmJiTg7O+Pj42OWjcKF6SilSE1NJTExkYYNG5aqDRmWEaKKuHLlCm5u
bpLYKwGDwYCbm1uZPmVJcheiCpHEXnmU9d+q8iX3P/6A55+HW9S4FkIIURmT
e1wczJ0Ly5dbOhIhRAmkpqYSHBxMcHAwderUoV69enk/X7t2rVhtPPnkkxw5
cuS258yfP98kde1B7ztcnH1nK6LKd0O1Vy8IDIR33oHBg0E+ZgpRKbi5ueUl
ytdeew0nJydeeOGFAucopVBK3XIHp8WLFxd5nVGjRpU9WCtQ+XruBgO89BLs
3w+yAa8Qld7Ro0cJDAzkmWeeISQkhFOnTjFixAiMRiMBAQFMmzYt79zcnnRW
Vhaurq5MnDiRFi1acO+993L27FkApkyZwpw5c/LOnzhxIq1bt6Zp06b8/PPP
AFy6dInQ0FBatGhBeHg4RqOxyB76559/TvPmzQkMDOTll18GICsri8ceeyzv
8Xnz5gEwe/Zs/P39adGiBYMHDzb5e1Ycla/nDjBwIEyeDG+/DQ8+aOlohKh8
nn8eTD3cEBwM/yTVkjp48CCLFy9mwYIFAMyYMYNatWqRlZVFly5dCAsLw9/f
v8Brzp8/T6dOnZgxYwbjxo3jf//7HxMnTrypbaUUu3btIjIykmnTphEVFcX7
779PnTp1WLlyJfv27SMkJOS28SUmJjJlyhRiYmJwcXHhvvvuY82aNXh4eJCS
ksLvv/8OQFpaGgDvvPMOf/75J3fccUfeY+Wt8vXcAeztYdw42L4ddu60dDRC
iDJq3LgxrVq1yvv5yy+/JCQkhJCQEA4dOsTBgwdvek316tXp2bMnAPfccw8J
CQmFtt2/f/+bztmxYwcDBw4EoEWLFgQEBNw2vl9++YWuXbvi7u6Ovb09gwYN
Ytu2bfj6+nLkyBGee+45vv/+e1xcXAC9D+3gwYNZtmxZqRchlVXl7LkDDB8O
06bp3vuqVZaORojKpZQ9bHNxdHTM+z4uLo65c+eya9cuXF1dGTx4cKHzva/f
fNvW1pasrKxC287d5ev6c0q6R9Gtzndzc+O3335j/fr1zJs3j5UrV7Jw4UK+
//57fvzxR1avXs2bb77J/v37sbW1LdE1y6py9twBnJxg9GhYvRoOH7Z0NEII
E7lw4QLOzs7UqFGDU6dO8f3335v8Gu3bt+frr78G4Pfffy/0k8H12rZty5Yt
W0hNTSUrK4vly5fTqVMnkpOTUUrxyCOP8Prrr7Nnzx6ys7NJTEyka9euzJw5
k+TkZC5fvmzy36EolbfnDvDss/DuuzBzJnzyiaWjEUKYQEhICP7+/gQGBtKo
USPatWtn8ms8++yzPP744wQFBRESEkJgYGDekEphvL29mTZtGp07d0YpRZ8+
fXjwwQfZs2cPw4YNQymFwWDg7bffJisri0GDBnHx4kVycnKYMGECzs7OJv8d
imKxPVSNRqNpNusYPRoWLoT4eKhXr+ztCWGlDh06hJ+fn6XDqBCysrLIysrC
wcGBuLg4evToQVxcHHZ2Fau/W9i/WXFzZ+Udlsk1fjzk5FS4MUQhRMWVnp5O
u3btaNGiBaGhoXz88ccVLrGXVZHJ/cqVK7Ru3TrvjvKrr7560zlXr15lwIAB
+Pr60qZNm1vetTaLhg3h0Ufh44/BQlOOhBCVi6urK7/++iv79u3jt99+o0eP
HpYOyeSKTO7VqlVj8+bN7Nu3j9jYWKKiooiOji5wzieffELNmjU5evQoY8eO
ZcKECWYLuFAvvQQXL8JHH5XvdYUQooIqMrkbDAacnJwAXew/MzPzpmplq1ev
5oknngAgLCyMTZs2lXiqUZkEB8P99+uaM7IRgRBCFG/MPTs7m+DgYDw9Pene
vTtt2rQp8HxSUhL169cHwM7ODhcXF1JTU29qZ+HChRiNRoxGI8nJySYI/zov
vQRnzsCSJaZtVwghKqFiJXdbW1tiY2NJTExk165d7N+/v8DzhfXSC6tFPGLE
CGJiYoiJicHDw6OUId9Cly5gNOqpkdnZpm1bCCEqmRLNlnF1daVz585ERUUV
eNzb25sTJ04AeorR+fPnqVWrlumiLA6DASZMgKNH4ZtvyvfaQogide7c+aYF
SXPmzOHf//73bV+XOyx88uRJwsLCbtl2UdMD58yZU2AxUa9evUxS9+W1117j
3XffLXM7plZkck9OTs57AzIyMti4cSPNmjUrcE7fvn1Z8s9wyIoVK+jatatl
dnzp1w+aNNElCSwzfV8IcQvh4eEsv2EfhuXLlxMeHl6s19etW5cVK1aU+vo3
Jvd169bh6upa6vYquiKT+6lTp+jSpQtBQUG0atWK7t2707t3b6ZOnUpkZCQA
w4YNIzU1FV9fX9577z1mzJhh9sALZWsLL7wAv/4KW7ZYJgYhRKHCwsJYs2YN
V69eBSAhIYGTJ0/Svn170tPT6datGyEhITRv3pzVq1ff9PqEhAQCAwMB3dEc
OHAgQUFBDBgwgIyMjLzzRo4cmVcuOHfq9rx58zh58iRdunShS5cuAPj4+JCS
kgLAe++9R2BgIIGBgXnlghMSEvDz8+Opp54iICCAHj16FLhOYWJjY2nbti1B
QUH069ePc+fO5V3f39+foKCgvIJlP/74Y95mJS1btuTixYulfm8LpSzknnvu
MU/DGRlK1a6tVI8e5mlfiErq4MGDed8/95xSnTqZ9njuuaJj6NWrl1q1apVS
Sqm33npLvfDCC0oppTIzM9X58+eVUkolJyerxo0bq5ycHKWUUo6OjkoppeLj
41VAQIBSSqlZs2apJ598Uiml1L59+5Stra3avXu3Ukqp1NRUpZRSWVlZqlOn
Tmrfvn1KKaUaNGigkpOT82LJ/TkmJkYFBgaq9PR0dfHiReXv76/27Nmj4uPj
la2trdq7d69SSqlHHnlELV269Kbf6dVXX1UzZ85USinVvHlztXXrVqWUUq+8
8op67p83xcvLS125ckUppdS5c+eUUkr17t1b7dixQyml1MWLF1VmZuZNbV//
b5aruLmz8q9QvZGDg65V/cMPsHevpaMRQlzn+qGZ64dklFK8/PLLBAUFcd99
95GUlMSZM2du2c62bdvyNsEICgoiKCgo77mvv/6akJAQWrZsyYEDB4osCrZj
xw769euHo6MjTk5O9O/fn+3btwPQsGFDgoODgduXFQZdXz4tLY1OnToB8MQT
T7Bt27a8GCMiIvj888/zVsK2a9eOcePGMW/ePNLS0ky+Qta61tvmeuYZmD5d
b8X35ZeWjkaICsdS1Toefvhhxo0bx549e8jIyMjbJGPZsmUkJyfz66+/Ym9v
j4+PT6Flfq9X2H29+Ph43n33XXbv3k3NmjUZMmRIke2o29yfyy0XDHrWYFHD
Mreydu1atm3bRmRkJG+88QYHDhxg4sSJPPjgg6xbt462bdsWej+zLKyv5w7g
6gpPPw1ffw3Hj1s6GiHEP5ycnOjcuTNDhw4tcCP1/PnzeHp6Ym9vz5YtW/jz
zz9v207Hjh3zNsHev38/v/32G6DLBTs6OuLi4sKZM2dYv3593mucnZ0LHdfu
2LEjq1at4vLly1y6dIlvv/2WDh06lPh3c3FxoWbNmnm9/qVLl9KpUydycnI4
ceIEXbp04Z133iEtLY309HSOHTtG8+bNmTBhAkajkcMmLl1unT130EMzc+fC
rFkwf76loxFC/CM8PJz+/fsXmDkTERFBnz59MBqNBAcHF9mDHTlyJE8++SRB
QUEEBwfTunVrQO+q1LJlSwICAm4qFzxixAh69uyJl5cXW66bcBESEsKQIUPy
2hg+fDgtW7YsVY2sJUuW8Mwzz3D58mUaNWrE4sWLyc7OZvDgwZw/fx6lFGPH
jsXV1ZVXXnmFLVu2YGtri7+/f96uUqZS+Uv+3s6wYfDFF/Dnn+Dpad5rCVHB
Scnfyqdql/y9nRdfhKtX4f33LR2JEEKUK+tO7s2awUMP6WGZ9HRLRyOEEOXG
upM76JIE587BokWWjkQIi7PQKKwohbL+W1l/cm/bFjp2hPfeg8xMS0cjhMU4
ODiQmpoqCb4SUEqRmpqKg4NDqduw3tky15swAR58UM95f/xxS0cjhEV4e3uT
mJho+nLbwiwcHBzw9vYu9eurRnLv2RMCA/WipsGDwcb6P7AIcSN7e3saNmxo
6TBEOakaWc5g0Jt5HDgA69ZZOhohhDC7qpHcAQYOhLvu0uWAhRDCylWd5G5v
D+PGwY4d8PPPlo5GCCHMquokd4Dhw6FWLem9CyGsXtVK7o6OMHo0REZCEWVA
hRCiMqtayR3g2WehenWYOdPSkQghhNlUveTu7q4Lii1bBomJlo5GCCHMouol
d4Dx4yEnx3I7FgghhJlVzeTu4wMDBsDHH+u6M0IIYWWqZnIHXQ44PR0++sjS
kQghhMlV3eQeHAz33693ayrlvohCCFFRVd3kDrqg2NmzsGSJpSMRQgiTqnTJ
/fRpmDwZsrJM0FjnztCqFbz7LmRnm6BBIYSoGCpdct+xA6ZPN9Ge1waD7r0f
OwYrV5qgQSGEqBgqXXIPDdUVfKdMMdE09YcfhiZNdEkC2cRACGElikzuJ06c
oEuXLvj5+REQEMDcuXNvOmfr1q24uLgQHBxMcHAw06ZNM0uwoDvb8+frYZnn
njNBg7a2eubMnj2webMJGhRCCMsrMrnb2dkxa9YsDh06RHR0NPPnz+dgIXVZ
OnToQGxsLLGxsUydOtUsweZq2BCmToVvvoE1a0zQ4GOPQZ06UlBMCGE1ikzu
Xl5ehISEAODs7Iyfnx9JSUlmD6wo48eDvz+MGgWXLpWxMQcH/TFgwwbdgxdC
iEquRGPuCQkJ7N27lzZt2tz03M6dO2nRogU9e/bkwIEDhb5+4cKFGI1GjEZj
mfdxvOMOvcD0r7/g9dfL1JT2zDPg7Ky34hNCiMpOFdPFixdVSEiIWrly5U3P
nT9/Xl28eFEppdTatWuVr69vke3dc889xb30bQ0bppStrVL79pmgsRdfVMrG
RqmjR03QmBBCmF5xc2exeu6ZmZmEhoYSERFB//79b3q+Ro0aODk5AdCrVy8y
MzNJSUkx7V+hW3j7bahZE55+WtcCK5Pnnwc7O5g1yySxCSGEpRSZ3JVSDBs2
DD8/P8aNG1foOadPn0b9M41w165d5OTk4ObmZtpIb8HNTefi6Gj473/L2Fjd
uvrm6uLFeuWqEEJUUkUm959++omlS5eyefPmvKmO69atY8GCBSxYsACAFStW
EBgYSIsWLRgzZgzLly/HYDCYPfhcjz0GXbrAxIlw5kwZG3vxRbh6FebNM0ls
QghhCQalLLNyx2g0EhMTY7L2jhyBoCAIC9P7cJRJ//6wZYu+W+vsbJL4hBDC
FIqbOyvdCtVbadpU99y/+AI2bixjYxMmQFqaCcZ5hBDCMqwmuQNMmqQrCfz7
33DlShkaatMGOnWC2bPh2jWTxSeEEOXFqpK7gwN8+CHExcFbb5WxsZde0sVr
vvzSJLEJIUR5sqrkDnDffRARATNm6HH4UuvZE5o314uayjzHUgghypfVJXfQ
UyPvvFMvOi317WKDQffeDx6EtWtNGp8QQpibVSb32rV1z33rVli6tAwNDRgA
d90lBcWEEJWOVSZ3gKeegnvv1QXGUlNL2Yi9vW7gp5/0IYQQlYTVJncbG1iw
AM6d0zMbS23YML0MVnrvQohKxGqTO+hFTePGwSefwPbtpWzE0RFGj4bvvoNb
VLsUQoiKxqqTO8Crr0KDBvrmaqmnrI8eDdWrw8yZJo1NCCHMxeqTu6MjfPCB
nvRS6mKP7u56eGbZMjhxwqTxCSGEOVh9cgfo3VuXi5k2DY4fL2Uj48freZVz
5pg0NiGEMIcqkdwB5s7VpdpHjSrl3HcfHz01cuFCfZdWCCEqsCqT3L294c03
ISoK/u//StnISy9BerqucSCEEBVYlUnuoO+LhoTovbDPny9FAy1awAMP6I8B
GRkmj08IIUylSiV3W1u9qfbZszB5cikbmTABkpPh009NGZoQQphUlUruAEaj
Hnf/8EPYtasUDXTqBK1bw7vvQlaWyeMTQghTqHLJHeCNN6BOHb2pdonzs8Gg
e+/Hj8PKlWaJTwghyqpKJncXFz1sHhsL779figYeegjuvlsXjc/MNHl8QghR
VlUyuYPea7VnT3jllVKsS7K11VNv9u2D4cPLUFdYCCHMo8omd4MB5s/X+3A8
91wpGnjkEb0q6rPPYMoUk8cnhBBlUWWTO0DDhjB1Knz7ra4LVmJTpujawtOn
w0cfmTw+IYQorSqd3EFXFQgI0HPgL10q4YsNBj3tpndv3cCqVWaJUQghSqrK
J3d7ez33/a+/4LXXStGAnR0sX67nWIaHw88/mzpEIYQosSqf3AHatdP3RWfP
1vdIS8zREdas0TUO+vQp487cQghRdpLc//H221Crlq77npNTigY8PHThGjs7
XaLg9GmTxyiEEMVVZHI/ceIEXbp0wc/Pj4CAAObOnXvTOUopxowZg6+vL0FB
QezZs8cswZpTrVq63nt0tC78WCqNG8Patbo8Qa9ecPGiSWMUQojiKjK529nZ
MWvWLA4dOkR0dDTz58/n4MGDBc5Zv349cXFxxMXFsXDhQkaOHGm2gM1p8GDo
2hUmTixDx9to1GUnf/tNT6aXRU5CCAsoMrl7eXkREhICgLOzM35+fiQlJRU4
Z/Xq1Tz++OMYDAbatm1LWloap06dMk/EZpQ7+SUjQ++9Wmo9e+ru/w8/yCIn
IYRFlGjMPSEhgb1799KmTZsCjyclJVG/fv28n729vW/6AwCwcOFCjEYjRqOR
5OTkUoZsXk2b6p77l1/q3FxqQ4fKIichhMUUO7mnp6cTGhrKnDlzqFGjRoHn
VCE9U4PBcNNjI0aMICYmhpiYGDw8PEoRbvmYNAmaNIF//7uMZdtlkZMQwkKK
ldwzMzMJDQ0lIiKC/v373/S8t7c3J64r0JKYmEjdunVNF2U5c3DQwzPHjum8
XGqyyEkIYSFFJnelFMOGDcPPz49xtxiI7tu3L5999hlKKaKjo3FxccHLy8vk
wZan++6DiAg9RfLQoTI0JIuchBAWYFCFjalcZ8eOHXTo0IHmzZtjY6P/Fkyf
Pp2//voLgGeeeQalFKNHjyYqKoo777yTxYsXYzQab3tho9FITEyMiX4N8zhz
Bpo107vrbdmiO+KllpwM//oX/P23TvBNm5osTiFE1VHc3FlkcjeXypDcQU96
efppWLwYhgwpY2PHjukEf+edsHOn3jFECCFKoLi5U1aoFmH4cJ2PX3gBUlLK
2JgschJClBNJ7kWwsYEFC+D8eXjpJRM0KIuchBDlQJJ7MTRvrhc1LV4M27aZ
oEFZ5CSEMDNJ7sU0dSo0aKALi127ZoIGZZGTEMKMJLkXk6Oj3pbv0CF4910T
NSqLnIQQZiLJvQQefBBCQ+GNN/TElzKTRU5CCDOR5F5Cc+fqdUmjRploqFwW
OQkhzECSewnVqwdvvgnffw9ff22iRmUnJyGEickiplLIzobWrfWWfJ6eehMm
d3f99frvb3zM3V131G9JFjkJIYpQ3Nx5u1QjbsHWFr75Rm+sffasXpOUkgJ7
9uiv587d+rWurjf/Ecj/vjHuL+/AY+IwPLoNw33jchzrOJet7IEQokqS5F5K
A8zbMQAAF+RJREFUDRrcumJkZiakpupEn5v4k5MLfp+SAgkJsHu3/j5/LVMT
YBscBOqCg4PC3d1w208FISHg41Mev7UQorKQ5G4G9vZ6RKW4oypKwYULN/wR
+HY7yYu/I6VxJ5Jb9SI52UBKChw9qs+7cKHg9caP1zMrHR3N8zsJISoXSe4V
gMEALi76aNz4nwf7dICGW2Fqb3joZVj8nwKvuXpVJ/kzZ+D992HGDFi2DGbP
hv79y1jBUghR6clsmYrsNoucqlXTM3dCQnRZhB07oFYtXa6mZ0/44w8LxSyE
qBAkuVdkJVjk1K4dxMTAvHl6ok3z5jB5Mly+XI7xCiEqDEnuFV0JFjnZ2cGz
z+pp8gMG6A6/n5/+myC1yYSoWiS5VwYlXORUp46uR/bjj1CjBvTrp0snHD1a
TvEKISxOkntl4eEBUVG6e/7AA3D6dJEv6dhRz72fPVuPyQcE6OqWGRnlEK8Q
wqIkuVcmpdjJyd4enn9ed/bDwnTRM39/+O67cohXCGExktwrm1Lu5OTlpadK
btmiqxv07atHeI4fN3O8QgiLkOReGZVhJ6fOnSE2Vtek37pVD9VMmwZXrpgt
WiGEBUhyr6yu38lp7FjIyir2S3NXtB4+DA89BK++qpP8unVmjFcIUa4kuVdm
U6bouY9z50KnThAfX6KX16unZ1lu3Ah33KFn1Dz8sK55I4So3CS5V2YGg161
tGwZ7N8PwcHwxRclbqZbN12++O23YcMGfcP1P//RJQ6EEJWTJHdrMGiQHkgP
DISICHj88YKVxYrhjjvgpZf0UM2DD+oPBYGBevalEKLykeRuLRo21KuWXntN
9+RbtoRffilxM/Xr68k4338PNjb63m1oKPz1l+lDFkKYT5HJfejQoXh6ehIY
GFjo81u3bsXFxYXg4GCCg4OZNm2ayYMUxWRnp++Obtumt4tq106Pr2Rnl7ip
Hj30bMvp02H9emjWDN56S4ZqhKgsikzuQ4YMIaqIz+YdOnQgNjaW2NhYpk6d
arLgRCm1a6eHaR55RI+vdO1aqq53tWowaRIcOqQXxb78MgQF6XF5IUTFVmRy
79ixI7Vq1SqPWIQpubrqm6tLlugaBC1a6PGWUmjQQG8ruG6d/hDQowc8+igk
Jpo4ZiGqiPIo5GeSMfedO3fSokULevbsyYEDB2553sKFCzEajRiNRpKTk01x
aXE7BoO+uRobC3ffrTPy0KGQnl6q5nr21JNy3nhDly9o1gzeeQeuXTNx3EJY
mdOndd9q9Gj96XfWrHK4qCqG+Ph4FRAQUOhz58+fVxcvXlRKKbV27Vrl6+tb
nCbVPffcU6zzhIlcu6bU5MlKGQxKNWmi1O7dZWru+HGl+vZVCpRq1kypTZtM
FKcQVuDPP5X67DOlhg9X6u679f8noJSjo1I9eij11Velb7u4ubPMPfcaNWrg
5OQEQK9evcjMzCQlJaXMf3SEidnbw5tv6uIyGRlw7716YntOTqmaa9gQVq/W
PfirV/Vc+c6d4YMPICnJtKELUZEpBXFxsGiR/qDs46OHMh9/HFasgKZNYeZM
PXnt3Dk9E+3RR80fV5n3UD19+jS1a9fGYDCwa9cucnJycHNzM0Vswhw6ddLT
YEaMgIkTdX2azz7Ty1VLoXdvndjnztXNPPusPtq21VMoQ0P1HwIhrEVODhw4
oCel5R65Fbg9PXWp7fHj9dfAQLC1tUycBqVuP7QfHh7O1q1bSUlJoXbt2rz+
+utk/lOJ8JlnnuGDDz7go48+ws7OjurVq/Pee+/xr3/9q8gLG41GYmJiTPNb
iJJTSm+++uyz4OCgux39+pW52UOH9M3XlSth7179WMuWetPu0FC9M5QQlUlW
lr5tlZvIt2+Hv//Wz3l76/5Sx476aNrU/JvTFzd3FpnczUWSewXxxx96heuv
v+re/Hvv6Z2fTCA+Pj/R79ypH2vWLL9HHxxs/v8RhCipa9dg9+78ZP7TT/lb
J/j65ifyjh31EEx5/zcsyV0U37Vr8MoremCwaVM9hbJlS5Ne4uRJ+PZbneh/
/FF/tG3YML9H36aNXhErRHm7fBmio/OT+c6d+SWwAwLyE3mHDqUevTQpSe6i
5DZt0neBkpNhxgy9hZMZMm5Kir4Zu3KlrkiZmQl16+pRodBQ/T+RXZnvBpWf
S5fg4EH4/ff849gxXa/Hyen2h6Nj8c6x1LitNbpwQffGc5P57t36v0EbG/1p
MjeZt2+vd7esaCS5i9JJTdUbgKxapVcrffqp3sbJTM6f13t/r1ypi5RlZIC7
u64zHxqqF9dWq2a2y5dIVpaeFZGbwPfv11+PH89flFK9uu7tNW2qF3ylp9/6
KEEJfqpXL/qPQGF/LBwd9UQpO7uCX0v6fXkNPSil35erV/Vx5Ur+9zceJX3u
yhV9T2jvXv3J0c4OWrXKT+bt2oGLS/n8nmUhyV2UnlLw3//qnrujo77x2ru3
2S976ZJO8N98o6dYXrwINWro7QD799clEO680+xhoJRefXt9Av/9d50Ychds
2dhAkybQvHn+ERgIjRoVr5etlG4rN9FfunT7PwTFPcy1+bmtbdn+QEDxE7Gp
MpKtre4YXH/4+OTfAG3b1mS3l8qVJHdRdocO5ZcTHjVKj8lXr14ul756VQ/Z
fPONHsJJTdWJvWdPneh799aJv6zOnSuYwPfv10daWv459eoVTODNm+tZPw4O
Zb++qWVnF/xDcemS7glnZuqjsO+Let4Ur4ObE+31h4OD6Z+31qEsSe7CNK5e
1RXD3ntPjzd88YVeP12OsrL0TdhvvtE3ZU+d0uPZ3bvrRP/QQ1DU0orcj+Q3
9savX3Dl4lIwgTdvrn9lKa0kKhJJ7sK0fvhB32xNS9MFZZ591iLzGHNy9GyG
3CmWf/6pe2idO+cn+suXb+6Nx8XlVz6+4w7d876xN+7tLVMzRcUnyV2Y3tmz
uvDY2rXQq5cei/f0tFg4SumCl7mJ/siRgs8bDHoM/MbeuK+vHgsWojKS5C7M
Qyn48EO9vtrFRZcUfuABS0eFUnrYZf16qFlTJ/OAgMp5w0yI2ylu7qxEs4lF
hWAw6JurnTpBeLi+w/n883qbJgveYTQY9Mbe/v4WC0GICkXWBIrSCQzUqz/G
jIE5c/QS09hYS0clhPiHJHdReg4Ouhzk2rV6CktIiO7N//GHpSMTosqT5C7K
rlcvfTdz0iS9+sjfX69yLcW+rUII05DkLkyjZk34z390UZXRo2HpUr2E87nn
4MwZS0cnRJUjyV2YVu3aegw+Lk7Pi58/X89HnDxZLwcVQpQLSe7CPO66S9en
OXRIryyaPl0n+enTS71BtxCi+CS5C/Nq0kSXLNi3T1drmjwZGjfWN2Jzi2YL
IUxOkrsoH0FBugLYzp16mejzz+vEv2hRfmUpIYTJSHIX5attW13ucdMmXczl
qaf07Jovv9SFY4QQJiHJXVhG167w888QGalr+Q4apLf2i4w0XUFvIaowSe7C
cgwGvRPH3r26556RoW++3nuv7tkLIUpNkruwPBsbGDhQb0S6aJHeTfu++3Tv
fudOS0cnRKUkyV1UHHZ2MGyYLl8wdy4cOAD/+hf07Qu//Wbp6ISoVCS5i4rH
wUEXJDt2TM+L374dWrSQujVClIAkd1FxOTnpejXx8Xp+vNStEaLYikzuQ4cO
xdPTk8DAwEKfV0oxZswYfH19CQoKYs+ePSYPUlRxrq7w5ptw/Lje3k/q1ghR
pCKT+5AhQ4iKirrl8+vXrycuLo64uDgWLlzIyJEjTRqgEHk8PWH27Jvr1rz8
stStEeIGRSb3jh07Uus227+vXr2axx9/HIPBQNu2bUlLS+PUqVMmDVKIAm6s
WzNjBjRsqKtSSt0aIQATjLknJSVRv379vJ+9vb1JSkoqa7NCFC23bk1srN72
b8qU/OJkKSmWjk4Iiypzci9sf22DwVDouQsXLsRoNGI0GklOTi7rpYXQcuvW
REfr3aAmT4b69WHECD13XogqqMzJ3dvbmxMnTuT9nJiYSN26dQs9d8SIEcTE
xBATE4OHh0dZLy1EQW3aQFQU7N+vx+SXLoWAALj/fli/XmrXiCqlzMm9b9++
fPbZZyiliI6OxsXFBS8vL1PEJkTpBATAxx/DiRN6iGb/fr0VYEAALFgAly5Z
OkIhzK7I5B4eHs69997LkSNH8Pb25pNPPmHBggUsWLAAgF69etGoUSN8fX15
6qmn+PDDD80etBDF4u6eP09+2TI9b37kSD1kM3GiTv5CWCmDKmzQvBwYjUZi
YmIscWlRVSmla9XMng3ffKMLl4WFwdixekhHiEqguLlTVqiKqsNg0LVq/u//
9IKosWP1GH3btroS5VdfycYhwmpIchdVU4MGMHMmJCbCBx9AaqquTNmoEbz9
Nvz9t6UjFKJMJLmLqs3JCUaNgsOHde2apk31eHz9+vDvf+vHhaiEJLkLAbqm
fO/eegvA337Tvfj//Q/8/PRMmx9+kB2iRKUiyV2IGzVvDp98oitPTpsGe/bo
ufKBgbrsQUaGpSMUokiS3IW4FU9PeOUV+PNP+OwzqFZNr3qtX1+vgpUyG6IC
k+QuRFGqVYPHHoNff4Uff4SOHeGtt8DHByIiQKb0igpIkrsQxWUw6MT+zTdw
9KiuLf/dd9CqFbRvDytWQFaWpaMUApDkLkTpNGoE772np1LOmQOnTsEjj4Cv
L8yaBWlplo5QVHGS3IUoixo19I5Qf/wBq1bpuvIvvAD16sHDD+saN7IloLAA
Se5CmIKtrd44ZMsW2LsXhgzRdeafeUYvmAoIgBdfhM2b4do1S0crqgBJ7kKY
WnCw3gIwPl7Xk581C+rWhXnzoFs3cHOTXr0wOztLByCE1TIY9CIoPz8YN05v
AbhlC6xbp+vLr16tzwsIgJ499dG+Pdxxh2XjFlZBeu5ClBcnJ+jTBz76qGCv
3stLevXC5KTnLoQlFNar37xZ9+ilVy9MQHruQlQETk7Qt6/06oXJSM9diIpG
evXCBKTnLkRFV1iv/t13oU4dmDs3v1ffrx8sXCjbBwpAeu5CVC7X9+rHj7+5
V79qlT7v+l79v/4FDg6WjVuUO9lDVQhroRQcOpSf6Ldt09sGOjjoYZtu3fQR
EqIXXYlKqbi5U3ruQlgLgwH8/fWR26vfuhU2bdLHpEn6PFdX6NIlP9k3bapf
K6yKJHchrJWTk95dqndv/fOZM3oIZ9MmvePUt9/qx+vVy0/03brpn0WlJ8ld
iKqidm0ID9eHUnD8eH6vft06vSEJ6J78fffpRN+5M9SsadGwRelIcheiKjIY
oHFjfYwYATk58Pvvuke/aRN8+qmuj2Njo8fou3XTCb9dO6he3dLRi2KQG6pC
iJtduwa//JLfs4+O1huRVKumZ9/kDuEYjWAnfcTyVNzcKcldCFG09HTYvj2/
Z79vn368Rg09dJOb7P395easmRU3dxZrEVNUVBRNmzbF19eXGTNm3PT8p59+
ioeHB8HBwQQHB7No0aKSRyyEqLicnPSc+VmzdJ36s2fhq69gwADYv19vWBIY
qEsbDx4MixdLiQQLK/LzVHZ2NqNGjWLDhg14e3vTqlUr+vbti7+/f4HzBgwY
wAcffGC2QIUQFYiHBzz6qD4AEhLyZ+Fs2ADLlunHfX31WH2nTtCyJTRposfx
hdkVmdx37dqFr68vjRo1AmDgwIGsXr36puQuhKjCfHxg2DB9KKV787nj9Z9/
DgsW6PMcHSEoSCf63CMgQFbQmkGRyT0pKYn69evn/ezt7c0vv/xy03krV65k
27Zt3H333cyePbvAa3ItXLiQhQsXApCcnFyWuIUQFZXBAM2b6+P55/Uq2QMH
9PaDe/fqYZ2lS+HDD/X5dna6nELLlnoXq9yvrq6W/T0quSKTe2H3Ww033DDp
06cP4eHhVKtWjQULFvDEE0+wefPmm143YsQIRowYAeibAkKIKsDeXifr4GB4
8kn9WE6OnmcfG5uf9H/4IX+uPejNxnOTfW7Cr1dPbtgWU5HJ3dvbmxPXVZlL
TEykbt26Bc5xc3PL+/6pp55iwoQJJgxRCGF1bGz0eLyvL4SF5T9++nR+ws/9
mruSFsDdvWAPP3ccX2rl3KTI5N6qVSvi4uKIj4+nXr16LF++nC+++KLAOadO
ncLLywuAyMhI/Pz8zBOtEMK61akDDzygj1wXL+qpl9f38ufM0cM9AHfeWXAc
PzhYDwlV8XH8IpO7nZ0dH3zwAffffz/Z2dkMHTqUgIAApk6ditFopG/fvsyb
N4/IyEjs7OyoVasWn376aTmELoSoEpyddVXL9u3zH7t2TVfAvH4cf9kyXfMe
dE/ez+/mYZ0qVEpBFjEJIaxDTo7ezOT6Hn5sLJw8mX9OvXq6dk7ucffd+muD
BpVmaEdK/gohqhYbm/x6OaGh+Y+fOZOf8A8ehD/+gC+/hLS0/HOqVdPj/9cn
/NyjVq3y/11MQJK7EMK61a4N99+vj1xKQXIyHDmijz/+0F8PHIDISF1HJ5e7
e+FJv3HjCr1vrSR3IUTVYzCAp6c+OnQo+Fxmph7eyU34uce6dbqsQi4bGz1d
8/qEn3vUqWPxKZuS3IUQ4nr29rqXfvfd+Rud5Dp/vmDSz/1+yxbIyMg/z9n5
5p5+bpuOjuXya0hyF0KI4nJxgVat9HG9nBxITCyY8I8cgZ9+0uP7189b8faG
sWNh3DizhirJXQghysrGBu66Sx/duxd8LiMDjh4tOMRTp47ZQ5LkLoQQ5lS9
en6tnXIktTeFEMIKSXIXQggrJMldCCGskCR3IYSwQpLchRDCCklyF0IIKyTJ
XQghrJAkdyGEsEIWq+fu7u6Oj4+PJS5tMsnJyXh4eFg6jApD3o+C5P3IJ+9F
QWV5PxISEkhJSSnyPIsld2sgG44UJO9HQfJ+5JP3oqDyeD9kWEYIIayQJHch
hLBCtq+99tprlg6iMrvnnnssHUKFIu9HQfJ+5JP3oiBzvx8y5i6EEFZIhmWE
EMIKSXIXQggrJMm9FE6cOEGXLl3w8/MjICCAuXPnWjoki8vOzqZly5b0vnHP
ySooLS2NsLAwmjVrhp+fHzt37rR0SBY1e/ZsAgICCAwMJDw8nCtXrlg6pHI1
dOhQPD09CQwMzHvs77//pnv37jRp0oTu3btz7tw5k19Xknsp2NnZMWvWLA4d
OkR0dDTz58/n4MGDlg7LoubOnYufn5+lw6gQnnvuOR544AEOHz7Mvn37qvT7
kpSUxLx584iJiWH//v1kZ2ezfPlyS4dVroYMGUJUVFSBx2bMmEG3bt2Ii4uj
W7duzJgxw+TXleReCl5eXoSEhADg7OyMn58fSUlJFo7KchITE1m7di3Dhw+3
dCgWd+HCBbZt28awYcMAuOOOO3B1dbVwVJaVlZVFRkYGWVlZXL58mbp161o6
pHLVsWNHatWqVeCx1atX88QTTwDwxBNPsGrVKpNfV5J7GSUkJLB3717atGlj
6VAs5vnnn+edd97Bxkb+czp+/DgeHh48+eSTtGzZkuHDh3Pp0iVLh2Ux9erV
44UXXuCuu+7Cy8sLFxcXevToYemwLO7MmTN4eXkBurN49uxZk19D/m8sg/T0
dEJDQ5kzZw41atSwdDgWsWbNGjw9PWUO8z+ysrLYs2cPI0eOZO/evTg6Oprl
I3dlce7cOVavXk18fDwnT57k0qVLfP7555YOq0qQ5F5KmZmZhIaGEhERQf/+
/S0djsX89NNPREZG4uPjw8CBA9m8eTODBw+2dFgW4+3tjbe3d94nubCwMPbs
2WPhqCxn48aNNGzYEA8PD+zt7enfvz8///yzpcOyuNq1a3Pq1CkATp06haen
p8mvIcm9FJRSDBs2DD8/P8aNG2fpcCzqrbfeIjExkYSEBJYvX07Xrl2rdM+s
Tp061K9fnyNHjgCwadMm/P39LRyV5dx1111ER0dz+fJllFJs2rSpSt9gztW3
b1+WLFkCwJIlS3jooYdMfg1J7qXw008/sXTpUjZv3kxwcDDBwcGsW7fO0mGJ
CuL9998nIiKCoKAgYmNjefnlly0dksW0adOGsLAwQkJCaN68OTk5OYwYMcLS
YZWr8PBw7r33Xo4cOYK3tzeffPIJEydOZMOGDTRp0oQNGzYwceJEk19Xyg8I
IYQVkp67EEJYIUnuQghhhSS5CyGEFZLkLoQQVkiSuxBCWCFJ7kIIYYUkuQsh
hBX6f0JbH2RecgzAAAAAAElFTkSuQmCC
" /></p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">5</span><span style=" color:#000080;">]:</span> import time</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> import numpy as np</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> from keras.preprocessing import image</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = image.load_img('/home/vanish/prgs/MLandDL/MITIndoor/Dataset/trainingset/bathroom/b1.jpg', target_size = (200, 200))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = image.img_to_array(test_image)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = np.expand_dims(test_image, axis = 0)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = preprocess_input(test_image) # added to check same preds issue</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> start_time = time.time()</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> result = model.predict(test_image)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> #decode_predictions(result)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> print("--- %s seconds ---" % (time.time() - start_time))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> for i in range (0,dict.__len__()):</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> if result[0][i] >= 0.05:</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> listOfKeys = [key for (key, value) in dict.items() if value == i]</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> for key in listOfKeys:</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> print(key) </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> break</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">Traceback <span style=" color:#4682b4;">(most recent call last)</span>:</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#4682b4;"> File </span><span style=" color:#006400;">"<ipython-input-5-98a7d7844a4a>"</span><span style=" color:#4682b4;">, line </span><span style=" color:#006400;">7</span><span style=" color:#4682b4;">, in </span><span style=" color:#9400d3;"><module></span></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#8b0000;"> test_image = preprocess_input(test_image) # added to check same preds issue</span></p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#8b0000;">NameError:</span> name 'preprocess_input' is not defined</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">6</span><span style=" color:#000080;">]:</span> </p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">6</span><span style=" color:#000080;">]:</span> import time</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> import numpy as np</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> from keras.preprocessing import image</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> from keras.applications.inception_resnet_v2 import preprocess_input, decode_predictions</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = image.load_img('/home/vanish/prgs/MLandDL/MITIndoor/Dataset/trainingset/bathroom/b1.jpg', target_size = (200, 200))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = image.img_to_array(test_image)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = np.expand_dims(test_image, axis = 0)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = preprocess_input(test_image) # added to check same preds issue</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> start_time = time.time()</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> result = model.predict(test_image)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> #decode_predictions(result)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> print("--- %s seconds ---" % (time.time() - start_time))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> for i in range (0,dict.__len__()):</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> if result[0][i] >= 0.05:</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> listOfKeys = [key for (key, value) in dict.items() if value == i]</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> for key in listOfKeys:</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> print(key) </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> break</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">--- 0.11742115020751953 seconds ---</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">bathroom</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">7</span><span style=" color:#000080;">]:</span> test_image = image.load_img('/home/vanish/prgs/MLandDL/MITIndoor/Dataset/trainingset/auditorium/41_1__10.jpg', target_size = (200, 200))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = image.img_to_array(test_image)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = np.expand_dims(test_image, axis = 0)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = preprocess_input(test_image) # added to check same preds issue</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> start_time = time.time()</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> result = model.predict(test_image)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> #decode_predictions(result)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> print("--- %s seconds ---" % (time.time() - start_time))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> for i in range (0,dict.__len__()):</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> if result[0][i] >= 0.05:</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> listOfKeys = [key for (key, value) in dict.items() if value == i]</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> for key in listOfKeys:</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> print(key) </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> break</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">--- 0.04684329032897949 seconds ---</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">auditorium</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">movietheater</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">8</span><span style=" color:#000080;">]:</span> test_image = image.load_img('/home/vanish/prgs/MLandDL/MITIndoor/Dataset/trainingset/computerroom/00.jpg', target_size = (200, 200))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = image.img_to_array(test_image)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = np.expand_dims(test_image, axis = 0)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = preprocess_input(test_image) # added to check same preds issue</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> start_time = time.time()</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> result = model.predict(test_image)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> #decode_predictions(result)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> print("--- %s seconds ---" % (time.time() - start_time))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> for i in range (0,dict.__len__()):</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> if result[0][i] >= 0.05:</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> listOfKeys = [key for (key, value) in dict.items() if value == i]</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> for key in listOfKeys:</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> print(key) </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> break</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">--- 0.04663515090942383 seconds ---</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">office</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">9</span><span style=" color:#000080;">]:</span> test_image = image.load_img('/home/vanish/prgs/MLandDL/MITIndoor/Dataset/trainingset/computerroom/2639.jpg', target_size = (200, 200))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = image.img_to_array(test_image)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = np.expand_dims(test_image, axis = 0)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = preprocess_input(test_image) # added to check same preds issue</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> start_time = time.time()</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> result = model.predict(test_image)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> #decode_predictions(result)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> print("--- %s seconds ---" % (time.time() - start_time))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> for i in range (0,dict.__len__()):</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> if result[0][i] >= 0.05:</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> listOfKeys = [key for (key, value) in dict.items() if value == i]</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> for key in listOfKeys:</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> print(key) </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> break</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">--- 0.05251765251159668 seconds ---</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">computerroom</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">studiomusic</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">10</span><span style=" color:#000080;">]:</span> test_image = image.load_img('/home/vanish/prgs/MLandDL/MITIndoor/Dataset/trainingset/livingroom/2living_room.jpg', target_size = (200, 200))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = image.img_to_array(test_image)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = np.expand_dims(test_image, axis = 0)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = preprocess_input(test_image) # added to check same preds issue</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> start_time = time.time()</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> result = model.predict(test_image)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> #decode_predictions(result)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> print("--- %s seconds ---" % (time.time() - start_time))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> for i in range (0,dict.__len__()):</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> if result[0][i] >= 0.05:</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> listOfKeys = [key for (key, value) in dict.items() if value == i]</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> for key in listOfKeys:</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> print(key) </p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> break</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">--- 0.04508328437805176 seconds ---</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;">restaurant</p>
<p style="-qt-paragraph-type:empty; margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><br /></p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;">In [</span><span style=" font-weight:600; color:#000080;">11</span><span style=" color:#000080;">]:</span> test_image = image.load_img('/home/vanish/prgs/MLandDL/MITIndoor/Dataset/trainingset/livingroom/b_Living_Room.jpg', target_size = (200, 200))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = image.img_to_array(test_image)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = np.expand_dims(test_image, axis = 0)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> test_image = preprocess_input(test_image) # added to check same preds issue</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> start_time = time.time()</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> result = model.predict(test_image)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> #decode_predictions(result)</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> print("--- %s seconds ---" % (time.time() - start_time))</p>
<p style=" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;"><span style=" color:#000080;"> ...:</span> for i in range (0,dict.__len__()):</p>