-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
45 lines (34 loc) · 1.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
from flask import Flask, request, jsonify, render_template, url_for
import pickle
from sklearn.ensemble._forest import ForestClassifier, ForestRegressor
app = Flask(__name__)
model = pickle.load(open('diabetes.pkl','rb'))
@app.route('/')
def home():
#return 'Hello World'
return render_template('home.html')
#return render_template('index.html')
@app.route('/predict',methods = ['POST'])
def predict():
int_features = [float(x) for x in request.form.values()]
final_features = [np.array(int_features)]
prediction = model.predict(final_features)
print(prediction[0])
if prediction[0]!= 0:
return render_template('home.html', prediction_text="Sorry you have diabetes".format(prediction[0]))
else:
return render_template('home.html', prediction_text="Hurry you don't have diabetes".format(prediction[0]))
#output = round(prediction[0], 2)
#return render_template('home.html', prediction_text="AQI for Banglore {}".format(prediction[0]))
@app.route('/predict_api',methods=['POST'])
def predict_api():
'''
For direct API calls trought request
'''
data = request.get_json(force=True)
prediction = model.predict([np.array(list(data.values()))])
output = prediction[0]
return jsonify(output)
if __name__ == '__main__':
app.run(debug=True)